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Abstract: In this paper, we propose a method of practical realization and an actual, physical hardware
implementation of a fractional variable-type and order difference operator that switches between
two (i.e., B- and D-type) variable-order definitions. After the theoretical model of such a switch,
we report the experimental validation on an analog model to prove its adequacy. The tests prove with
great certainty that the proposed model and the realization behave correctly. They also let the authors
assume that the proposed method is the only one suitable for this case, based on the counterexamples
presented.

Keywords: fractional calculus; variable-order; analog realization

1. Introduction

Fractional calculus is a generalization of traditional differential calculus for cases in which orders
of the differentiation and integration are real or even complex numbers. The theoretical background
for this calculus can be found in [1–4].

Fractional calculus was found to be extremely useful when modeling the dynamics of diffusive
systems. Especially interesting cases are the anomalous diffusion ones and are described by power
law σ2

r ∼ λtα, where σr stands for mean squared displacement, λ is the diffusion coefficient, and t is
the elapsed time. Whenever α = 1 the process is a normal diffusion, if α < 1 or α > 1, we get a sub or
super-diffusion process. The heat transfer is a typical diffusion problem and its modeling based on
fractional calculus for a solid beam was presented in [5]. Other authors dealt with the idea of the heat
diffusion process in non-homogeneous fractal media (e.g., [6,7]) or even a diffusion of information in
social networks [8].

Other good examples of successful modeling are ultracapacitors—electrical devices with
outstanding capacity in relation to their dimensions and that are widely used as storage devices
in power-electronics. The energy storage process in these devices is based on diffusion of ions;
that is why fractional-order models are more accurate than the integer-order ones [9]. As it was
presented in [10], both in low and high frequencies, ultracapacitors can be modeled by fractional-order
integrators but with different values of the order; i.e., for high frequencies the order is close to 0.5
and for low frequencies it is close to 1. More results on modeling ultracapacitors can be found in [11].
Using fractional-order models on ultracapacitors allows us to examine some interesting phenomena,
such as different values of resonance frequency (equality of imaginary parts of impedance) and
maximum value of current, as was presented in [12]. Dependency between fractional-order of the
model and operating temperature was presented in [13] and the dependency between charging
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and discharging processes was presented in [14]. Aforementioned cases motivate the usage of
variable-order calculus that would describe such phenomena of changing the properties of the model in
time. In [15] a variable fractional order operator was used to model nano-silver paste by characterizing
both tensile and shear behaviors and demonstrating the evolution of mechanical properties. In [16] a
fractional variable-order equivalent circuit was used to model Li-ion batteries from an electric vehicle.
The paper [17] presents the determination of the relationship between the fractional order and electrode
aging, and uses the variable fractional order as an indicator for electrode aging.

The variable-order case is more complicated and less intuitive than the integer-order one.
There exist at least six different main types of variable-order derivative definition [18–20], but only
four of them have corresponding switching schemes, which are input-reductive, input-additive,
output-reductive, and output-additive ([21–23]). The corresponding switching schemes allow one
to better understand the behavior of order the changing process for each of the definitions. It also
allows us to build analog models that can be useful for validation of simulation results due to a limited
number of analytical solutions.

Non-intuitive behavior of variable-order operators is that the order composition generally does
not occur; e.g., the composition of two variable-order operators with additive inverse orders does not
result with an order 0, and in the consequence, is an original function. However, the iterative and
recursive variable-order definitions are connected together by duality property. As it was presented
in [24], only for the compositions of particular type definitions and opposite signs of orders, it is
possible to obtain the expected result—an original function. This occurs when two corresponding
iterative and recursive (dual) definitions are taken into consideration.

It is also possible to define a case where the way that the order changes in time (type of
variable-order definition) also changes in time. In such a case we have to consider the fractional
variable-type and order differences that can also have different manners of changing (different
definitions). Preliminary results, introducing the so-called iterative A-, B-, and recursive D and
E-type operators, have been considered in [25–27]. Corresponding switching schemes, based on the
duality property, were given also and proven. In [28] analog realization for iterative B-type definition
has been presented and validated. However, in order to obtain analog realization, a parallel switching
scheme had to be introduced and investigated, because a typical switching scheme in the form of an
integrator chain was unable to realize in practice. In this paper, a practical realization of a particular
case of D-type definition is proposed and validated.

