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Abstract: The development of coding schemes with the capacity to simultaneously encrypt and
compress audio signals is a subject of active research because of the increasing necessity for transmitting
sensitive audio information over insecure communication channels. Thus, several schemes have
been developed; firstly, some of them compress the digital information and subsequently encrypt the
resulting information. These schemas efficiently compress and encrypt the information. However,
they may compromise the information as it can be accessed before encryption. To overcome this
problem, a compressing sensing-based system to simultaneously compress and encrypt audio signals
is proposed in which the audio signal is segmented in frames of 1024 samples and transformed into a
sparse frame using the discrete cosine transform (DCT). Each frame is then multiplied by a different
sensing matrix generated using the chaotic mixing scheme. This fact allows that the proposed scheme
satisfies the extended Wyner secrecy (EWS) criterion. The evaluation results obtained using several
genres of audio signals show that the proposed system allows to simultaneously compress and
encrypt audio signals, satisfying the EWS criterion.

Keywords: extended Wyner secrecy (EWS); compressive sensing (CS); M-sequence; chaotic mixing;
Pearson correlation coefficient; UACI; NSCR

1. Introduction

The large amount of digital information transmitted over unsecure channels has led to the
necessity of developing efficient schemes for increasing the amount of information transmitted over
the existing unsecure communication channels, as well as improving the security of the transmitted
information. Thus, to meet these two requirements, many efforts have been undertaken that intend
to develop encoding schemes able to simultaneously compress and encrypt audio signals, before
their transmission over unsecure communication channels [1,2]. These topics have attracted the
attention of a significant number of researchers, consequently leading to the development of several
efficient schemes, which firstly compress and subsequently encrypt the compressed information.
These schemes intuitively simplify the encryption task because the redundant information has been
eliminated during the compression operation. However, because the compressed information is stored
before encryption, its security may be compromised because it can be accessed before performing
the encryption task. To overcome this problem, several schemes have been proposed in which the
information is firstly encrypted and then the resulting information is compressed [1]. The main
disadvantage of such schemes is the fact that a lossless compression scheme must be used to avoid
the encrypted information being destroyed. A suitable approach to reduce these limitations is the
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development of algorithms allowing the simultaneous encryption and compression audio signals,
such as those based on compressive sensing [3,4], which is a suitable scheme for encryption of digital
information [5].

Because of the growing number of practical applications, compressive sensing has attracted
the attention of a large number of researchers working in fields such as audio, image, and video
processing [6,7]. As a result, several algorithms able to simultaneously encrypt and compress digital
information, based on compressive sensing techniques, have been proposed during the last years [4,8,9],
because these schemes have the capacity to meet these requirements simultaneously, using simple
matrix operations. In encryption systems based on compressive sensing, the encoding signal is
estimated transforming the input frame into a sparse one, using a discrete cosine transform (DCT).
The transformed frame is then multiplied by a sensing matrix whose row number is much smaller
than its columns; such that when a compressive sensing (CS) approach is used, the audio signal can
be simultaneously compressed and encrypted. Thus, using CS, an encrypted signal is also obtained,
because to properly decode the encoded signal, the sensing matrix used for decoding must be the same
as that used in the encoding stage [5]. Thus, the sensing matrix can be considered as a private key of
the CS-based encryption-compression system [4,8,9].

The CS-based joint compression and encryption system has several advantages. The decoding
is carried out using only standard matrix operation, and thus it generally has lower computational
complexity, compared with other previously proposed systems [4,8,9]. Because the signals to be
encoded must be firstly segmented and transformed into sparse signals before applying the CS, each
audio segment can be independently encoded and sent in any order to the receiver side. This is an
important advantage of the CS-based system and other block-based encryption schemes, used to
jointly compress and encrypt any kind of audio signals. However, several drawbacks must be solved
to develop trustworthy CS-based audio compression and encryption systems. Firstly, to properly
recover the original signal, the sensing matrixes used in the transmission and reception stages must
be the same [5]; it is necessary to have a mechanism to allow the generation of the same sensing
matrix in both the encryption and des-encryption stages. Second, because both the encryption and
des-encryption stages use only linear operations, the security of the CS-based encryption system must
be ensured [3,10–12].

Taking in account the requirements described above, this paper proposes a compression-encryption
system based on CS, in which the audio signal is firstly segmented into L non overlapping frames of
1024 samples. Each frame is then independently compressed and encrypted using a different sensing
matrix for each frame, which is generated using three secret keys provided by the user. These secret
keys are transmitted to the receiver side before sending the digital information, encrypted with a public
key cryptography algorithm. The rest of this paper is organized as follows. Section 2 presents the
development of CD-based proposed system, together with a review of the compressive sensing and
an analysis of the security of proposed system. Section 3 provides a detailed evaluation of proposed
system and, finally, Section 4 contains the conclusions of this research.

2. Proposed System for Simultaneously Compression and Encryption of Audio Signals

This section provides a description of proposed encoding and decoding system, shown in Figure 1,
that allows the simultaneous encryption and compression of audio signals. In the proposed structure,
the incoming audio signal X(k) is segmented in frames of “n” samples, which are encrypted with a
compression rate of n/m, where m is the number of samples in the compressed frame, using a CS
approach. To this end, firstly, the user inserts the values n and m into the encoder stage together with
three secret keys k1, k2, and k3 provided by the user, which are then used to estimate the sensing
matrix in the transmission stage. Because these secret keys are also required for estimation of the
sensing matrix in the decoder stage, they are transmitted to the receiver side encrypted using the Rivest,
Shamir, and Adleman (RSA) public key algorithm. This allows that the proposed system operates in
a multiuser form and even with different frame sizes and compression rates for each possible user.
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In the receiver side, using the secret keys k1, k2, and k3, the sensing matrix required for decoding
is generated.
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After matrix A is generated, the sensing matrix A0, of size n × m, used for compressing and
encrypting the first block of audio signal, is estimated using the chaotic mixing approach described in
Section 2.1. Next, the first block of the input signal given by X0(k) = X(k), k = 1, 2, . . . , n is extracted,
which is transformed using the (DCT) to estimate a sparse representation of such block, Si. Then, S1

