
electronics

Article

K-ONE Playground: Reconfigurable Clusters for a
Cloud-Native Testbed

Jun-Sik Shin 1 and JongWon Kim 2,*
1 School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST),

Gwangju 61005, Korea; jsshin@nm.gist.ac.kr
2 AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
* Correspondence: jongwon@nm.gist.ac.kr; Tel.: +82-62-715-2219

Received: 23 April 2020; Accepted: 18 May 2020; Published: 20 May 2020
����������
�������

Abstract: Cloud-native computing with edge clouds is dominating the current computing paradigm.
To prepare a flexible testbed for this paradigm, the build-out of K-ONE Playground started in 2015
based on the concept of SmartXPlayground. K-ONE Playground targets a multi-site edge cloud
testbed based on the concept of composable playground that can flexibly compose physical, virtual,
container resources from a resource pool to user-defined infrastructure. SmartX Playground should
properly handle demanding requirements for a composable playground. In this paper, we propose
a unique design of reconfigurable clusters, which can provide physical and virtual resources ready
for cloud-native DevOps services. We also describe a detailed implementation of the reconfigurable
cluster for the real-world infrastructure of K-ONE Playground. Finally, we verify its feasibility with
operations and practical examples of cloud-native service development.

Keywords: composable testbed; reconfigurable clusters; DevOps automation; template-based
provisioning; multi-layered visibility

1. Introduction

Emerging cloud-native computing is an approach to build and orchestrate application services
as interconnected containers over clustered compute resources [1]. Edge clouds are typically defined
as small-sized and distributed clouds that can accommodate application services close to end
devices [2]. Thanks to their strong advantages, applying cloud-native computing to edge clouds,
known as cloud-native edge clouds [3,4], is becoming a popular option for operating diversified
DevOps [5] services.

To verify their ideas about emerging cloud-native computing trends, software developers
demand testbeds. By building a playground (i.e., testbed) infrastructure with distributed clusters,
an ideal playground can provide distributed physical servers and virtual machines ready for
cloud-native DevOps services. To build such a playground, we leverage the concept behind
SmartX Playgrounds, which attempts a systematic approach to operate SDI (software-defined
infrastructure)-oriented cloud testbeds in an automated way. Beyond building and operating
stationary multi-site clouds, we are refining SmartX Playgrounds for composable playgrounds
that can conceptually compose interconnected physical servers, virtual machines, and containers
from distributed clusters, to support diversified DevOps services up to cloud-native computing
flexibly. To be a composable playground, SmartX Playgrounds should properly cover demanding
functional requirements. Even though public clouds could partly handle the requirements with
extensive services, SmartX Playgrounds have different requirements because of resource limitations
and target service domains. Besides, related work on cloud/edge cloud testbeds with successful use
cases [6–9] is limited to specialized service domains.

Electronics 2020, 9, 844; doi:10.3390/electronics9050844 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-1069-2592
http://www.mdpi.com/2079-9292/9/5/844?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9050844
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 844 2 of 22

For this reason, we propose reconfigurable clusters for composable K-ONE Playground as a
multi-site cloud-native testbed. A reconfigurable cluster is a clustered resource pool whose collection
of physical servers and virtual machines can be easily reconfigured for multiple tenants (i.e., operators
and developers) using DevOps automation tools. We summarize the main contribution points of this
paper as follows:

• We list the functional requirements of SmartX Playgrounds for composable playground.
These requirements are clearly explained to provide a clear mapping with design choices for
reconfigurable clusters effectively.

• To handle the functional requirements for a composable playground properly, we propose a unique
design of reconfigurable clusters. We also provide a practical implementation of reconfigurable
clusters for a real-world infrastructure.

• We describe how we operate reconfigurable clusters to provide different combinations of physical
servers and virtual machines to multiple tenants easily. In addition, we verify the feasibility with
practical use cases, which respectively demand different playground topologies for developing
cloud-native DevOps services.

The rest of this paper is organized as follows. In Section 2, we provide the concept of SmartX
Playground and list the requirements for a composable playground. In Section 3, we provide the design
of reconfigurable clusters in terms of the overall concept, as well as the components and describe
real-world infrastructure we target for implementation. In Section 4, we provide an implementation
of reconfigurable clusters, which is followed by operations and utilization examples to show the
feasibility of reconfigurable clusters in Section 5. We briefly summarize related work in Section 6,
and finally, we conclude the paper.

2. SmartX Playground with Reconfigurable Clusters

In this section, we describe the basic concept of SmartX Playgrounds with the requirements for a
composable playground.

2.1. SmartX Playground: Concept

SmartX stands for our research goal of providing flexible/agile user-defined services and
infrastructure by leveraging SDI-oriented open source software and hardware. We have been
developing and operating SmartX Playgrounds since 2009, as a part of the SmartX efforts,
to align with rapidly emerging SDI-oriented services such as OpenFlow-based SDN, NFV,
cloud, and cloud-native computing. As a result, we are operating SmartX Playgrounds such as
OF@TEIN/KOREN Playground [10,11] and SmartX AI Cluster [12].

In our definition, SmartX Playgrounds [13,14] are miniaturized and customizable testbeds that can
allow both operators and developers to develop and verify DevOps services with freely manipulable
testbed resources. SmartX Playgrounds allow developers to pick/use resources and tools freely to enjoy
service developments, comparing to workplace-like testbeds for development works, which provide
fixed resources and tools with limited authority.

Figure 1 depicts the concept of SmartX Playgrounds. To build, operate, and utilize a multi-site
playground with distributed boxes and clusters automatically, we have SmartX Playground Tower,
which provides a logical space in a centralized location by following the concept of a monitor
and control tower. SmartX Playground Tower can systematically cover various functional
requirements for operating multi-site playgrounds by employing SmartX Automation Centers. SmartX
Automation Centers are a software collection of Provisioning, Visibility, Orchestration, Intelligence,
and Security centers that provide useful features to operators for intelligent operations of playgrounds.
Provisioning center automates complicated procedures of the remote installation and configuration of
distributed clusters. Visibility center provides multi-layered playground visibility that covers physical
resources, virtual resources, and networking flow with a unified/interactive visualization support.



Electronics 2020, 9, 844 3 of 22

Orchestration center provides abstracted features of playground management by combining features
of SmartX Automation Centers. Intelligence center manages high-performance clusters and schedules
analytic tasks to support developing compute-intensive services such as deep learning and big data.
Security center detects and identifies any suspicious activities by analyzing visibility data collected
from distributed clusters.

Figure 1. Concept of open source-leveraged SmartX Playground.

With the popularity of cloud and cloud-native computing, SmartX Playgrounds can be constructed
with distributed clusters to support diversified DevOps services. In addition to SmartX Playground
Tower, we introduce Post as a head entity of a cluster. Post closely monitors and controls application
services, as well as resources in the cluster, like a security post at a higher location. In terms of operation,
operators can utilize Post servers for intelligent operations, for example offloading operation workloads
and autonomous cluster operations. On the other hand, Post servers can be useful for controller
software of typical cloud-native DevOps services, which is sometimes called by different names such
as coordinators, orchestrators, and masters. Therefore, from the experiences of operations, we define
DevOps Post that allow multiple tenants to share the versatile Post servers concurrently. Clusters
in playground sites also contain Cube that is implemented as multiple homogeneous SmartX boxes.
A SmartX box is a hyper-converged box-style resource that collectively provides computing, storage,
and networking resources as a single box-style entity. From Cube servers, SmartX Playgrounds can
provide these integrated resources for diversified DevOps services.

