
electronics

Article

On the Interpretability of Machine Learning Models
and Experimental Feature Selection in Case of
Multicollinear Data

Franc Drobnič *, Andrej Kos and Matevž Pustišek

Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia;
andrej.kos@fe.uni-lj.si (A.K.); matevz.pustisek@fe.uni-lj.si (M.P.)
* Correspondence: franc.drobnic@fe.uni-lj.si

Received: 8 April 2020; Accepted: 3 May 2020; Published: 6 May 2020
����������
�������

Abstract: In the field of machine learning, a considerable amount of research is involved in the
interpretability of models and their decisions. The interpretability contradicts the model quality.
Random Forests are among the best quality technologies of machine learning, but their operation is
of “black box” character. Among the quantifiable approaches to the model interpretation, there are
measures of association of predictors and response. In case of the Random Forests, this approach
usually consists of calculating the model’s feature importances. Known methods, including the built-in
one, are less suitable in settings with strong multicollinearity of features. Therefore, we propose
an experimental approach to the feature selection task, a greedy forward feature selection method
with least-trees-used criterion. It yields a set of most informative features that can be used in
a machine learning (ML) training process with similar prediction quality as the original feature
set. We verify the results of the proposed method on two known datasets, one with small feature
multicollinearity and another with large feature multicollinearity. The proposed method also allows
for a domain expert help with selecting among equally important features, which is known as the
human-in-the-loop approach.

Keywords: interpretable machine learning; feature multicollinearity; random forests; feature selection;
feature importance; greedy feature selection

1. Introduction

Artificial intelligence (AI) as a scientific field and machine learning (ML) as a prominent part of
AI are gaining traction in latest decade because of new development in computer hardware which
enables us to perform computationally intensive operations easier than before. These advancements in
turn support elaboration of new methods and software solutions. This is partly because the research
and developer communities are growing due to increased interest in AI in both academia and industry.
Applications of AI and ML extend from industry to other societal subsystems, including traffic, health,
entertainment, defence, and many others [1,2].

In the process of ML model development, the primary goal is to build a model with a high
quality of prediction. Besides that, interpretability of ML models and their outcomes is important
for multiple reasons. Humans tend to trust the models more if they know the reasons that underlie
the model’s decision [3–6]. Recent changes in the legislation follow this principle by imposing strict
demands for model decision explanation, where the model’s decision has implications on human life
(e.g., in European Union, the General Data Protection Regulation (GDPR)) [7].

Machine learning methods are basically twofold. Models called “white box” or “glass box” models
are designed so that the inner workings are easy to comprehend. Examples of white box models

Electronics 2020, 9, 761; doi:10.3390/electronics9050761 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-1042-6203
http://dx.doi.org/10.3390/electronics9050761
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/5/761?type=check_update&version=2

Electronics 2020, 9, 761 2 of 15

are linear models, where model explanation can be derived from model coefficients. The second
type of models is more sophisticated, which impairs our ability to interpret them, so they are called
“black box” models. In practice, they give higher quality results. Examples of black box models are
neural networks (especially deep neural networks) which consist of a great number of basic elements
(neurons) that are interconnected with even greater number of weighted connections. Neurons also
implement some non-linear activation function that additionally complicates the inner workings of
the whole network. Another high-quality black box example is Random ForestsTM (RF). This is an
ensemble of simple estimators—decision trees, where an output is obtained from many different
decision trees statistically [8,9]. Because each of the trees is constructed differently—randomly selected
features are used in different trees—it is difficult to obtain an explanation of the model’s operation.

Although there is no strict definition of interpretability (see [10]), we can infer the ML method’s
principle of operation from some measure of influence of input features on the model’s output. It is
also useful to know the most influential features. We can reduce the number of input features to the
important ones only. This is known as the feature selection. It enables us to reach the desired objective
using as little resources as possible. Minimum feature set thus obtained also satisfies the Occam’s
razor [11] (p. 112). Many practical use cases of feature selection are present in all of the fields where
ML is used. We would like to mention a few of them where we are involved:

• In the field of Internet of Things (IoT), the remote sensors are constrained by limited battery
power and limited communication bandwidth. Reduced set of quantities that are measured and
sent over the network as an input to a ML model can help to utilize both limited resources more
economically. A more thorough discussion of the limitations in IoT ecosystem is available in [12].

• An important part of public health and well-being is monitoring growth and development of
children and adolescents. Many countries conduct periodic surveys of children and adolescents
consisting of body measurements, measurements of sport performance and in some cases
including psychometric and other questionnaires. We are involved in evaluation of such a
survey in Slovenia [13]. An interesting question in organizing such surveys is whether all the
measured quantities are necessary, or some of them could be omitted from the survey. In addition,
the decision process of experts involved in improving the development of young population could
be simplified if it were based on a smaller number of most important parameters.