is multiplied by the sensing matrix A0 to generate the compressed and encrypted version of the first
block of input signal y1, which is transmitted to the received side. In general, the input signal X(k) is
segmented in non-overlapped blocks given by Xi(k) = Xi(k + in), k = 1, 2, . . . , n; i = 1, 2, . . . , which
are then transformed using the DCT to generate a sparse frame, Si. Next, using the chaotic mixing
method [13,14], the n ×m sensing matrix of the i-th frame, Ai, is generated from the random matrix A.
This allows to generate a different sensing matrix for each frame, without significantly increasing the
computational complexity, satisfying at the same time the extended Wyner secrecy (EWS) criterion [12].
Next, the sparse vector Si, estimated using the DCT, is multiplied the sensing matrix Ai to obtain the
encrypted frame y1 with a compression rate of n/m, which is sent to the reception side.

In the receiver stage, provided in Figure 1b, the received information is decoded using the RSA
des-encryption module, which allows to recover the values of m and n as well as the users secret
keys k1, k2, and k3. These parameters are then used to generate the matrix A and then, using the
chaotic mixing method, the sensing matrix for the i-th block, Ai, is generated in the same form as it is
estimated in the encoding stage. Next, the sensing matrix Ai and the input frame yi(n) are fed into the
CS recovery stage to obtain Ŝl. Then, the inverse DCT (IDCT) of Ŝl is computed to obtain X̂l, which is
then concatenated with the previously decoded frames to estimate the decoded signal. The encoding
and decoding process described above is performed with each frame of input signal X. The following
sections provide a description of each stage of the proposed system.

2.1. Sensing Matrix Generation

The sensing matrix, A, required in a CS-based audio compression system, becomes the secret key
used for the proposed encryption system. Thus, to obtain sufficiently accurate signal decoding, the
sensing matrix A must satisfy the restrictive isometry property (RIP) given by [6,15,16]

(1− δk)~AS�22 ≤ ~AS�22 ≤ (1 + δk)~AS�22, (1)
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where 0 ≤ δk ≤ 1. Thus, because

‖ AS ‖22= (AS)TAS = STATAS (2)

and assuming that ATA = σ2I, from Equation (1), it follows that

(1− δk)~S�22 ≤ σ2 ~S�22 ≤ (1 + δk)~S�22. (3)

Thus, A satisfies the RIP if σ2 = 1. Then, if the sensing matrix, A, satisfies (3), the signal S can
be accurately recovered [6]. Then, in the encoding stage, the sensing matrix A is constructed using a
pseudo random number generator whose initial value is the key, k1, provided by the user, while in the
decoding stage, using the same user key, k1, the sensing matrix, A, required to decode S, is generated.
To this end, firstly, (L/2)2 pairs of uniformly distributed random numbers (Uj, Vj), j = 0, 1, . . . , L/2
− 1, are generated [16]. Next, using the Marsaglia polar method [16], the (L/2)2 pairs of uniformly
distributed random numbers (Uj, Vj) are converted into L2 Gaussian distributed random numbers
used to estimate the matrix A. To this end, L uniformly distributed random numbers are computed (Uj,
Vj), j = 0, 1, . . . , L/2 – 1.

S2 = V2
j + U2

j , (4)

then

A(p, 2 j) = U j

√
−2 ln(S)

S
, j = 0, 1, . . . ,

L
2
− 1; p = 0, 1, . . . , L− 1 (5)

A(p, 2 j + 1) = V j

√
−2 ln(S)

S
, j = 0, 1, . . . ,

L
2
− 1; p = 0, 1, . . . , L− 1 (6)

The matrix A, described by (5) and (6), will be used to generate the sensing matrixes required
to compress and encrypt the input signal, simultaneously satisfying the RIP property [15,17] and the
EWS criterion [10].

To satisfy the EWS criterion [10], a different sensing matrix must be used in each frame, which
must also satisfy the RIP. To generate a different sensing matrix for each frame, the chaotic mixing
scheme [13,14] is applied to random matrix A, as described in Figure 2 and Equations (7)–(15).
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To modify only the position of the matrix elements and not their values themselves, the chaotic
mixing method is used, because it performs a mapping from ML →ML . To achieve this goal, the
location of the element, (x, y) of the matrix, A(x, y), is modified using a matrix BL given by [13,14]

BL =

(
1 1
k2 k2 + 1

)
, (7)

where BL satisfies that det(B) = 1 and trace(B) = λ1 + (1/λ1), where λ1 is the largest eigenvalue of
BL(k). Consider the largest and smallest eigenvalues of BL(k), which are given by [13,14]

λ1 = 1/2
[
k2 + 2 +

√
4k2 + k2

2

]
(8)
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and
λ2 = 1/2

[
k2 + 2−

√
4k2 + k2

2

]
. (9)

Next, from (5) and (6), it follows that

λ1λ2 =
1
4

([
k2 + 2 +

√
4k2 + k2

2

][
k2 + 2−

√
4k2 + k2

2

])
, (10)

trace(B) = k2 + 2 = λ1 + λ2 = λ1 + (1/λ1), (11)

and
det(B) = (k2 + 1) − k2 = 1. (12)