In addition to these entities, we also divide SmartX Playgrounds and services into three
main abstractions, which are box, function, and inter-connect. A box represents a physical/virtual
resource entity that contains compute resources, networking resources, and storage resources.
A function represents a software entity that can provide a specific feature of services. An inter-connect
represents a physical/virtual path/link between two arbitrary entities. With the abstraction, we can
logically simplify the operations of DevOps services. For instance, a procedure of deploying a typical
three-tier service follows these steps: preparing boxes with inter-connects, putting web, App, DB
functions in these boxes, and configuring inter-connects between these functions.

2.2. SmartX Playground: Requirements for a Composable Playground

As we mentioned in Section 1, our refinement of SmartX Playgrounds is based on the concept
of the p (physical) + v (virtual) + c (container) Composable Playground. The p + v + c composable
playground can view distributed clusters as a composable resource pool. From the pool, operators can
flexibly compose physical/virtual/container boxes, functions, and their inter-connects to construct
user-defined infrastructure for cloud-native DevOps services instantly. To follow the concept of a
composable playground, SmartX Playground should properly handle the demanding requirements
described as follows.



Electronics 2020, 9, 844 4 of 22

• R1 (Requirement 1). Providing the p+v+c harmonization testbed: The cloud-native computing
paradigm introduces a container layer above physical/virtual layers. With the trend, typical
cloud-based infrastructure and diversified DevOps services are adopting combinations of physical
(p), virtual (v), and container (c) boxes. To simplify the complicated view, we introduce the
concept of p + v + c harmonization, as shown in Figure 2. A composable playground should
flexibly compose inter-connected boxes and functions across the layers, described as the dashed
upward arrows in Figure 2, to support diversified services properly. Furthermore, a composable
playground should clearly define actual forms of physical, virtual, and container boxes, as well as
software tools for creating these boxes from distributed clusters.

• R2 (Requirement 2). Supporting multiple networks for flexible and reliable composition: For
flexible and reliable composition from distributed clusters, a composable playground should
support multiple networking connectivity within, as well as between clusters, while properly
limiting the access of developers. Typical DevOps services can generate control traffic in addition
to service data traffic for efficiency, reliability, and security. A composable playground should
provide multiple networks for tenants to match this traffic to playground networks effectively.
Meanwhile, heavy workloads and any incidents incurred from multiple tenants, especially in
networks, and over shared clusters can result in failures of operations, as well as incorrect results
of DevOps services. Thus, for a composable playground, SmartX Playground should separate
operational traffic from service traffic.

• R3 (Requirement 3). Automating reconfiguration for a multi-site playground topology:
A composable playground should automate the complicated procedures of playground topology
reconfiguration for efficient operations. For playground topology reconfiguration, operators
should understand the overall playground topology and properly compose unused boxes to
satisfy the requirements of DevOps services. In a multi-site playground with distributed clusters,
the reconfiguration can be more difficult due to the complicated topology and geographical
separation. Thus, reconfiguring the playground topology without automation features can incur
time waste and even human errors, which can disturb reliable operations and services. Thus,
SmartX Playground should have automated features with DevOps tools to help operators at
Tower servers easily grasp visibility and compose boxes from distributed clusters.

Figure 2. The concept of p (physical) + v (virtual) + c (container) harmonization.

3. Design of Reconfigurable Clusters

In this section, we provide the design of reconfigurable clusters. In addition, we describe the
real-world infrastructure of K-ONE Playground where we implement reconfigurable clusters.



Electronics 2020, 9, 844 5 of 22

3.1. Overall Design of K-ONE Playground

To cover the requirements of a composable playground effectively, we propose reconfigurable
clusters that are ready to provide partial resources in the forms of physical boxes and virtual boxes
from distributed clusters. The concept of a composable playground and all of its requirements are
difficult to accomplish in one sweep, so reconfigurable clusters focus on the easy composition of
physical and virtual boxes for the desired topology by tenants. Figure 3 depicts the conceptual design
of reconfigurable clusters. We designed reconfigurable clusters with components, such as preparing
clusters for creating physical/virtual boxes, networking plane separation, and SmartX Automation
Centers, to deal with the respective requirements properly.

Figure 3. The overall design of reconfigurable clusters.

To handle R1, we carefully designed actual shapes of physical/virtual boxes and how to create
these boxes from Cube servers, after discussing available options. In addition, we could configure a
cloud over distributed Post servers to compose dedicated virtual boxes for multiple tenants to place
controller software of cloud-native DevOps services easily.

We employed the concept of networking plane separation to satisfy R2. By categorizing
networking traffic of typical DevOps services, we defined four networking planes, power, management,
control, and data. As depicted in Figure 3, the entities and boxes on each half-circle should utilize the
planes belonging for networking. This separation can limit accessible areas of tenants, so operators
can ensure reliable networking for composing boxes. Furthermore, tenants can easily deploy typical
cloud-native DevOps services by intuitively mapping control/data traffic to the separated planes.

For R3, reconfigurable clusters can utilize SmartX Automation Centers, especially Provisioning and
Visibility centers, to reconfigure the playground topology automatically. For automation, we leveraged
our DevOps tools such as the Distributed Secure Provisioning (DsP) Tool for Provisioning center and
the SmartX MultiView Visibility Framework (MVF) for Visibility center. By employing these tools,
Visibility center can provide a clear view of distributed clusters to find available boxes. Provisioning
center can automate the procedures of software configurations to compose physical/virtual boxes
remotely. Therefore, we could then easily identify used/unused resources of reconfigurable clusters
and properly compose physical/virtual boxes from the unused slots.



Electronics 2020, 9, 844 6 of 22

3.2. Components’ Design for K-ONE Playground

3.2.1. Reconfigurable Servers for Physical and Virtual Boxes

With the maturity of cloud/cloud-native computing, there are various candidates for physical,
virtual, and container boxes. Thus, we designed physical and virtual boxes suitable for reconfigurable
clusters by carefully selecting from available options, listed in Table 1.

Table 1. Available options for creating physical/virtual/container boxes.

Options Management Tools

Container box
Machine container

Machine container runtime
(LXD)

Application container
Application container runtime

(Docker)

Virtual box Virtual machine
Virtual hypervisor

(KVM, Xen)

Physical box
Bare-Metal Server -

Partitioned cell
Hardware/system partitioner

(ACRN Hypervisor, Linux Jailhouse)

For physical boxes, we can consider two options. One is to provide bare-metal servers to
tenants directly, and another is to provide cells that are divided by hardware (system) partitioners.
Hardware partitioners can separate a physical server into multiple cells and explicitly allocate
hardware components, such as CPU cores and networking ports, to these cells. With the multiple cells,
a single physical server can accommodate multiple operating systems like virtual machines, but with
strong hardware-level isolation. However, hardware partitioners such as ACRN Hypervisor [15] and
Linux Jailhouse [16] are currently in the development phases, and they are not fully compatible with
commodity servers and DevOps automation tools. Therefore, adopting hardware partitioners is not
yet appropriate, so we allowed tenants to utilize whole bare-metal servers as physical boxes.

To compose versatile virtual boxes for diversified DevOps services, we can utilize virtual
hypervisors such as KVM [17] and Xen [18], which have become highly mature along with the rapid
growth of cloud computing. We selected the KVM (Kernel-based virtual machine) virtual hypervisor
from the options due to its popularity and compatibility with various open source DevOps services.