In the ML data preparation phase, two feature selection approaches exist [1] (pp. 307–314).
The first is based on some calculation from statistical or information theoretical properties of the
data and is called filter method. The other is called wrapper method and involves an additional
machine learning method, which selects the subset of features depending on that features’ prediction
quality [14]. Within the wrapper method, there are two ways of feature space search. If the procedure
starts with empty dataset and gradually adds individual best quality features, the approach is called
forward selection. If the procedure successively excludes individual worst quality features from the
original dataset it is called backward elimination approach. The forward selection approach is more
suitable if the goal is to understand the decision process on the data, which is the case in our problem.

In our work, we concentrate on Random Forests only, because their training time is generally
short compared with neural networks of similar prediction quality. Random Forests also have inherent
qualities that make them especially suitable for the task of feature selection. As stated in [9], among
other, they do not overfit and they can be used with problems where number of samples is relatively
low compared with number of features. However, it was shown that the built-in method that calculates
feature importances may not be accurate, first already by the method’s authors [9] and later in a
subsequent study [15]. Proposed permutation importance and drop-column importance methods must
sometimes be manually engineered to be successful [16]. It was shown also that in the presence of
multicollinearity in the data, the calculated importances do not give a meaningful picture. Intuitively,
we could expect that when a single feature is dropped from the dataset, other features that are correlated
to the dropped one help the model to achieve better prediction than it would do if the dropped feature
were not correlated to the rest.

Electronics 2020, 9, 761 3 of 15

Therefore, we chose a greedy forward feature selection method to select important features from a
multicollinear dataset. This approach can serve as a good approximation of the all-subsets feature
space search and is computationally efficient [2] (p. 78). In this method, we gradually add features
to a new dataset and train a new model on the new dataset after each feature addition. This is in
principle similar to the Single Feature Introduction Test (SFIT) method [17]. However, the SFIT method
analyses existing model by gradually introducing single features into the input dataset by unmasking
them so that new training is not necessary. It is, therefore, suitable for models that take long time to
train, e.g., neural networks. Our proposed method avoids a necessity of choosing a value to which the
masked features are set in order to be excluded (masked) as the authors of the SFIT method recommend
(at the end of Section 2.1). In our method, they are instead not included in the input dataset at all. This
way, it is also impossible for the excluded features to interact with the included ones.

Our method obtains feature importances and reduced feature set in an experimental way. Thus,
it avoids any assumptions about statistical distributions and other statistical properties of used data.
We first perform the training process on the whole dataset and record the model’s prediction quality,
which serves as a reference. Then, in the feature selection process, we try to achieve a comparable
prediction quality to the referential one. Note that the very values of these prediction qualities are not
of the central interest in our work; the important part is that they are as similar as required.

A block diagram of our proposed method is presented in the Figure 1. First three blocks serve
as the preparation phase: training of the classifier on the whole dataset, defining the margin that
defines the terminating condition for the main loop and estimation of the hyperparameter search space
size. Then, in the main loop, at each repetition (“Step”), all the features are used for training and the
feature that yields the best prediction quality is selected for inclusion into the output dataset. The main
loop ends when the achieved prediction quality reaches the margin. More detailed description of the
algorithm follows in the Section 2.4.

Key contributions of our work consist of:

• Evaluation of prominent existing ways of obtaining feature importances with RF models. These
are found to be inadequate for multicollinear data.

• Proposal of a greedy forward feature selection method based on feature importance with a
least-trees-used optimization.

• Verification of the proposed method using two real-world datasets that are widely used in the
scientific community. It will be shown that the proposed method successfully selects small number
of most important features and these are sufficient to build a model that yields an accuracy
comparable to accuracy of a model built from the complete initial dataset.

In this paper, we first describe used tools, data and both existing and newly proposed algorithms
in Section 2. In Section 3, we present results of our experiments using the new proposed algorithm.
At the end, we sum up our findings and envision further use of our proposed method on the data not
presented here in Section 4.

Electronics 2020, 9, 761 4 of 15
Electronics 2020, 9, x FOR PEER REVIEW 4 of 16

Figure 1. Block diagram of the new proposed algorithm.

2. Materials and Methods

2.1. Tools

Experiments were carried out in the Python language using the popular scikit-learn package
[18]. We concentrated on classification problems only. Training the RandomForestClassifier
estimators was done using the utility GridSearchCV function which performs k-fold cross-validation
and at the same time, a search over hyperparameter space. The RF classifier can use out-of-bag
training method, and in this case cross-validation is not needed (as stated in [9]). So we implemented
a special “cross-validation” method that takes a complete input dataset (n_splits = 1) and performs
only the hyperparameter space search (see [19]). The out-of-bag mode of operation was enabled by
setting classifier’s oob_score parameter to 1. After the training, the trained best estimator and all its
parameters are retained in the GridSearchCV function’s output data structure.

We denote with X a matrix of input samples with N samples as rows and P features as columns.
Vector of sample labels is denoted with y and the classifier output vector (predictions) with ypred.