Thus, because BL is not singular and thus B−1
L exists, from (8)–(12), it follows that positions of the

elements of A(x, y) are estimated using BL as follows(
xr+1

yr+1

)
=

(
1 1
k2 k2 + 1

)(
xr

yr

)
mod(L), r = 1, 2, . . . , k3, (13)

xr+1 = (xr + yr) mod(L); r = 1, 2, . . . , k3, (14)

yr+1 = (k2xr + (k2 + 1)yr) mod(L); r = 1, 2, . . . , k3, (15)

where k2 and k3 are the secret keys provided by the user, where user’s key k3 determines the required
iterations. Thus, Equations (14) and (15) are iterated from r = 1, 2, . . . , k3, where (xr, yr) ε [0, L− 1]
denotes the position of (x, y) during the r-th iteration. Thus, using the chaotic mixing method, a new
matrix is estimated in each frame. Thus, using the chaotic mixing approach, firstly, the random matrix
A(x, y), at the i-th frame, is estimated after iterating k3 times, using (14) and (15), the random matrix
estimated in the (i − 1)th frame. Next, using A(x, y), the n×m sensing matrix during i-th frame, Ai(x, y),
is given by Ai(x, y) = A(x, y), x = 0, 1, . . . , n − 1; y = 0, 1, 2 . . . , m − 1.

2.2. Public Key Encryption of Secrete User Key

In the encoding stage of the proposed system, firstly, the compression parameters m and n together
with the user secret keys k1, k2, and k3 are encrypted with the public key RSA algorithm [14,18–21],
whose security depends on the difficulty of factoring large integer numbers into their prime components.
In order for the transmitter A to be able to send the above information to the receiver B, using the RSA
algorithm, the receiver B must send to the transmitter A the product of two prime secrete numbers, NB,
where NB = pBqB, and pB and qB are two secrete prime numbers of B, together with a no-secrete public
encryption exponent EB. Thus, for sending the public key, the transmitter, A, must firstly receive from
the receiver, B, the product of two prime secrete numbers, NB, together with its public encryption
exponent EB. Additionally, the receiver generates its secret decryption exponent DB. Thus, using the
parameters received from B, the secret key of the proposed scheme is that transmitted by the encoder
stage as [18,21]

Yi = (Ki)
EBmod(NB); i = 1, 2, 3. (16)

Next, using DB, the receiver decrypts the secret keys, sent by the transmitter and used for
generating the sensing matrix, Ai, as follows [18,21]:

Ki = (Yi)
DB mod(NB); i = 1, 2, 3, (17)

where DB satisfies the relation

EBDB = 1 mod [(pB − 1)(qB − 1)], (18)
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where pB and qB are two prime secret numbers generated in the reception side. Finally, the receiver
sent to the transmitter a conformation massage, given by [18,21]

C = MDBmod(NB), (19)

which is decrypted by the transmitter as follows [18,21]

M = CEB mod(NB). (20)

Because EB is public, the message M can be recovered by any member of the network, however,
only the receiver B may have sent the confirmation of the encryption of the message M.

2.3. Encrypted and Compressed Signal

In the transmission stage, firstly, the input audio signal, X(m), is segmented in a set of
nonoverlapped frames, such that its i-th frame is given by Xi(k) = X(k + in), where 0 ≤ k ≤ n.
Xi(k) is then transformed to the DCT domain, which provides a k sparse representation with only
k << n terms different to zero, that is, Si= ΨXi. Finally, the encrypted and compressed signal is
computed by multiplying the sparse vector Si by the i-th, n×m size sensing matrix Ai. Thus, the i-th
frame of the transmitted signal is given by [6,17,22].

y =AiSi = AiΨXi, (21)

where Ψ denotes the DCT basis functions. Thus, according to the compressive sensing theory, Si can be
reconstructed if the input signal is represented with at least m samples, where m ≥ O (k log n) [6,17,22].

2.4. Decrypted and Decompressed Signal

The transmitted signal is decrypted and decompressed by minimizing the norm l1 because, if the
received frame Si is sparse enough, the probability that the recovered signal is almost equal to the
original one is very high [6,17,22], because the norm l1 improves the signal reconstruction, that is, for a
given sensing matrix Ai ∈ Rn×m and a received vector yi ∈ Rm, the i-th transmitted sparse vector, Ŝi,
can be estimated minimizing [6,17,22]

min
y ∈Rm

‖ y−AŜ ‖1 given that y = AS, (22)

using orthogonal matching pursit (OMP) [6]. Finally, the transmitted vector X is estimated computing
the inverse DCT of Ŝi, that is, Xi= Ψ−1Si. Because k, m � n and Si is sparse, it can be recovered
with about k × n × m operations [6], and then, the CS-based scheme is a highly competitive
compression-encryption system. However, as in any other encryption system, its security is of
great importance. Thus, attending to this fact, the next subsection presents a security analysis of the
CS-based encryption system.

2.5. Security Analysis of CS-Based System

The security of the proposed system strongly depends on the fact that the encoding and decoding
sensing matrixes be enough different from each other. To carry out this analysis, consider the binary
hypothesis testing theory developed by Ramezani-Mayiami et al. [5], using the Norman–Pearson test.
Using this theory, it can be shown that, when the same sensing matrix, Ai, is used in both the encoding
and decoding stages, the probability of correctly detecting the transmitted signal, Ps(α), is given by [5]

PS(α) = Q
[
Q−1(α) −

‖ AiSi ‖2

σ

]
. (23)
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Meanwhile, when two different matrixes Ai and Bi are used in the encoding and decoding stages,
the probability of correctly detection, Pd(α), is given by

Pd(α) = Q
[
Q−1(α) −

‖ AiSi ‖2 〈AiSi, BiSi〉

σ ‖ AiSi ‖2‖ BiSi ‖2

]
, (24)

Pd(α) = Q
[
Q−1(α) −

‖ AiSi ‖2‖ AiSi ‖2‖ BiSi ‖2 cos(θ)
σ ‖ AiSi ‖2‖ BiSi ‖2

]
, (25)

Pd(α) = Q
[
Q−1(α) −

‖ AiSi ‖2 cos(θ)
σ

]
, (26)

where θ is the angle between sub-spaces ‖ AiSi ‖2 and ‖ BiSi ‖2. Because 0 ≤ cos(θ) ≤ 1 from (23)
and (26), it follows that, when ‖ AiSi ‖2 and ‖ BiSi ‖2 are orthogonal sub-spaces, that is, cos(θ) = 0,
the decoded signal is completely useless because, in this situation, Pd(α) = 0.5. From the information
theoretic perspective, this situation is satisfied when the perfect secrecy is satisfied [5].