The paper is organized as follows. In Section 2, both fractional variable-order and fractional
variable-type difference definitions are recalled. Section 3 presents the D-type variable-order difference
definition, and in Section 3.1 the main results—the practical realization method for switching between
B- and D-type definitions is proposed. In Section 4, experimental validation of proposed scheme is
presented. Finally, conclusions of the results and possibilities for future work are given. Appendix A
contains short discussion about extension of this method for other order changing strategies.

2. Fractional Constant-Type Variable-Order Differences

In this section, we present some already known fractional constant and variable-order difference
definitions of constant-type, which will be used for further considerations.

0∆α
k xk =

k

∑
j=0

w(α, j)xk−j , (1)

where

w(α, j) =
1
hα

(−1)j
(

α

j

)
, (2)
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and (
α

j

)
=

{
1 for j = 0 ,
α(α−1)...(α−j+1)

j! for j > 0 .

The Grünwald–Letnikov difference presented in iterative form (1) can be rewritten in the following
equivalent recursive form [22]

0∆α
k xk =

xk
hαk
−

k

∑
j=1

w̄(α, j)0∆α
k−jxk−j , (3)

where

w̄(α, j) = (−1)j
(−α

j

)
. (4)

Definitions for variable-order case presented below exhibit different behavior; however, for
constant order all of them are equivalent to Definition 1. The first one is obtained by replacing a
constant order α by variable order αk. The A-type of fractional variable-order difference is given by

A
0 ∆αk

k xk =
k

∑
j=0

Aw(α(·), k, j)xk−j , (5)

where
Aw(α(·), k, j) =

(−1)j

hαk

(
αk
j

)
.

The second definition assumes that coefficients for past samples were obtained for an order that
was present for these samples. The B-type of fractional variable-order difference is given by

B
0 ∆αk

k xk =
k

∑
j=0

Bw(α(·), k, j)xk−j , (6)

where
Bw(α(·), k, j) =

(−1)j

hαk−j

(
αk−j

j

)
.

Besides the above iterative definitions, we use also the following recursive type of variable-order
difference definitions.

The D-type of fractional variable-order difference is given by

D
0 ∆αk

k xk =
xk
hαk
−

k

∑
j=1

Dw̄(α(·), k, j)D0 ∆
αk−j
k−j xk−j, (7)

where
Dw̄(α(·), k, j) = (−1)j

(−αk
j

)
.

The E -type of fractional variable-order difference is given by

E
0 ∆αk

k xk =
xk
hαk
−

k

∑
j=1

E w̄(α(·), k, j)E0 ∆
αk−j
k−j xk−j, (8)

where
E w̄(α(·), k, j) = (−1)j

(−αk−j

j

)
hαk−j

hαk
.
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Using matrix representation of (8), which is presented and described in detail in [23], the E -type
difference in recursive form given in (8) can be rewritten in the following iterative form [29]:

E
0 ∆αk

k xk =
k

∑
j=0

Ew(α(·), k, j)xk−j, (9)

where

Ew(α(·), k, j) =


E qk

(Ew(α(·), 0, j− k), . . . , Ew(α(·), k− 1, j− 1)
)T for j > 0,

h−αk for j = 0,

0 for j < 0,

and for r = 1, . . . , k
E qr =

(
−Ev−α0,r, . . . ,−Ev−αr−1,1

)
∈ R1×r,

where for s = 1, . . . , r

Ev−αr−s ,s = (−1)s
(−αr−s

s

)
hαr−s

h−αr
. (10)

Recursive Form of Fractional, Variable-Order B-Type Difference Definition

Proposition 1. The recursive form of B-type difference is the following

B
0 ∆αk

k xk = h−αk xk −
k

∑
j=1

Bw̄(α(·), k, j)B0 ∆
αk−j
k−j xk−j, (11)

where
Bw̄(α(·), k, j) = h−αkEw(−α(·), k, j). (12)