As container boxes, system containers such as Linux container daemon (LXD) [19] can be suitable
since system containers are designed to provide similar experiences of lightweight virtual machines,
but using Linux containers. On the contrary, application containers such as Docker [20] are designed
for containing application functions, not operating systems. In addition, isolating and limiting their
resource usages are not as strict as for system containers. During playground operations, we served
various tenants who developed cloud-native DevOps services, and they demanded to customize
cloud-native clusters rather than directly taking system containers. Thus, instead of providing system
containers and the runtime, we could provide physical/virtual boxes to tenants and let them configure
customized cloud-native clusters by themselves.

In summary, the results of composing physical and virtual boxes can be bare-metal servers and
virtual machines. The created boxes should be at least configured with Linux operating systems
to allow tenants to utilize them instantly. Based on SmartX Playgrounds, we can logically simplify
the procedures of creating boxes, as a simple task putting Linux operating system functions into
empty boxes.

Notice that we are recognizing other options for boxes that are not mentioned in the list, such as
Unikernel [21], Kata Container [22], gVisor [23], and Singularity [24]. These options are designed for
special domains, and supporting all the variations can be difficult in terms of Playground operations.



Electronics 2020, 9, 844 7 of 22

Like the case of system containers, tenants can freely configure other options in the acquired
physical/virtual boxes.

3.2.2. Networking Plane Separation

We designed four networking planes by categorizing heterogeneous traffics based on their
characteristics: a power plane and a management + measurement plane for operators; a control
plane and a data plane for tenants. Traffic types and use cases of the respective planes are described
as follows:

• The P (Power) plane allows operators to maintain the hardware status of physical servers remotely,
such as power status, temperature, event logs, and remote console access through the IPMI
(Intelligent Platform Management Interface)-based remote management access [25]. The P plane
can guarantee constant monitoring and control of physical servers even if other networking planes
are unavailable due to, for example, operating system failures or shutdown.

• The M (Management + Measurement) plane is used for operating system management of physical
boxes and virtual boxes. The M plane can accommodate SSH traffic to remote boxes for debugging
and troubleshooting. Besides, SmartX Automation Centers in centralized Tower servers can use
this plane to install and configure software packages for remote boxes. In addition, visibility data
measured from boxes can be transferred to Visibility center through this plane.

• The C (Control) plane is mainly used for developers’ control traffic generated from SDI-oriented
services. For example, SDN controllers and switches exchange control and monitoring messages
with each other and internal components in cloud/cloud-native computing exchange control
messages with each other.

• The D (Data) plane can accommodate any service-level traffic of user experiments such as
videos and voice data. With the D plane Playground, tenants can handle control traffic and
data traffic, respectively. Thus, the developers can acquire relatively accurate results regarding
their experiments.

3.2.3. SmartX Provisioning and Visibility Centers

The DsP tool is a template-based provisioning tool for Provisioning center that allows us to install
and configure a customized playground topology automatically [26]. The DsP tool should cover
bare-metal installation, virtual machine creation, and software packages’ installation, for automatically
composing physical/virtual boxes. For the DsP tool, we could leverage existing open source
installation/configuration tools as much as possible. This choice was expected to let us stick to the
DevOps-based automation paradigm while allowing us to enable various lightweight customizations
of the DsP tool. We refined the DsP tool to satisfy changing requirements through operations
of SmartX Playgrounds, which will be specifically described in Section 5. Using the DsP tool,
Provisioning center can automatically provision (i.e., install and configure) physical boxes and virtual
boxes from remote clusters.

SmartX MVF can provide multi-layered visibility of the overall playground with an onion-ring
visualization dashboard [10,14,27–29]. The onion-ring dashboard of SmartX MVF was originally
adapted to OF@TEIN Playground, which had a fixed playground topology of distributed
physical servers with pre-installed multi-region clouds for SDN-cloud DevOps services [11,30].
Unlike OF@TEIN Playground, the reconfigurable clusters consider the multi-site edge cloud model
and can frequently change the playground topology. Thus, to visualize the reconfigurable clusters
intuitively, we should implement another version of the onion-ring visualization dashboard, as shown
in Figure 4. The dashboard can initially depict distributed clusters as a big mass of available resource
boxes, which is the grey-colored areas. When we compose boxes for tenants, the boxes can be
visualized as partial rings divided by lines on the resource mass. Therefore, we can easily identify
unused resources, as well as allocated resources from Visibility center.



Electronics 2020, 9, 844 8 of 22

Figure 4. The design of the onion-ring dashboard for reconfigurable clusters.

3.3. Resource Infrastructure with Distributed Clusters

To cope with emerging cloud-native edge-computing, we have constructed a playground
infrastructure with distributed clusters since 2015. Figure 5 describes the configuration of the
playground infrastructure in detail.

Figure 5. Resource infrastructure for K-ONE Playground. P, Power; M, Management + Measurement;
C, Control; D, Data.

As a first step, we designed a small-sized cluster referred to as K-Cluster. K-Cluster consists
of logical components such as K-Post, K-Cube, and K-Fabric. K-Cube can correspond to Cube of
SmartX Playgrounds where tenants can utilize cloud-native DevOps services. K-Post follows the
concept of Post in SmartX Playgrounds, which can accommodate operation tools, as well as controllers
for managing boxes and services. K-Fabric tightly connects these physical servers with high-speed
networking to form a clustered resource pool. We implemented K-Cluster with heterogeneous servers
to suit the small-scale clusters: a 2U (rack unit)-sized server for K-Post, a NOS-supported switch for
K-Fabric, and four mini-size servers for K-Cube.

We constructed resource infrastructure by deploying hardware implementations of K-Cluster at
five universities in South Korea (i.e., GIST (Gwangju Institute of Science and Technology), KU (Korea
University), SSU (Soongsil University), POSTECH (Pohang University of Science and Technology),



Electronics 2020, 9, 844 9 of 22

and KAIST (Korea Advanced Institute of Science and Technology)). To inter-connect the distributed
clusters, the clusters were physically attached to KREONET (Korea Research Environment Open
NETwork), which can support 10Gbps-capable wide area networks over South Korea. To configure
K-ONE Playground Tower, we installed additional physical servers at the GIST site, which were
exclusively used for SmartX Automation Centers.

4. Implementation of Reconfigurable Clusters

In this section, we provide an implementation of the proposed reconfigurable clusters.
The implementation was iteratively refined during playground operations based on the DevOps-based
automation methodology. That is, we operated the developed components over the real-world
infrastructure, debugged, and refined them to troubleshoot the operation issues.

4.1. Preparing Distributed Clusters to Compose Physical and Virtual Boxes Remotely

In Section 3.2.1, we define shapes and local tools for creating physical and virtual boxes from
physical servers. To enable clusters to be reconfigurable for physical and virtual boxes, we should
implement RESTful APIs (Application Programming Interfaces) of local tools that are exposed to Post
servers and Tower servers to create boxes remotely. By implementing the local tools and the RESTful
APIs, clusters are reconfigurable in terms of creating physical and virtual boxes.