Equations (23)–(26) show that, to correctly decode the incoming signal, the encoding matrix must
be the same as the decoding sensing matrix. Thus, a possible attack is to try to estimate the sensing
matrix using several received frames by means of some blind signal separation methods, such as the
independent component analysis (ICA). Thus, it is necessary to determine the conditions that allow to
increase the security against ICA or other blind separation analysis. To analyze the security of the
CS-based crypto system, it will be assumed that the secrecy of sensing matrix A is guaranteed. To this
end, consider the plain text to be k sparse, where k < n, such that there is at most k elements different
from zero in a frame Si of length n, such that the CS-based encoded signal is given by [6,10]

y = AiSi, (27)

where y ∈ Rm is the encoded vector, and A ∈ Rm×n and S ∈ Rn is the input vector. Next, defining
A =

[
Aa, Ab

]
and S =

[
Sa, Sb

]
, Aa

∈ Rm×(n−k), Ab
∈ Rm×k, Sa

∈ R(n−k)×1, Sb
∈ Rk×1, without loss of

generality, assume [10]
Sa = [S1, S2, S3, . . . , Sn−k]

T, (28)

Sb = [Sn−k+1, Sn−k+2, Sn−k+3, . . . , Sn]
T, (29)

Aa = [a1, a2, a3, . . . , an−k]
T, (30)

Ab = [an−k+1, an−k+2, an−k+3, . . . , an]
T (31)

and a1 ∈ Rm×1. Substituting (28)–(31) into (27),

y = AaSa + AbSb (32)

and using the Moore–Penrose inverse matrix, Sb is given by [10]

Sb = ((Ab)
T

Ab)
−1
(Ab)

T
(X−AaSa). (33)

Next, consider the conditional entropy function of Sa given S, which satisfies [10,19]

H(Sa/S) = 0, (34)

where the entropy of S and conditional entropies satisfies

H(S) ≤ H(Sa) + H
(
Sb

)
, (35)

H(S/Sa) = H(S, Sa) −H(Sa), (36)
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H(Sa/S) = H(S, Sa) −H(S) (37)

and then
H(S, Sa) = H(Sa/S) + H(S). (38)

Substituting (38) and (35) into (36), from (34), it follows that

H(S/Sa) = H(Sa/S) + H(S) −H(Sa), (39)

H(S/Sa) = H(Sa) + H
(
Sb

)
−H(Sa), (40)

H(S/Sa) = H
(
Sb

)
. (41)

Assuming that the entropy of Sb is smaller than or equal to the sum of the entropy of its elements,
that is,

H
(
Sb

)
≤ H(Sn−k+1) + H(Sn−k+2) + · · ·+ H

(
Sn−k+ j

)
+ · · ·+ H(Sn). (42)

Using the fact that all elements of Sb given by (33) have the same distribution, it follows that

H
(
Sb

)
≤

K∑
j=1

log(M) = k log(M), (43)

where M = 2B and B is the number of bits used for representing an information sample, that is, an
audio sample in an audio signal or a pixel in an image.

Next, consider the conditional mutual information of y and S, given Sa, which is given as [6]

I(y; S/Sa) = H(S/Sa) −H(S/X, Sa). (44)

Substituting (41) into (44), it follows that

I(y; S/Sa) = H
(
Sb

)
−H(S/X, Sa), (45)

I(y; S/Sa) = klog(M) −H(S/X, Sa), (46)

I(y; S/Sa) ≤ klog(M). (47)

Next, consider the mutual information between the input vector y and the sensing matrix A
given Sa, I(y; A/Sa), which, using the chain rule and the fact that A =

[
Aa, Ab

]
, can be expressed as

follows [10]:
I(y; A/Sa) = I(y; Aa, Ab/Sa), (48)

I(y; A/Sa) = I(y; Ab/Sa) + I(y; Aa/Ab, Sa), (49)

I(y; A/Sa) = I(y; Ab/Sa) + H(Aa/Ab, Sa) −H(Aa/y, Ab, Sa), (50)

Because Aa is independent of Ab and S is independent of A, besides that the elements of A and S
are statistically independent, it follows that

H(Aa/Ab, S) = H(Aa/S) − I(Aa, Ab/S), (51)

H(Aa/Ab, S) = H(Aa/S) −H(Ab/S) −H(Aa, Ab/S). (52)

As Aa and Ab are statistically independent of S, from (52), it follows that [10]

H(Aa/Ab, S) = −H
(
Ab

)
+ H(A), (53)
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H(Aa/Ab, S) = −H
(
Ab

)
+ H(Aa) + H

(
Ab

)
, (54)

H(Aa/Ab, S) = H(Aa). (55)

Next, if Sa = 0, from (32), it follows that

y = AbSb. (56)

Then,
H(Aa/y, Ab, Sa) = H(Aa/AbSb, Ab, Sa), (57)

H(Aa/y, Ab, Sa) ≥ H(Aa/Ab, Sb, Ab, Sa), (58)

H(Aa/y, Ab, Sa) = H(Aa/Ab, S). (59)

Then, from (59), it follows that

H
(
Aa/y, Ab, Sa) = H(Aa

)
. (60)

Next, consider Equation (58),

I(y; A/Sa) = I(y; Ab/Sa) + H(Aa/Ab, Sa) −H(Aa/X, Ab, Sa) (61)

and substituting (60) and (55) into (50), it follows that

I(y; A/Sa) = I(y; Ab/Sa) + H(Aa) −H(Aa), (62)