Proof. Let us use the following iterative form of E -type difference definition [29]

E
0 ∆αk

k xk =
k

∑
j=0

Ew(α(·), k, j)xk−j

composed with B0 ∆−αk
k xk, i.e.,

E
0 ∆αk

k

(
B
0 ∆−αk

k xk

)
=

k

∑
j=0

Ew(α(·), k, j)B0 ∆
−αk−j
k−j xk−j,

which, thanks to duality property, yields

xk =
Ew(α(·), k, 0)B0 ∆−αk

k xk +
k

∑
j=1

Ew(α(·), k, j)B0 ∆
−αk−j
k−j xk−j,

from which
B
0 ∆−αk

k xk = hαk xk −
k

∑
j=1

hαkEw(α(·), k, j)B0 ∆
−αk−j
k−j xk−j,

where we used the fact that Ew(α(·), k, 0) = h−αk .
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Finally, denoting h−αkEw(−α(·), k, j) =B w̄(α(·), k, j), we obtain

B
0 ∆αk

k xk = h−αk xk −
k

∑
j=1

Bw̄(α(·), k, j)B0 ∆
αk−j
k−j xk−j.

Remark 1. For α = const relation (12) gives rise to

w̄(α, j) = h−αw(−α, j),

which does agree with relation between (2) and (4).

3. Fractional Variable-Type and Order Difference

Let us consider one of the known variable-type and order differences that is the D-type difference
of fractional variable-type and order which is defined as follows [25]:

D(P)
0 ∆αk

k xk =
xk
hαk
−

k

∑
j=1

Pk w̄(k, j)D(P)
0 ∆

αk−j
k−j xk−j, (13)

where

Pk w̄(k, j) =

{Bw̄(k, j, αk) for Pk = B,
Dw̄(k, j, αk) for Pk = D.

The variable-type, D-type difference defined in (13) defined for switching between a B-type
difference and D-type difference can be presented in an equivalent schematic form depicted in
Figure 1a.

The constant-type B- and D-type differences, occurring the in switching scheme presented in
Figure 1a, possess their equivalent switching scheme forms depicted in Figure 1b,c, respectively.
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D∆
αkB∆

αk A∆
−αk

S1

a

b

S2
a

b
D(P )
0 ∆

αk
k xkxk

(a) Input-reductive switching scheme of variable-type D-type difference defined
for switching between B-type difference (switches positions: S1 = a and S2 = a)
and D-type difference (switches positions: S1 = b and S2 = b).

∆α1∆ᾱ2

S1

a

b

S2
a

b
B
0 ∆

αk
k xkxk

(b) Output-additive switching scheme of constant-type B-type
difference—configuration after switching from order α1 (switches positions:
S1 = b and S2 = b) to order α2 = α1 + ᾱ2 (switches positions: S1 = a and
S2 = a).

∆α2∆α̂1

S1

a

b

S2
a

b
D
0 ∆

αk
k xkxk

(c) Input-reductive switching scheme of constant-type D-type
difference—configuration after switching from order α1 = α̂1 + α2 (switches
positions: S1 = a and S2 = a) to order α2 (switches positions: S1 = b and
S2 = b).

Figure 1. Simple variable and constant-type switching schemes.

3.1. Main Result—Practical Realization of D-Type Variable-Type and Order Difference

As can be seen from Figure 1a, a realization of D-type difference is practically impossible because
of the duality between A-type and D-type differences that is taking place. We are not able to build
two ideal differences of opposite orders using electronic elements such that over time their serial
connection will yield and output the original input signal. For this reason, in order to build an analog
model of D-type difference, we are forced to develop a different realization method. Such a method is
conceptually illustrated in Figure 2 and formally described in Theorem 1.

The idea presented in Figure 2 comes mainly from schematic equivalent forms of B- and D-type
differences presented in Figure 1b,c respectively.
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Figure 2. Conceptual analog model realization scheme of D-type difference.

Theorem 1. A switching scheme presented in Figure 2 is equivalent to D-type difference given by (13).