From K-Cube servers, SmartX Playgrounds should compose physical and virtual boxes.
To implement the local tools for virtual boxes, we installed KVM, Virsh (with Libvirt), and clouds in
physical boxes from K-Cube servers. However, for physical boxes, empty physical servers cannot solely
install Linux operating systems themselves without external supports such as manual installation and
bare-metal installation tools. We leveraged customized open source DevOps automation tools such as
bare-metal installation tools and configuration management tools, rather than developing these tools
and RESTful APIs from scratch. Implementations of these tools have been refined during operations,
so we describe these tools in Section 4.3.

Post servers in SmartX Playground can be utilized for multiple tenants, as we describe in Section 2.
Direct sharing of Post servers can incur an unstable and vulnerable status due to failures caused
by tenants, such as software version conflicts and human errors. Instead, creating virtual boxes
and inter-connects allows multiple tenants to acquire dedicated boxes from the shared Post servers.
However, managing virtual boxes in distributed clusters involve cumbersome management tasks.
To get around the issue effectively, we implemented a cloud cluster over distributed K-Post servers as
shown in Figure 6 by leveraging OpenStack, which is one of the popular open source cloud operating
systems [31].

Over distributed clusters in different geographical sites, a multi-region cloud can be a typical
option for constructing a cloud infrastructure. In multi-region clouds, individual clouds are built on
different sites, and identity services and RESTful APIs of the clouds are federated. Creating virtual
boxes from multi-region clouds is more complicated than creating from a single cloud since we
should manage virtual boxes, images, and virtual networks in the individual clouds. Besides,
operating multi-region clouds is not suitable for reconfigurable clusters to simplify distributed Post
servers logically as a pool of virtual boxes. Therefore, we implemented a single cloud with specially
prepared L2 networks between the distributed K-Post servers. To accommodate diversified DevOps
services, the cloud supports flat networks in addition to virtual local area network (VLAN)- and virtual
extensible local area network (VXLAN) -based overlay virtual networks. Virtual boxes on the flat
networks directly connect to physical boxes through L2 networks, so DevOps services can utilize
virtual boxes in the same way as physical boxes.

Through the web dashboard of the cloud, we simply managed the life cycle of virtual boxes
(i.e., creation, update, and deletion), as well as cumbersome tasks, for example virtual networking,
virtual machine images, and tenants’ accounts. Thus, we easily provided multi-site virtual boxes



Electronics 2020, 9, 844 10 of 22

from the K-Post servers, which helped tenants to implement cloud-native DevOps services in
real-world infrastructure.

Figure 6. The configuration of a multi-site cloud over distributed K-Post servers.

4.2. Networking Plane Separation

There are many available approaches for networking plane separation. We employed a
combination of physical and logical networking configurations. Notice that Figures 5 and 6 also
depict the detailed implementations of networking plane separation.

To separate the networking planes physically inside a cluster, we equipped all physical servers
with four networking ports: a 1 Gbps IPMI port for the P plane, two 1 Gbps ports for the M and C
planes, and a 10 Gbps port for the D plane. These ports were connected to a K-Fabric switch. On the
K-Fabric switch, we separated the planes by configuring different VLANs and IP subnets. In typical
multi-site infrastructure, private networks of distributed clusters are isolated from each other, and
therefore, servers at different sites cannot directly communicate through L2 networks. To reflect the
typical configuration, we assigned different private IP subnets for the C and D planes to clusters.
However, we configured public IP subnets to the P plane and M plane, to allow us to manage servers
from centralized Tower servers remotely.

In addition to the intra-cluster networks, we additionally configured special L2 networks between
the K-Post servers and K-ONE Playground Tower servers as we mention in Section 4.1. These L2
networks inter-connect the clusters through multiple networking planes and support to construct
a cloud over the K-Post servers. For the inter-cluster networks, we configured an additional public
subnet for the P + M planes. The inter-cluster C and D planes were configured as IP supersets
of the intra-cluster C and D planes of all distributed clusters, due to the requirements of the
OpenStack configuration.

Thanks to the networking plane separation of intra-/inter-cluster networking, we reliably
operated the reconfigurable clusters. We as operators mainly utilized the P+M planes and inter-cluster
C/D planes to operate various DevOps automation tools, as well as to reconfigure the playground
topology. On the contrary, composed physical and virtual boxes are connected to the intra-cluster
C and D planes. Therefore, operation tasks are not easily affected by traffics from tenants’ DevOps
services. Besides, tenants can intuitively map control and data traffic of DevOps services to the
real-world infrastructure with C and D planes.



Electronics 2020, 9, 844 11 of 22

4.3. SmartX Provisioning and the Visibility Center

For Provisioning center, we implemented the DsP tool based on our experiences in developing
and operating DevOps automation tools. In Figure 7, we depict the implemented software structure of
the DsP tool with a flowchart describing the provisioning procedure. When we execute the DsP tool
with a playground template, the DsP main module passes the template to the Playground Template
Interpretation module. The playground template file describes the desired playground configuration.
The Playground Template Interpretation module extracts the target list of distributed boxes with
desired software collections from the given playground template file. The module also enriches the
list of boxes with detailed box information (i.e., access credentials, network configuration) that is
retrieved from Information Store module. The interpretation result is a list of boxes with software
collections, as well as detailed box information, which specifically describes the desired configuration
of the playground topology.

Figure 7. An implementation of the DsP tool (left: software structure; right: working procedure).

With the interpretation result, the DsP main module triggers the actual procedure of installation
and configuration by invoking the Provisioning Coordination module. The Provisioning Coordination
module reads the interpreted template and creates as many multiple processes as depicted in the
template for concurrent provisioning of multiple boxes. These processes take the Installation Tool
Interfaces matching the software collections from the Installation Tool Inventory module and invoke
software installation tasks using the Interfaces one by one. The Installation Tool Interfaces are
automatically registered to the Installation Tool Inventory module during the initialization process.
The invoked Interface calls the APIs of the Installation Tools with the desired configuration of the
target boxes. The Tool then automates the detailed tasks to install software on the target box. After
finishing, the Coordination module reports provisioning results such as failures and the elapsed time
on the display. In addition to the installation, the DsP tool also provides a feature to remove physical
boxes by filling the storage disks of physical servers with zeros.

When it comes to Visibility center, we adjusted the onion-ring dashboard of SmartX MVF to
suit intuitively visualizing reconfigurable clusters. Figure 8 depicts the overall playground topology
visualized by the adjusted dashboard. The dashboard visualizes K-ONE Playground Tower servers for
Provisioning and Visibility centers at the center. The geographical sites are placed on the next layer.
Next, K-Post servers and K-Cube servers in distributed clusters are represented as grey-colored rings
on the outer layers. Unlike the design, the dashboard visualizes virtual boxes on outer layers above
the grey-colored rings, since nesting virtual boxes into the physical boxes complicates the structure of
the onion-ring graph, preventing us from easily grasping the playground topology.



Electronics 2020, 9, 844 12 of 22

After reconfiguration, the onion-ring dashboard visualizes composed boxes as colored ring
segments separated by colored lines. The boundary colors identify respective tenants who occupy
the resources. The colors of the areas represent the status of the boxes: green for normal status,
yellow for boxes that are powered off, and red for boxes that are not reachable through the P and
M planes.

Figure 8. Implementation of the onion-ring visualization dashboard for K-ONE Playground.

5. K-ONE Playground: Operations and Utilization

In this section, we verify the feasibility of the proposed reconfigurable cluster by describing how
to operate K-ONE Playground to compose physical and virtual boxes for tenants. We also depict
practical use cases of K-ONE Playground that demand different playground topologies to develop
cloud-native DevOps services.