I(y; A/Sa) = I(y; Ab/Sa). (63)

Next, consider the mutual information of y and A, given Sa, which is given by [10]

I(y; A/Sa) = H(Ab/Sa) −H
(
Ab/y, Sa

)
. (64)

Next, assuming that Ab has k ×m entries, which are mutually independent and also independent
of Sa, it follows that

H
(
Ab/Sa

)
= H

(
Ab

)
, (65)

H
(
Ab/Sa

)
=

m∑
i=1

n∑
j=n−k+1

H
(
ai j

)
≤ kmlog(C). (66)

Because
I(y; A/Sa) = H(Ab/Sa) −H

(
Ab/y, Sa

)
(67)

and
H
(
Ab/y, Sa

)
≥ 0 (68)

it follows that
I(y; A/Sa) ≤ kmlog(C). (69)

Thus, from (69) and (68), it follows that [10]

I(y; S/Sa) + I(y; A/Sa) ≤ klog(M) + kmlog(C). (70)

Finally, considering that Sa = 0, from (70), it follows that

I(y; S) + I(y; A) ≤ klog(M) + kmlog(C). (71)
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Then, from (68), it follows that

lim
n→∞

I(y; S) + I(y; A)

n
≤ lim

n→∞

klog(M) + kmlog(C)
n

= 0. (72)

As the mutual information is always positive, that is, I(y; S) + I(y; A) is always non-negative, it
approaches zero as n increases. Then the CS-based joint encryption-compression system satisfies the
EWS criterion [10], when the key is used only once.

3. Experimental Results

To evaluate the compression and encryption capability of proposed algorithm, it is necessary to
simultaneously compress and encrypt different genres of audio signals, such as Mexican, Caribbean,
classic, pop, and rock music, as well as speech signals with different compression rates. To this end,
these signals are encoded and decoded using either the same or different sensing matrixes. To evaluate
the security performance of proposed system, several tests are performed that are described in the
following subsections.

3.1. Waveform Plotting

One of the more common evaluations of the system performance is the waveform plotting,
which allows a visual comparison about the similarity between the original audio and the
decrypted/decompressed signals. Figure 3a–e show the plot of decrypted/decompressed violin
audio signal segment of 1.1 s corresponding to a Bach concert with a sampling rate of 44 kHz and
16 bits/sample without compression, that is, with a bit rate of 704 kb/s, plot in Figure 3a. Figure 3b
shows the decrypted signal using the same sensing matrix for both the encryption and decryption
process without compression. Figure 3c shows the decrypted signal when the sensing matrix used
for encryption is different from that used for decryption; in this case, the original signal was encoded
without any compression. Figure 3d plots the decrypted/decompressed signal when the sensing
matrixes used for both encryption/compression and decryption/decompression are the same. In this
situation, the original signal was encoded with 176 kb/s. Finally, Figure 3e shows the decoded signal
when the sensing matrix used for decoding is different to that used during the encoding process.
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Figure 3. (a). Original violin signal with a bit rate of 704 kb/s. (b). Decoded violin signal using the
same sensing matrix during the encoding process with a bit rate of 704 kb/s. (c). Decoded violin signal
using different sensing matrixes when the encoding and decoding processes are different, with a bit rate
of 704 kb/s. (d). Decoded violin signal using the same sensing matrix during the encoding process with
a bit rate of 176 kb/s. (e). Decoded violin signal using different sensing matrix during the encoding
and decoding processes, with a bit rate of 176 kb/s. (f). Original popular music segment with a bit
rate of 704 kb/s. (g). Decoded popular signal using the same sensing matrix during the encoding and
decoding process with a bit rate of 352 kb/s. (h). Decoded popular signal using the different sensing
matrix during the encoding and decoding process with a bit rate of 352 kb/s.
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Figure 3f–h show the plot of a decrypted/decompressed signal segment of popular music sampled
at 44 kHz. Figure 3f plots the original signal. Figure 3g plots the decoded signal when the encoding and
decoding sensing matrixes are the same, and the original signal was compressed to 352 kb/s. Finally,
Figure 3h plots the decoded signal obtained when different sensing matrixes are used during the
encoding and decoding processes. In this case, the transmission rate was equal to 352 kb/s. Figure 3a–h
show that when the same sensing matrix is used for encoding and decoding, the decoded signal closely
resembles the original one, independently of the audio signal genre and compression rate used. On the
other hand, when the sensing matrix used for decoding is different from that used for encoding, the
decoded signal is quite different to the original one, even though, for some genre signals, the envelope
has some similarity.

3.2. Spectrogram

Another important evaluation method consists of the comparison of the spectral characteristics of
the original, encrypted, and decrypted signals, using different compression rates. Figure 4a–f show
the spectrogram of violin music obtained from a Bach concert. These signals are encrypted using
compressive sensing with different compression rates. Figure 4a shows the spectrogram of the original
Bach concert signal. Figure 4b shows the spectrogram of the encrypted signal without compression.
Figure 4c shows the decrypted and decompressed signal when the encoded signal is decoded using
the same sensing matrix used during the encoding process. The original signal is encoded with a bit
rate of 176 kb/s. Figure 4d shows the spectrogram of the decoded signal when the decoded signal
is obtained using a sensing matrix different from that used during the encoding process. Here, the
original signal was encoded with a bit rate of 176 kb/s. Figure 4e shows the decoded signal obtained
when the original signal is encoded with a bit rate of 88 kb/s and decoded using the same matrix used
during the encoding process. Finally, Figure 4f shows the spectrogram of the signal decoded using
a sensing matrix different from that used during the encryption and compression processes. These
figures show that the spectrum obtained when the sensing matrix used for encoding and decoding is
different, and is almost flat, and they strongly infer the signal, shown in Figure 4a, from the knowledge
of the signal in Figure 4b. On the other hand, these figures also show that the spectrogram of the signals
obtained when the sensing matrix used for encoding and decoding is the same clearly resembles to
that of the original one, while they are quite different from those obtained when the sensing matrix
used for encoding and decoding is different. Thus, when the decoded signal is obtained using the
same sensing matrixes in both the encoding stage and decoding stages, it clearly resembles the original
one, while the spectrum of the decoded signal obtained using different sensing matrix in both encoded
and decoded stages is clearly different.
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Figure 4. (a). Spectrogram of a music signal obtained from a Bach concert with a bit rate of 704 kb/s.
(b). Spectrogram of a encrypted music Bach violin signal with a bit rate of 704 kb/s. (c). Spectrogram of
a decoded signal obtained using the same sensing matrix for encoding and decoding process with a bit
rate of 176 kb/s. (d). Spectrogram of a decoded signal obtained using different sensing matrixes during
the encoding and decoding process with a bit rate of 176 kb/s. (e). Spectrogram of a decoded signal
obtained using the same sensing matrix for encoding and decoding process with a bit rate of 176 kb/s.
(f). Spectrogram of a decoded signal obtained using different sensing matrixes during the encoding
and decoding process with a bit rate of 176 kb/s.
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3.3. Pearson Correlation Analysis