Proof. For the first step (0 ≤ k ≤ k1) there is only one integrator of order equal to α1. The recursive
relation (given by (3)) in this case is given as follows:

out
0 ∆α1

k xk = h−α1 xk −
k

∑
j=1

w̄(α1, j)out
0 ∆α1

k−jxk−j.

Taking into account that αk = α1 for 0 ≤ k ≤ k1 we can rewrite this as

out
0 ∆αk

k xk = h−αk xk −
k

∑
j=1

Bw̄(α(·), k, j)out
0 ∆αk

k−jxk−j.

For the second step (k1 < k ≤ k2) we have a switch according to the B-type rule that the
α2-integrator is added from the beginning of the chain. The recursive relation in this case is given as
follows:

out
0 ∆αk

k xk = h−αk xk −
k

∑
j=1

Bw̄(α(·), k, j)out
0 ∆αk

k−jxk−j,

where

αk =

{
α1 for 0 ≤ k ≤ k1

α1 + α2 for k1 < k ≤ k2.

For the third step, again, we have one integrator of order α1, because according to the D-type
switching rule, the α2-integrator has been rejected from the beginning of the chain. The recursive
relation in this case is given as follows:

out
0 ∆αk

k xk = h−α1 xk −
k

∑
j=1

w̄(α1, k, j)out
0 ∆α1

k−jxk−j,

F which is equal to the following formula

out
0 ∆αk

k xk = h−αk xk −
k

∑
j=1

Dw̄(α(·), k, j)out
0 ∆

αk−j
k−j xk−j,

where αk = α1 for k > k2.
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This finally gives

out
0 ∆αk

k xk =

h−αk xk −∑k
j=1
Bw̄(α(·), k, j)out

0 ∆
αk−j
k−j xk−j for 0 ≤ k ≤ k2

h−αk xk −∑k
j=1
Dw̄(α(·), k, j)out

0 ∆
αk−j
k−j xk−j for k2 < k

= h−αk xk −
k

∑
j=1

Pk w̄(α(·), k, j)out
0 ∆

αk−j
k−j xk−j

=
D(P)
0 ∆αk

k xk,

where

Pk =

{
B for 0 ≤ k ≤ k2,

D for k2 < k.

4. Analog Model of D-Type Variable-Type and Order Operator

The realization of D fractional variable-type and order operator directly based on conceptual
scheme is depicted in Figure 3. In this case, the duality property requirement can be omitted. Thus, the
main parts of the analog model are

• Data acquisition card dSPACE 1104;
• Half-order impedances deeply described in [22], denoted as Z1 and Z2;
• Operational amplifiers TL071 denoted as A1, A2, A3 and A4;
• Analog switches DG303 denoted as S1 and S2;
• Resistors R = 100 kΩ.

−

+

A1 −

+

A2

−

+

A3 −

+

A4

R

R

R

R

R

R

Z1

Z2

a

b

b

a

S1

S2

Vout(t)

Vin(t)

Figure 3. Analog model of D fractional variable-type and order operator.

As can be seen, the fractional orders depend on impedances Z1, Z2 and positions of switches
S1, S2. Due to the use of the operational amplifiers A1, A3 in inverted input configuration, it was
necessary to add the supplementary ones denoted as A3 and A4 with gain −1. Obviously, such analog
model corresponds to the system in continuous-time domain. However, considering the digital nature
of A/D and D/A converters of dSPACE card and constant time step h, which was used to collect all
experimental data, it can be considered as a discrete model given by Equation (13). Moreover, to fulfill
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the simplified switching definition concept presented in Figure 1, the switches S1 and S2 change their
terminals in the following scenario

S1 =

{
b for 0 ≤ k < t1

h ∪ k ≥ t2
h ,

a for t1
h ≤ k < t2

h ,
S2 =

{
a for 0 ≤ k < t1

h ∪ k ≥ t2
h ,

b for t1
h ≤ k < t2

h .
(14)

It gives the varying order αk and system parameter λk equal to

αk =

{
α1 for 0 ≤ k < t1

h ∪ k ≥ t2
h ,

α2 for t1
h ≤ k < t2

h ,
λk =

{
λ1 for 0 ≤ k < t1

h ∪ k ≥ t2
h ,

λ2 for t1
h ≤ k < t2

h .
(15)

Experimental Results

It is worth noting that an origin of the investigated analog model was analytically proved. Based
on it, the behavior of said system corresponds to D fractional variable-type and order operator,
regardless of input signal. The entire experiment was carried out with time-varying parameters, and
to emphasize the equivalence of experimental and numerical data, the Heaviside step function form of
input signal was chosen.