5.1. Operations of K-ONE Playground

We have been operating K-ONE Playground based on the concept of composable playgrounds to
provide user-defined infrastructure for multiple tenants since 2015. Over the period, we have supported
tenants who usually want to utilize dedicated physical, virtual boxes in different combinations
for developing their DevOps services. To support these tenants while satisfying the requirements,
we operated the features of reconfigurable clusters to compose sets of physical and virtual boxes.

We describe the detailed reconfiguration steps of K-ONE Playground in Figure 9 Initially,
Visibility center with SmartX MVF repeatedly collects visibility metrics from the distributed clusters
and stores the data in the databases. The collected data are visualized on the onion-ring dashboard,
so we easily understand the playground topology and status of distributed clusters.

The provisioning procedure is triggered by a request from Playground tenants. The tenants
send descriptions of the desired box topologies to us, which list the number of boxes, their type
(i.e., physical, virtual), and locations. From the onion-ring dashboard, we find available resources
and translate the received request into a playground template that complies with the DsP tool’s
template format. To serve multiple tenants in the limited resources of K-ONE Playground, we follow
the first-come first-served policy. Tenants should wait until distributed clusters become available
to satisfy the requirements. As described in Figure 10, the YAML-based template format is simple,
which lists target boxes with their required software packages. We call Provisioning center with the
template to create boxes from distributed clusters. After provisioning, we confirm the result of the



Electronics 2020, 9, 844 13 of 22

provisioning by checking reports from the Provisioning center and the updated onion-ring dashboard
of the Visibility center. We provide the access information of the created boxes to the tenants, so they
can fully utilize the boxes.

To reconfigure the playground topology for the next tenants, the Provisioning center provides a
feature of releasing created boxes. The release procedure should uninstall remaining software, in order
to return these boxes to clean states. However, to clean up all software remaining after the previous
tenants can be very complicated, since we should track all commands by tenants, analyze them,
and clear the changes. Therefore, the Provisioning center does not cover releasing physical and virtual
boxes at the fine-grained level. Instead, to release physical and virtual boxes in K-Cube servers, the
Provisioning center utilizes the DsP tool to clean up physical disks. For the K-Post servers, we simply
remove virtual boxes given for tenants using the APIs of the cloud.

Figure 9. An operations the workflow of K-ONE Playground.

Figure 10. Playground template format.

We refined the DsP tool to overcome operational issues based on the DevOps methodology.
The first version of the DsP tool supported template-based automation of OpenStack-based
cloud installation. For the tool, we defined three playground templates, which described the fixed
topology of clouds over distributed servers. The DsP tool leverages open source DevOps automation
tools such as Cobbler [32] for bare-metal installation and Chef [33] for cloud installation. However,
we encountered operation issues such as slow adoption of emerging technology due to Chef’s
complexity and incompatibility problems between kernel versions and software packages.



Electronics 2020, 9, 844 14 of 22

To address the issues, we decided to leverage other open source tools, Canonical MAAS (metal
as a service) [34] and DevStack [35]. MAAS is a bare-metal installation tool that can help in the
easy operations of data center servers with handy features of server inventory management and
operating system (OS) image management, through a GUI-based web dashboard. DevStack is a
collection of shell scripts that allows developers to bring up an OpenStack development environment
easily. When we were searching for a suitable tool for OpenStack installation, DevStack could easily
deploy OpenStack along with emerging DevOps services such as SDN controllers and cloud storage.
However, we again arrived at failures of cloud provisioning and operations since DevStack is not
suitable for stable operations. DevStack does not strongly ensure successful OpenStack installation
due to frequent updates of the scripts. We should repeat our installation tasks until clouds are
correctly installed. For that reason, we implemented our shell script tool that followed the official
manual for production-level OpenStack installation.

The latest version of the DsP tool supports two Interfaces for Canonical MAAS and Red Hat
Ansible [36], as also described in Figure 7. We deployed the DevOps tools, MAAS region controller,
and Ansible as system containers in the Provisioning center to prevent software conflicts between
these tools. When it comes to MAAS, we deployed cluster controllers of MAAS to the respective
K-Post servers as virtual boxes to distribute operation workloads from the centralized Tower servers.
The region controller in the Provisioning center provides a web-based dashboard and RESTful
interfaces, and the cluster controllers conduct actual installation tasks of physical boxes using IPMI and
PXE booting. In addition to MAAS, we utilized Ansible to compose virtual boxes, as well as to install
software packages by leveraging its versatile features. That is, composing and releasing virtual boxes
were implemented as Ansible playbooks, which describe the detailed steps of software configurations
for Ansible to automate provisioning procedure.

To verify the feasibility, we measured the elapsed time to reconfigure the playground topology
with an example scenario. In this scenario, we assumed that two tenants demanded to acquire boxes
with different playground topologies. The first tenant demanded four physical boxes from two sites
and two virtual boxes inside the created physical boxes. Thus, we composed four physical boxes
from two sites, installed two OpenStack-based clouds, and composed two virtual boxes from these
clouds. After finishing the tenant’s development, we released the physical boxes. Next, another tenant
demanded two virtual boxes in two K-Post servers, so we composed and released these virtual boxes
from the cloud over the K-Post servers.

To measure elapsed times of each step, we repeated the scenario using GIST and POSTECH
clusters five times. The reconfiguration for the first tenant utilizes the DsP tool and the installation tools
(i.e., MAAS region controller and Ansible), which work as LXD system containers in the Provisioning
center. To compose physical boxes, the DsP tool invokes MAAS cluster controllers in GIST and
POSTECH clusters, which work in the K-Post servers as OpenStack VMs having one virtual CPU and
2 GB memory. Then, the MAAS cluster controllers automatically install Linux OS (Ubuntu 18.04) and
other software packages for the selected K-Cube servers. The K-Cube servers are equipped with one
Intel Xeon-D CPU (2.2 GHz, 4-cores), 32 GB memory, and 512 GB SSD. The DsP tool invokes Ansible
using the Ansible interface to install and configure two OpenStack clouds automatically. Next, two
virtual boxes with two virtual cores and 4 GB memory are composed on the configured clouds. Finally,
the DsP tool releases the composed boxes by cleaning the disks of the physical boxes. Lastly, the DsP
tool removes the composed virtual boxes. For the second tenant, Ansible invoked by the DsP tool
composes two virtual boxes with two virtual cores and 4 GB memory in GIST and POSTECH K-Post
servers by calling RESTful APIs of the multi-site OpenStack cloud.

The results on average are represented in Table 2. From K-Cube servers, K-ONE Playground can
compose multi-site physical boxes within 10 min and virtual boxes with OpenStack clouds around
16 min. Besides, composing multi-site virtual boxes in the K-Post servers only takes around 2 min.
However, the release of physical boxes can be varied depending on the size and type of physical
disks. Regardless of the number of boxes, we can approximately calculate the reconfiguration time



Electronics 2020, 9, 844 15 of 22

for a specific playground topology by simply adding up the times, since the Provisioning center
composes multiple boxes in parallel. Besides, we concluded from the result that K-ONE Playground
could reconfigure the distributed clusters to the desired playground topology in at most 30 min by
executing a single command. Notice that we focused on verifying the feasibility of the proposed
features, not performance, so reducing the configuration time was out of our focus in this paper.

Table 2. Time measurements of playground topology reconfiguration.