Another important parameter used for evaluating the similarity between the original signal and
the decoded one is the Pearson correlation coefficient, which is given as follows:

M
∑M

n=0 x0(n)xd(n) − xo(n)xd(n)√
Mxo2(n) − (xo(n))

2
√

Mxd
2(n) − (xd(n))

2
, (73)

where
x(o,d)(n) =

∑M

n=0
x(o,d)(n), (74)

x(o,d)
2(n) =

∑M

n=0

(
x(o,d)(n)

)2
(75)

and x(o,d)(n) denotes either the original signal, xo(n), or the decoded one, xd(n). Figure 5a–h show the
comparison of the Pearson correlation coefficient obtained when the received signal is decoded using
the same sensing matrix used for encoding, RxxS(k), together with the Person correlation coefficient
obtained when the received signal is decoded using a sensing matrix different to that used during the
encoding process Rxxd(k). Figure 5a shows the Pearson correlation coefficients when the original signal
is popular music with a bit rate of 704 kb/s. Figure 5b shows the Pearson correlation coefficients when
the original signal is encoded using 352 kb/s. Figure 5c,d shows the Pearson correlation coefficients
when popular music is encoded with 176 kb/s and 88 kb/s, respectively. Figure 5e,f show the Pearson
correlation coefficients when the original signal is a segment of a Bach concert signal with bit rates of
704 kb/s and 352 kb/s, respectively. Moreover, Figure 5g,h show the Pearson correlation coefficients for
each frame when the original Bach concert signal is encoded with bit rates of 176 kb/s and 88 kb/s,
respectively. Figure 5i,j show the dispersion diagram of original and decoded popular music audio
signals with a bit rate of 352 kb/s. Figure 5i shows that, when the same matrix is used for encoding and
decoding, the dispersion diagram is close to a straight line with a slope. This means that, from the
decoded audio signal, it is possible to obtain the input one. Figure 5j shows when the sensing matrix
used for encoding and decoding is different, the dispersion diagrams are quite spread, such that the
decoded signal cannot be inferred from the original one.
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The evaluation results show that the Pearson correlation coefficient, of each frame, between the
original and decoded signal when the sensing matrixes used in the encoded and decoded stages are
different, is close to zero, around 10−2. From the dispersion diagram shown in Figure 5j, it follows that,
if the sensing matrix used for encoding and decoding is different, the dependence between the original
and signals decoded is too weak, such that the original signal cannot be estimated from the decoded
one. Thus, it would be tough for an intruder to hack the audio signal during the transmission. On the
other hand, when the sensing matrixes used for encoding and decoding are the same, the correlation
coefficients for each frame are close to one, even when the bit rate used is relatively low. This fact can
be observed from the dispersion diagram of Figure 5i, which plots the dispersion diagram between the
original and decoded signal. Here, we can see that, when the same matrix is used, the decoded signal
closely approaches the original one, grouping around a straight line with a slope. This means that the
original signal can be accurately inferred from the decoded one. Thus, the proposed system allows
secure and high-quality audio signal transmission.

3.4. Normalized Mean Square Error Analysis

Other important parameter used to evaluate the quality of the proposed system is the normalized
mean square error between the original and decoded signals, when the sensing matrixes used for
decoding are the same or different to those used for encoding. The normalized mean square error
(MSE) is given by

MSE =

∑1024
k=1 (xo(1024(k− 1) + n) − xd(1024(k− 1) + n))2∑1024

k=1 x2
o(1024(k− 1) + n)

, (76)