Moreover, the sampling time plays a major role during discretization process. Decreasing of
sampling time leads the data to be more accurate and it negatively affects the computation process.
On the other hand, increasing of sampling time cause the inaccuracies in data but it makes the
computation process less time-consuming. Thus, the sampling time should be carefully chosen to keep
balance between data accuracy and computational time. Since the electrical circuit is a continuous-time
system, the sampling time exerts an impact only on the data acquisition process.

The experimental data were collected with time sampling of h = 0.001 s and input signal equal to
Vin(t) = 0.5H(t), where H(t) is a Heaviside step function. It yields the following equation

Vout(t) =
D(P)
0 ∆αk

k (λkVin(t)),

where

Pk =

{
B for 0 ≤ k < t2

h ,

D for t2
h ≤ k,

and system parameters, such as αk and λk are forced by the switch configuration given by (14) and are
described by (15), for α1 = −0.5, α2 = −1, λ1 = 1.33, λ2 = 1.76, t1 = 0.3, and t2 = 0.6.

A comparison between experimental data and their numerical implementation based on duality
property (see Figure 1a) is presented in Figure 4. Moreover, in the same figure, the error between two
sets of data is shown as well. By analyzing the step responses in Figure 4, it can be seen that until first
switching time t1 = 0.3 s, we can observe the step response of half-order integrator. Furthermore, until
time t2 = 0.6 s, the system response corresponds to the B-type of fractional variable-order definition,
where order α has been switched from 0.5 to 1. Additionally, starting with time t2, the switching
method is equivalent toD-type of fractional variable-order definition, where order α has been switched
from 1 to 0.5. Such combined switching process composes the D fractional variable-type and order
definition with high accuracy.
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Figure 4. Comparison between experimental data and its numerical implementation based on duality
property (left); discrepancy between experimental and numerical data (right).

5. Conclusions

In this paper a practical analog realization method for variable-type and order operator with
switching between B- and D-type definitions was introduced. In order to confirm the proposed
scheme, an analog model has been build in order to collect experimental data. Data obtained from
an analog model were compared with numerical simulations of variable-type and order operator.
This comparison clearly presented that the proposed method is a very accurate and efficient one.
Based on this analog model it is possible to obtain additional validation data, especially important
when the analytical solution is very complicated or is unobtainable. The proposed model can also help
to better understand the behavior of variable-type and order operators and generally fractional variable
order calculus. Short discussion about possibilities for obtaining analogical results for switching
between other definitions is presented in Appendix A, however, it seems that presented case is the
only one valid case.

Author Contributions: Conceptualization, D.S.; Data curation, M.M.; Formal analysis, W.M. and M.S.W.;
Methodology, D.S. and W.M.; Visualization, M.M., W.M. and M.S.W.; Writing—original draft, D.S., M.M., W.M.
and M.S.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Other Attempts of Realization Schemes

In this paper a method of practical analog realization for a variable-type and order operator with
switching between B and D-type definitions was presented. It could be interesting if in a similar way
switching between other definitions can be realized.

Let us assume the situation when the order is changed from type D to B. For analogically
proposed schemes for other combinations of switching between different types of definitions, the
results were inaccurate. For example, for the opposite situation of switching between D and B types,
the corresponding scheme seems to be in the form presented in Figure A1.

Results obtained by a numerical simulation of the definition and for this analogical switching
scheme, presented in Figure A2, clearly show that after switching of variable-order type of definition,
we obtain different behavior.

It seems that the case of switching between B to D types proposed in Figure 2 is the only one
valid case.
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Figure A1. Conceptual analog model realization scheme of D-type difference D to B switching.
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Results for definition
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Figure A2. Comparison of results for numerical simulation for variable-order and type definition and
numerical simulation for other scheme
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