Scenario Elapsed Time

1-1. Composing multi-site physical boxes from K-Cube servers 8 min 58 s

1-2. Composing virtual boxes on
cloud-enabled physical boxes

1-2-1. OpenStack
control node 14 min 33 s

1-2-2. OpenStack
compute node 5 min 40 s

1-2-3. Virtual boxes 1 min 12 s

1-3. Release physical boxes 3 min 39 s

2-1. Composing multi-site virtual boxes from the K-Post servers 1 min 29 s

2-2. Release the virtual boxes 16 s

5.2. K-ONE Playground Utilization

The main features of the reconfigurable clusters are to compose physical/virtual boxes suited for
diversified cloud-native DevOps services easily, with intuitive visibility support. In this section,
to present use cases of these features, we describe practical utilization examples of developing
cloud-native DevOps services. Furthermore, we describe how the reconfigurable clusters could
be visualized and easily customized to match the desired topology for the examples.

5.2.1. Utilization #1: Multi-Site Physical Boxes for Cloud-Native Dynamic Overcloud

In the first case, a tenant demands multi-site physical boxes for the development of the concept
of dynamic overcloud that can provide service compatibility regardless of types and locations of
underlay clouds, as depicted in Figure 11. For the compatibility, the overcloud tower can dynamically
configure dynamic overcloud, which is an additional layer between a service layer and a cloud
infrastructure layer, by deploying Kubernetes-based cloud-native clusters, visible fabric, and the
connected data lake over hybrid multi-clouds such as the Amazon Web Services public cloud and
OpenStack private clouds. The tenant demands a playground topology with six physical boxes
from two geographical sites for two OpenStack private clouds and an additional virtual box for
overcloud tower.

A playground template describes the desired playground topology: three physical boxes from the
GIST cluster, three physical boxes from the POSTECH cluster, and a virtual box from a K-Post server.
The Provisioning center with the DsP tool installs operating systems for the selected physical boxes
and instantiates a virtual box in the GIST K-Post server. As a result, the onion-ring visualization shows
the reconfigured playground topology as depicted in Figure 12. Using the multi-site physical boxes,
the tenant could successfully develop DevOps automation tools for cloud-native dynamic overcloud
on customized OpenStack-based clouds, which finally resulted in the research outcome [37].



Electronics 2020, 9, 844 16 of 22

Figure 11. Multi-site physical boxes for cloud-native dynamic overcloud.

Figure 12. Playground reconfiguration for multi-site physical boxes: a template (left); the result (right).

5.2.2. Utilization #2: Multi-Site Virtual Boxes for Cloud-Native Service Mesh Service

Service mesh [38] is an additional layer between service functions and cloud-native infrastructures
that can monitor and control service traffic without touching application codes. When it comes to
a service mesh, monitor/control traffics in a service mesh can be visible to application functions,
which may incur security problems. In the second practical use case, a tenant asks for multi-site
virtual boxes to develop a protected coordination scheme for the service mesh that can separate
the monitor/control traffic and data traffic to prevent such exposure. A playground topology for
the desired testbed consists of four servers that are capable of L2-based networking, but placed in
different sites, as depicted in Figure 13. A playground topology is written on the template in Figure 14,
and four virtual boxes from K-Post servers are allocated to the tenant. The Provisioning center
automatically creates two virtual boxes for the GIST site and another two for the Soongsil University
and POSTECH sites, respectively. The reconfiguration results in the changed playground topology as
visualized on the onion-ring dashboard shown in Figure 14. By utilizing the virtual boxes, the tenant
configured a customized cloud-native cluster and could develop the DevOps service with the outcome
found in [39].



Electronics 2020, 9, 844 17 of 22

Figure 13. Multi-site virtual boxes for cloud-native multi-site service mesh.

Figure 14. Playground reconfiguration for multi-site virtual boxes: a template (left); the result (right).

5.2.3. Utilization #3: Multi-Tenants Testbeds for Open Source Software Development

K-ONE Playground has been actively utilized to support various contribution efforts of
SDI-oriented open source software projects. Figure 15 shows an example case of multi-tenant
experiments that could be easily supported by utilizing the reconfigurable clusters. In the third
use case, two tenants demand to utilize K-ONE Playground. A tenant focuses on developing a Docker
Swarm plugin of the Open Baton framework software, and at the same time, another develops a
monitoring system and anomaly detection service for M-CORD.

When it comes to the playground topology, two tenants respectively demand four physical boxes
from two sites. In addition, one of the tenants wants a virtual box to place the Open Baton NFV
orchestrator. Based on the requirements, we selected the locations of the physical/virtual boxes and
wrote a playground template as shown in the left of Figure 16. The Provisioning center results in the
reconfigured playground that can be intuitively visualized on the onion-ring dashboard shown in the
right part of Figure 16. Among the green-colored elements, the blue-colored border belongs to the
Open Baton developer, and the M-CORD developer can utilize the boxes with the red-colored border.
We could properly provide collections of physical and virtual boxes to the tenants, and they could
successfully achieve the research outcomes [40,41].



Electronics 2020, 9, 844 18 of 22

Figure 15. Multi-tenant support for SDI-oriented open source software development.

Figure 16. Playground reconfiguration for multi-tenant support: a template (left); the result (right).

6. Related Work

Public cloud services are currently supporting extensive features providing physical and virtual
boxes to multiple tenants. However, the reconfigurable clusters have different requirements because of
resource limitations and target services compared to public clouds. Public clouds typically possess
abundant resource pools that are separately optimized for respective services. Thus, they can provide
physical and virtual boxes to multiple tenants by simply selecting from the matching resource pools,
which are optimized for each resource/service type. On the contrary, the reconfigurable clusters can
customize distributed clusters on-demand to satisfy multiple tenants with a limited resource pool.
Furthermore, DevOps services may demand freely manipulating wide levels of infrastructure software
and even physical hardware devices, to cover both aspects of service development and operations.
In public clouds, tenants entrust the operations of the underlying infrastructure to public cloud
operators. Therefore, it can be difficult for tenants to acquire such levels of freedom from public
cloud services, but K-ONE Playground can support these demands. Likewise, on-premise testbeds
still have niche values and demands, so there are many research efforts to propose the build-out and
operations of their testbeds for DevOps services.

Through various research, worldwide researchers have proposed cloud/edge cloud testbeds with
successful examples of development use cases. The respective testbeds consider different infrastructure
topologies, target service domains, and resources/tools for developers. Cumulus testbed [6] gives



Electronics 2020, 9, 844 19 of 22

developers a task dispatcher that can help deploy offloading services over physical resources and
virtual resources of edge clouds. The Homecloud testbed [7] provides SDN/NFV-leveraged edge
clouds with OpenStack-based NFV-cloud controllers and SDN controllers. PlanetIgnite testbed [8]
provides virtual resources from distributed edge clouds to developers with a helper tool to deploy
container-based services easily. These testbeds have in common that they can help tenants easily
develop deployments/orchestration services for virtualized applications in different target domains.
However, these testbeds are limited to providing software tools, controllers, or virtual resources that
are not suited for supporting the customized configuration of cloud-native clusters. Thus, the approach
of the testbeds is not well aligned to our requirements due to the differences.