Electronics 2020, 9, 863 17 of 23

where xo(n) and xd(n) are the original and recovered signals, respectively. For evaluating the performance
of the proposed system, several audio signals were used, such as popular Mexican and Caribbean
music, POP music, classic music, and rock music signals sampled at 44 KHz. Each signal is encoded
using 16 bits/sample, that is, a bit rate of 704 kb/s. For encoding, as described in Section 2.1, each
signal is divided in frames of 1024 samples/frame before computing the DCT, whose resulting vector
is multiplied by the sensing matrix. Figure 6a–h show the MSE obtained when the input signals are
decoded using either the same or different sensing matrixes used for encoding, that is, the correct or
incorrect private secret key. These figures show that the MSE obtained when the decoded sensing
matrix is different to that used during the encoding process, that is, an incorrect private decoding
key, is larger, whereas when a correct sensing matrix is used, the MSE is close to zero. This fact can
be also observed from Figure 5i,f, which show that, when the same matrix is used for encoding and
decoding, the decoded signal closely approaches to the original one, which results in an approximation
error close to zero. If we consider that the MSE given by (76) can be considered as the inverse of the
signal-to-noise ratio (SNR), that is, MSE−1 = SNR, the evaluation results show that, when the same
matrix is used for encoding and decoding, a decoded signal with high SNR is obtained, that is, a high
quality signal can be obtained. Meanwhile, when the sensing matrix used for encoding and decoding
is different among them, a rather noisy decoded signal with SNR smaller than zero is obtained, which
results in an unintelligible decoded signal. Thus, it can be expected that the proposed system allows
the secure transmission of the high-quality signal. When the compression rate increases, as can be
expected, the quality of the decoded signal becomes lower.
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Figure 6. (a) Mean square error (MSE) estimated when classic music, with a bit rate of 704 kb/s, is
decoded using the same, As, and different, Ad, sensing matrix. (b) MSE obtained when classic music,
with a bit rate of 352 kb/s, is decoded using the same, As, and different, Ad, sensing matrix. (c) MSE
obtained when classic music with a bit rate of 176 kb/s is decoded using the same, As, and different, Ad,
sensing matrix. (d) MSE obtained when classic music, with a bit rate of 88 kb/s, is decoded using the
same, As, and different sensing matrix. (e) MSE using the same, As, and different, Ad, sensing matrix
with a bit rate of 704 kb/s. (f) MSE using the same, As, and different, Ad, sensing matrix with a bit rate
of 352 kb/s. (g) MSE using the same, As, and different, Ad, sensing matrix with a bit rate of 176 kb/s.
(h) MSE using the same, As, and different, Ad, sensing matrix with a bit rate of 88 kb/s.

3.5. Spectral Similarity Analysis

Another metric that can be used for evaluating the security and reconstruction quality of proposed
system is the spectral similarity (SMSE), which is given by

SMSE(m) =

∑1024
k=1

(
x f o(1024(m− 1) + k) − x f d(1024(m− 1) + k)

)2∑1000
k=1 x2

f o(1000(m− 1) + k)
, (77)

where X f o(1024(m− 1) + k) and X f d(1024(m− 1) + k) is the k-th component of the m-th frame of
original and decoded signals, respectively. Figure 7a–d show the spectral similarity obtained when the
sensing matrix used for decoding is equal and different to that used in the encoding stage. Figure 7a,b
show the spectral similarity obtained when the sensing matrixes equal and different to that used for
encoding used classical music signals with bit rates of 704 and 352 bits/s, respectively.
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Figure 7c,d show the spectral similarity obtained when the sensing matrix is equal and different to
that used for encoding using a classical music signals with bit rates of 176 kb/s and 88 kb/s, respectively.

The evaluation results show that the MSE obtained when the signal is transmitted without and
with compression rates of 50% is close to zero, providing secure communications with high quality
decoded signals. Meanwhile, when the compression rate increases, the quality of the decoded signal
becomes lower.

Tables 1 and 2 show the MSE, SMSE, and correlation coefficient of the proposed algorithm when it
is used for encoding popular Mexican music. Table 2 shows the performance of the proposed scheme
when it is used for compressing and encrypting classic music. Table 3 shows the NSCR and UACI
parameters obtained when the incoming signal is classic music, popular music, and pop music with
different bit rates.
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Table 1. Similarity, spectral similarity, and Person correlation obtained using the proposed system
when popular music is encoded using a different number of samples/frames. MSE, mean square error;
SMSE, spectral similarity.

Samples/Frame
MSE SMSE Pearson-Correlation

kb/sSame
Matrix

Different
Matrix

Same
Matrix

Different
Matrix

Same
Matrix

Different
Matrix

128 0.4723 1.452 1.0219 2.1325 0.8636 0.0605 88
256 0.1920 1.539 0.7180 2.5095 0.9409 0.0651 176
512 0.0333 1.744 0.3524 2.9474 0.9872 0.0730 352
700 2 × 10−6 2.003 0.1696 3.1471 0.9968 0.0731 492

1024 2 × 10−6 2.003 1.1 × 10−6 3.4118 1.0000 0.0774 704

Table 2. Similarity spectral similarity and Person correlation provided by the proposed system when
classic music is encoded using a different number of samples/frames.

Samples/Frame
MSE SMSE Pearson-Correlation

kb/sSame
Matrix

Different
Matrix

Same
Matrix

Different
Matrix

Same
Matrix

Different
Matrix

128 0.2863 1.458 0.9343 2.5923 0.8952 0.0510 88
256 0.1114 1.579 0.4949 3.0590 0.9787 0.0530 176
512 0.0260 1.744 0.1394 3.6377 0.9978 0.0700 352
700 0.0066 1.846 0.0623 3.9016 0.9987 0.0699 492

1024 4 × 10−6 1.994 4.7 × 10−6 4.2401 1.0000 0.0778 704

3.6. NSCR and UACI Parameters

Other important parameters included in the NIST recommendations to determine the quality of
speech encryption are the NSCR and UACI, which determine the number of changing samples and the
number of average of changes in the intensity of the encrypted speech, respectively. The Number of
Sample Change Rate (NSCR) and Unified Average Changing Intensity (UACI) are given by

NSCR =
1
N

∑N

i=1
Di × 100%, (78)

where

Di =

{
1, xi , x′i
0, xi = xi

, (79)

UACI =
1

N ∗max(x′(n))

∑N

i=1

∣∣∣xi − x′i
∣∣∣× 100%, (80)

where xi(n) and x′i (n) are the ith sample of two cyphered audio signals, whose original versions differ
only in one sample, and N denotes the length of the audio frame. Table 3 provides the NSCR and UACI
when the proposed algorithm is required to compress and encrypt several genders of audio signals.

Table 3 shows that the values of UACI and NCSR provided by the proposed scheme are close to
the optimum ones reported in the literature [23].

Table 3. UACI and NSCR obtained using the proposed algorithm.