Among the related work, the Smart Applications on Virtual Infrastructure (SAVI) testbed [9] has
a similar approach to K-ONE Playground, in terms of the research domains and resources given to
tenants. The SAVI testbed is a multi-tier heterogeneous cloud testbed that consists of federated
core/edge clouds, WiFi access points, and IoT things. The testbed also includes a centralized
software framework that can be similar to SmartX Automation Centers, and the framework utilizes an
Ansible-based provisioning tool and visibility tool in order to configure, monitor, and visualize the
overall testbed automatically. Furthermore, the authors also considered leveraging Kubernetes-based
cloud-native computing for containerizing management services such as OpenStack components,
OpenFlow controller, and other operational services. As shown above, the SAVI testbed and K-ONE
Playground have many similar points, but our work focuses more on suggesting an easy and unique
design for constructing a cloud-native-ready testbed where an operator and developers can enjoy the
features of reconfigurable clusters. Furthermore, tenants of K-ONE Playground can intuitively map
their topology of cloud-native clusters and even freely manipulate physical and virtual boxes.

7. Conclusions

In this paper, we proposed K-ONE Playground, which is a multi-site cloud-native-ready testbed
with reconfigurable clusters. K-ONE Playground follows the concept of SmartX Playground, but it has
limitations on addressing the additional requirements of reconfigurable clusters. Thus, we proposed a
unique design with three essential elements that could make our distributed clusters reconfigurable:
the definitions of physical/virtual boxes in reconfigurable clusters, networking plane separation
for enhancing reliability, and SmartX Automation Centers with DevOps tools that could easily
reconfigure the playground topology on-demand. We verified that the reconfigurable clusters could
easily reconfigure the playground topology by describing actual use cases of K-ONE Playground.
Even though the detailed implementation was customized for our testbed, K-ONE Playground
may give an idea to researchers about how to build and operate a multi-site cloud-native-ready
testbed easily.

Author Contributions: Conceptualization, J.-S.S. and J.K.; investigation, J.-S.S.; software, J.-S.S.; supervision, J.K.;
validation, J.-S.S.; visualization, J.-S.S.; writing, original draft, J.-S.S.; writing, review and editing, J.-S.S. and J.K.
All authors read and agreed to the published version of the manuscript.

Funding: This work was supported by the Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2015-0-00575, Global SDN/NFV Open
Source Software Core Module/Function Development, and No. 2017-0-00421, Cyber Security Defense Cycle
Mechanism for New Security Threats).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DevOps Development and Operations
DHCP Dynamic Host Configuration Protocol
DsP Distributed Secure Provisioning
GUI Graphical User Interface



Electronics 2020, 9, 844 20 of 22

IPMI Intelligent Platform Management Interface
KREONET Korea Research Environment Open NETwork
KVM Kernel-based Virtual Machine
K-ONE Korea-Open Networking Everywhere
LXD LinuX container Daemon
LAN Local Area Network
MAAS Metal as a Service
M-CORD Mobile-Central Office Re-architected as a Data Center
NFV Network Function Virtualization
NOS Network Operating Systems
OF@TEIN OpenFlow at Trans-Eurasia Information Network
PXE Pre-eXecution Environment
REST Representational State Transfer
SDI Software-Defined Infrastructure
SDN Software-Defined Networking
MVF MultiView Visibility Framework
SSH Secure Shell
VLAN Virtual Local Area Network
VXLAN Virtual Extensible Local Area Network
VM Virtual Machine
YAML YAML Ain’t Markup Language

References

1. CNCF Community. CNCF Cloud Native Definition v1.0. Available online: https://github.com/cncf/toc/
blob/master/DEFINITION.md (accessed on 9 February 2020).

2. Chang, H.; Hari, A.; Mukherjee, S.; Lakshman, T.V. Bringing the Cloud to the Edge. In Proceedings of the IEEE
Conference on Computer Communications Workshop 2014, Toronto, ON, Canada, 27 April–2 May 2014;
pp. 346–351.

3. O’Keefe, M. Edge Computing and the Cloud-Native Ecosystem. Available online: https://thenewstack.io/
edge-computing-and-the-cloud-native-ecosystem (accessed on 9 February 2020).

4. Kumar, S.; Du, J. KubeEdge, a Kubernetes Native Edge Computing Framework. Available online: https:
//kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro (accessed on 9 February 2020).

5. Loukides, M. What Is DevOps? O’Reilly Media, Inc.: Newton, MA, USA, 2012.
6. Gedawy, H.; Tariq, S.; Mtibaa, A.; Harras, K. Cumulus: A Distributed and Flexible Computing Testbed for

Edge Cloud Computational Offloading. In Proceedings of the 2016 Cloudification of the Internet of Things,
Paris, France, 23–25 November 2016.

7. Pan, J.; Ma, L.; Ravindran, R.; TalebiFard, P. HomeCloud: An Edge Cloud Framework and Testbed for New
Application Delivery. In Proceedings of the 2016 23rd International Conference on Telecommunications,
Thessaloniki, Greece, 16–18 May 2016.

8. Bavier, A.; McGeer, R.; Ricart, G. PlanetIgnite: A Self-Assembling, Lightweight, Infrastructure-as-a-Service
Edge Cloud. In Proceedings of the 2016 28th International Teletraffic Congress, Würzburg, Germany,
12–16 September 2016; pp. 130–138.

9. Lin, T.; Park, B.; Bannazadeh, H.; Leon-Garcia, A. Deploying a Multi-Tier Heterogeneous Cloud: Experiences
and Lessons from the SAVI Testbed. In Proceedings of the 2018 IEEE/IFIP Network Operations and
Management Symposium, Taipei, Taiwan, 23–27 April 2018.

10. Usman, M.; Risdianto, A.C.; Han, J.; Kim, J. Interactive Visualization of SDN-Enabled Multisite Cloud
Playgrounds Leveraging SmartX MultiView Visibility Framework. COMPUT J. 2019, 62, 838–854. [CrossRef]

11. Risdianto, A.C.; Kim, N.L.; Shin, J.; Bae, J.; Usman, M.; Ling, T.C.; Panwaree, P.; Thet, P.M.;
Aswakul, C.; Thanh, N.H.; et al. OF@TEIN: A community effort towards open/shared SDN-Cloud virtual
playground. In Proceedings of the 12th APAN- Network Research Workshop 2015, Kuala Lumpur, Malaysia,
10 August 2015; pp. 22–28.

https://github.com/cncf/toc/blob/master/DEFINITION.md
https://github.com/cncf/toc/blob/master/DEFINITION.md
https://thenewstack.io/edge-computing-and-the-cloud-native-ecosystem
https://thenewstack.io/edge-computing-and-the-cloud-native-ecosystem
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro
http://dx.doi.org/10.1093/comjnl/bxy103


Electronics 2020, 9, 844 21 of 22

12. Han, J.; Shin, J.S.; Kwon, J.C.; Kim, J. Cloud-Native SmartX Intelligence Cluster for AI-Inspired
HPC/HPDA Workloads. In Proceedings of the ACM/IEEE Supercomputing Conference 2019 (SC19),
Denver, CO, USA, 17–22 November 2020; Poster 123.

13. Risdianto, A.C.; Usman, M.; Kim, J. SmartX Box: Virtualized Hyper-Converged Resources for Building an
Affordable Playground. Electronics 2019, 8, 1242. [CrossRef]

14. Usman, M.; Rathore, M.A.; Kim, J. SmartX Multi-View Visibility Framework with Flow-Centric Visibility for
SDN-Enabled Multisite Cloud Playground. Appl. Sci. 2019, 9, 2045. [CrossRef]

15. Li, H.; Xu, X.; Ren, J.; Dong, Y. ACRN: A big little hypervisor for IoT development. In Proceedings of the 15th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environment, New York, NY, USA,
13–14 April 2019; pp. 31–44.