Type
704 kb/s 352 kb/s 176 kb/s

UACI NSCR UACI NSCR UACI NSCR

Speech 31.91 99.02 34.60 99.02 32.36 99.20
Classic music 29.32 98.96 29.32 98.05 33.70 98.98
Popular music 32.54 99.09 39.13 99.03 33.70 99.06

Pop music 35.05 99.88 39.16 99.12 32.54 99.03
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3.7. Comparison with Other Reported Schemes

An important evaluation of the proposed scheme is the comparison of its performance with the
performance provided by other previously proposed schemes. Table 4 shows a comparison of the
Pearson correlation coefficients and the mean square error provided by the proposed scheme and other
previously proposed schemes when the sensing matrix used for decoding the encrypted signal is either
the same or different sensing matrix to that used for encoding the audio signals.

Tables 4 and 5 show a comparison of the correlation coefficient and MSE provided by the proposed
scheme together with the system proposed by G. Sudhish et al. [3], Sathiyamurthi [23,24] Kordov [25],
and when the input signals are classic and popular music, with a bit rate of 704 kb/s. Table 6 shows a
comparison of the correlation coefficient and MSE provided by the proposed scheme and the system
proposed by G. Sudhish et al. [3], when the input signals are classic and popular music, with bit rates
of 352 kb/s and 176 kb/s, respectively. Finally, Table 7 shows a comparison of the NSCR and UACI
parameters provided by the proposed scheme together with the system proposed by Sathiyamurthi [23]
and Kordov [25] when the input signals are classic and popular music, with a bit rate of 704 kb/s.

Table 4. Person correlation coefficient obtained using the proposed system and those proposed by G.
Sudhish et al. [3], Kordov [25], and Sathiyamurthi [24], with a bit rate of 704 kb/s.

Scheme
Proposed Ref. [7] Ref. [25] Ref. [24]

Classic Popular Classic Popular Classic Popular Classic Popular

Same matrix 0.9999 0.9999 0.9998 0.9998 0.9997 0.9998 0.9999 0.9999
Different matrix 0.0774 0.0778 0.0004 0.0003 0.0169 0.0048 0.0384 0.0157

Table 5. Mean square error obtained using the proposed system and those proposed by G. Sudhish et
al. [3], Kordov [25], and Sathiyamurthi [24], with a bit rate of 704 kb/s.

Scheme
Proposed (dB) Ref. [3] (dB) Ref. [25] (dB) Ref. [24] (dB)

Classic Popular Classic Popular Classic Popular Classic Popular

Same matrix −53.27 −53.27 −31.308 −31.302 −20.655 −26.193 −32.596 −33.098
Different matrix 6.2738 5.3298 2.2713 2.7717 5.8798 6.4667 2.4294 2.2632

Table 6. Pearson-correlation coefficient and mean square error obtained using the proposed system
and the system proposed by G. Sudhish et al. [3], with bit rates of 352 kb/s and 176 kb/s.

Scheme

Proposed Sudhish et al. [3]

Correlation MSE (dB) Correlation MSE (dB) Bit Rate

Classic Popular Classic Popular Classic Popular Classic Popular kb/s

Same matrix 0.9978 0.9872 −15.850 −14.775 0.9989 0.0044 −26.383 −21.307 352
Different matrix 0.0730 0.0530 5.6083 2.4165 0.9971 0.0043 2.0798 2.3970 352

Same matrix 0.9787 0.0530 −7.1670 −9.5311 0.9940 0.0015 −19.066 −16.778 176
Different matrix 0.0530 0.0651 1.9841 1.8730 0.9898 0.0010 2.0548 2.4157 176

Table 7. NSCR and UACI parameters obtained using the proposed system, and the systems proposed
by G. Kordov [25] and Sathiyamurthi [24] with a bit rate of 704 kb/s.

Audio Signal Proposed Ref. [25] Ref. [24]

NSCR UACI NSCR UACI NSCR

Speech 99.02% 31.09% 99.24% 33.30% 99.99%
Classical 98.02% 29.52% 99.22% 33.26% 99.94%
Popular 99.09% 32.54% 99.08% 37.10% 99.72%

Tables 4–7 show that the proposed scheme provides results that are quite competitive compared
with other previously proposed schemes. It provides the same correlation coefficients and smaller
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MSE than other previously proposed schemes, when the audio signals are transmitted without
compression [3,21,24]. On the other hand, when the audio signals are simultaneously compressed and
encrypted, the proposed scheme is quite competitive with other previously proposed schemes [3].

4. Conclusions

This paper presents a CS-based encoding system for jointly encrypting and compressing audio
signals. In proposed scheme, the audio signals are firstly segmented in frames of 1024 samples, which
are then transformed using the DCT for generating a sparse frame. Each frame is then multiplied by
a different sensing matrix for compression and encryption, which is constructed using a Gaussian
random number generator and a chaotic mixing scheme. This assures that the sensing matrixes used
in the proposed system are different in each frame, and then satisfies the EWS criterion.

The evaluation results obtained show that the proposed algorithm provides a rather secure
transmission system with a very good quality of decoded signal, because when the same matrix is
used for encoding and decoding; the correlation coefficient is close to one, while the MSE and SMSE
are close to zero. Meanwhile, when the sensing matrixes used for encoding and decoding are different,
the correlation coefficients for each frame are close to zero, and MSE and SMSE become larger than
one, even when the bit rates used are relatively low. Besides that, the NSCR and UACI obtained are
close to 100% and 33%, respectively. Thus, the proposed scheme allows the secure transmission of
high-quality audio signals.

Finally, the evaluation results show that the proposed scheme provides results that are
quite competitive compared with other previously proposed schemes. It also provides the same
correlation coefficients and smaller MSE than other previously proposed schemes, when the audio
signals are transmitted without compression, whereas when the audio signals are simultaneously
compressed and encrypted, the proposed scheme is quite competitive compared with other previously
proposed schemes.
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