16. Sinitsyn, V. Jailhouse. Linux J. 2015, 252, 78–90.
17. Kivity, A.; Kamay, Y.; Laor, D.; Lublin, U.; Liguori, A. kvm: The Linux virtual machine monitor. Linux Symp.

2007, 1, 225–230.
18. Barham, P.; Dragovic, B.; Fraser, K.; Hand, S.; Harris, T.; Ho, A.; Neugebauer, R.; Pratt, I.; Warfield, A.

Xen and the art of virtualization. ACM Sigops Oper. Syst. Rev. 2003, 37, 164–177. [CrossRef]
19. LXD—System Container Manager. Available online: https://lxd.readthedocs.io/en/latest/ (accessed on

13 April 2020).
20. Merkel, D. Docker: Lighteweight Linux containers for consistent development and deployment. Linux J.

2014, 2014, 2.
21. Madhavapeddy, A.; Scott, D.J. Unikernels: Rise of the virtual library operating system. Queue 2013, 11, 30–44.

[CrossRef]
22. Randazzo, A.; Tinnirello, I. Kata Containers: An Emerging Architecture for Enabling MEC Services in Fast

and Secure Way. In Proceedings of the 2019 Sixth International Conference on Internet of Things: Systems,
Management and Security (IOTSMS 2019), Granada, Spain, 22–25 October 2019; pp. 209–214.

23. Young, E.G.; Zhu, P.; Caraza-Harter, T.; Arpaci-Desseau, A.C.; Arpaci-Dusseau, R.H. The True Cost of
Containing: A gVisor Case Study. In Proceedings of the 11th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 19), Renton, WA, USA, 8 July 2019.

24. Kurtzer, G.M.; Sochat, V.; Bauer, M.W. Singularity: Scientific containers for mobility of compute. PLoS ONE
2017, 12, e0177459. [CrossRef]

25. Intel; Hewlett-Packard; NEC; Dell. Intelligent Platform Management Interface Specification
Second Generation. Available online: https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf (accessed on 9 February 2020).

26. Shin, J.-S.; Kim J. Template-based Automation with Distributed Secure Provisioning Installer for Remote
Cloud Boxes. In Proceedings of the 7th International Conference on Information and Communication
Technology Convergence, Jeju, Korea, 19–21 October 2016.

27. Usman, M.; Kim, J. SmartX Multi-View Visibility Framework for Unified Monitoring of SDN-enabled
MultiSite Clouds. Trans. Emerg. Telecomm. Tech. 2019. [CrossRef]

28. Shin, J.-S.; Kim, J. Multi-layer Onion-ring Visualization of Distributed Clusters for SmartX MultiView
Visibility and Security. In Proceedings of the 15th IEEE Symposium on Visualization for Cyber Security,
Berlin, Germany, 22 October 2018.

29. Kim, J.; Nam, T. Cluster Visualization Apparatus. U.S. Patent Application 16,629,299, 7 January 2020.
30. Risdianto, A.C.; Tsai, P.-W.; Ling, T.C.; Yang, C.-S.; Kim, J. Enhanced ONOS SDN Controllers Deployment for

Federated Multi-domain SDN-Cloud with SD-Routing-Exchange. Malays. J. Comput. Sci. 2017, 30, 134–153.
[CrossRef]

31. Sefraoui, O.; Aissaoui, M.; Eleuldj, M. Openstack: Toward an open source solution for cloud computing.
Int. J. Comput. Appl. 2012, 55, 38–42. [CrossRef]

32. Cobbler—Linux Install and Update Server. Available online: https://cobbler.github.io/ (accessed on
14 April 2020).

33. Marschall, M. Chef Infrastructure Automation Cookbook; Packt Publishing Ltd.: Birmingham, UK, 2015.
34. MAAS|Metal as a Service. Available online: https://maas.io/ (accessed on 14 April 2020).
35. OpenStack Docs: DevStack. Available online: https://docs.openstack.org/devstack/latest/ (accessed on

14 April 2020).

http://dx.doi.org/10.3390/electronics8111242
http://dx.doi.org/10.3390/app9102045
http://dx.doi.org/10.1145/1165389.945462
https://lxd.readthedocs.io/en/latest/
http://dx.doi.org/10.1145/2541883.2541895
http://dx.doi.org/10.1371/journal.pone.0177459
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf
http://dx.doi.org/10.1002/ett.3819
http://dx.doi.org/10.22452/mjcs.vol30no2.5
http://dx.doi.org/10.5120/8738-2991
https://cobbler.github.io/
https://maas.io/
https://docs.openstack.org/devstack/latest/


Electronics 2020, 9, 844 22 of 22

36. Hochstein, L.; Moser, R. Ansible Up & Running: Automating Configuration Management and Deployment the
Easy Way; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017.

37. Han, J.; Kim, J. Design of SaaS OverCloud for 3-tier SaaS Compatibility over Cloud-based Multiple Boxes.
In Proceedings of the 12th International Conference on Future Internet Technologies, Fukuoka, Japan,
14–16 June 2017.

38. Li, W.; Lemieux, Y.; Gao, J.; Zhao, Z.; Han, Y. Service Mesh: Challenges, State of the Art, and Future
Research Opportunities. In Proceedings of the 2019 IEEE International Conference on Service-Oriented
System Engineering (SOSE 2019), San Francisco, CA, USA, 4–9 April 2019; pp. 122–127.

39. Kang, M.; Shin, J.-S.; Kim, J. Protected Coordination of Service Mesh for Container-based 3-tier Service Traffic.
In Proceedings of the 33rd International Conference on Information Networking, Kuala Lumpur, Malaysia,
9–11 January 2019; pp. 427–429.

40. Shin, J.-S.; de Brito, M.S.; Magedanz, T.; Kim, J. Automated Multi-Swarm Networking with Open Baton
NFV MANO Framework. In European Conference on Parallel Processing; Springer: Cham, Switzerland, 2018;
Volume 11339, pp. 82–92.

41. Hong, J.; Kim, W.; Yoo, J.-H.; Hong, J.W.-K. Design and Implementation of Container-based
M-CORD Monitoring System. In Proceedings of the 20th Asia-Pacific Network Operations and
Management Symposium, Matsue, Japan, 18–20 September 2019.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	SmartX Playground with Reconfigurable Clusters
	SmartX Playground: Concept
	SmartX Playground: Requirements for a Composable Playground

	Design of Reconfigurable Clusters
	Overall Design of K-ONE Playground
	Components' Design for K-ONE Playground
	Reconfigurable Servers for Physical and Virtual Boxes
	Networking Plane Separation
	SmartX Provisioning and Visibility Centers

	Resource Infrastructure with Distributed Clusters

	Implementation of Reconfigurable Clusters
	Preparing Distributed Clusters to Compose Physical and Virtual Boxes Remotely
	Networking Plane Separation
	SmartX Provisioning and the Visibility Center

	K-ONE Playground: Operations and Utilization
	Operations of K-ONE Playground
	K-ONE Playground Utilization
	Utilization #1: Multi-Site Physical Boxes for Cloud-Native Dynamic Overcloud
	Utilization #2: Multi-Site Virtual Boxes for Cloud-Native Service Mesh Service
	Utilization #3: Multi-Tenants Testbeds for Open Source Software Development


	Related Work
	Conclusions
	References