Figure 1. Block diagram of the new proposed algorithm.

2. Materials and Methods

2.1. Tools

Experiments were carried out in the Python language using the popular scikit-learn package [18].
We concentrated on classification problems only. Training the RandomForestClassifier estimators was
done using the utility GridSearchCV function which performs k-fold cross-validation and at the same
time, a search over hyperparameter space. The RF classifier can use out-of-bag training method, and in
this case cross-validation is not needed (as stated in [9]). So we implemented a special “cross-validation”
method that takes a complete input dataset (n_splits = 1) and performs only the hyperparameter
space search (see [19]). The out-of-bag mode of operation was enabled by setting classifier’s oob_score
parameter to 1. After the training, the trained best estimator and all its parameters are retained in the
GridSearchCV function’s output data structure.

Electronics 2020, 9, 761 5 of 15

We denote with X a matrix of input samples with N samples as rows and P features as columns.
Vector of sample labels is denoted with y and the classifier output vector (predictions) with ypred.

With RF, the hyperparameter space search can be performed on two hyperparameters:
max_features and n_estimators. The former limits the number of features used in the formation
of branches in the trees and the latter limits the number of trees trained. The values searched
were {2i; i = {0, 1, 2, . . . , floor(log2 P)}, P} for max_features and {i2; a < = i < = b} for n_estimators.
The search rule for the max_features parameter was set up in accordance with the RF authors’
recommendation (they denote it mtry0) [20]. The limits a and b were estimated for each dataset as
follows. Initial values were chosen based on previous experiments on the same datasets to: a = 1;
b = 4. Then experiments were performed and the limit b was increased by one until the best accuracy
was obtained using the value of n_estimators strictly below the upper limit b2. The lower limit a was
subsequently raised if values of the n_estimators parameter were consistently higher than previous
values of a2. Values of the limits a and b estimated in this way were 4 and 11 for the first dataset
and 1 and 6 for the second one. Such sparse hyperparameter values were chosen to reduce search
time. The best value for the max_features hyperparameter was later determined to be 1 in all of the
experiments we performed.

As the prediction quality criterion, the accuracy was used which is defined as average of equal
values of predictions vs. true outputs over all samples (where δ denotes Kronecker delta function):

Acc = E(δ(ypred, y)). (1)

We defined the margin ε as a termination criterion of the algorithm as one half of one sample and
the goal accuracy margin Accε as:

ε = (0.5/N) × Acc0

Accε = (1 − (0.5/N)) × Acc0
(2)

2.2. Data

In the experiments, we used two datasets that are widely used in the research community. The first
one is a modified dataset from the KDD Cup 1999 competition, called NSL-KDD dataset (after the
Network Security Laboratory of University of New Brunswick, Canada), which is commonly used
in training of the computer networks’ intrusion detection system models [21]. We only used its full
training set contained in the KDDTrain+.arff file. It consists of 125,973 samples with 41 features
and has a modest multicollinearity. The samples are labelled either ‘normal’ or ‘anomaly’. It can be
obtained from several online sources, e.g., [22]. The other one is UCI Breast Cancer Wisconsin Dataset
(later referred to as UCI-BCW dataset) with bigger multicollinearity. It consists of 569 samples with
30 features. The samples are labelled either ‘malignant’ or ‘benign’. This dataset can be obtained
through a call to the scikit-learn library function load_breast_cancer.

A measure of rank collinearity M of a given dataset can be defined as a mean of absolute values of
Spearman’s rank correlation coefficients ρ of all distinct feature pairs:

M = E(|ρij|); i = {1, . . . , N}, j = {i + 1, . . . , N}, j , i. (3)

Values of measure M for our datasets are 0.172 for the NSL-KDD dataset and 0.422 for the
UCI-BCW dataset. Another informative representation of this measure is a graphical one. Figure 2
presents plots of absolute values of Spearman’s rank correlation coefficients of all distinct feature pairs
for both datasets, ordered by their absolute value in descending order. We can see that in the case of
UCI-BCW dataset, the coefficients’ absolute values decrease slower from their maximum value on the
left to the minimum on the right, than in the NSL-KDD case.

Electronics 2020, 9, 761 6 of 15Electronics 2020, 9, x FOR PEER REVIEW 6 of 16

(a) (b)

Figure 2. Absolute values of Spearman’s rank correlation coefficients of all distinct feature pairs,
ordered by their value in descending order: (a) from the Network Security Laboratory of University
of New Brunswick, Canada (NSL-KDD) dataset; (b) from the UCI Breast Cancer Wisconsin Dataset
(UCI-BCW) dataset.

As a measure of multicollinearity, the variable inflation factor (VIF) is commonly used [2]. It
expresses the degree to which a given feature can be predicted from all the other features of the
dataset. We have computed it for all the features of both our datasets and plotted them again ordered
from the largest to the smallest, which is presented in the Figure 3.

(a) (b)

Figure 3. Values of variable inflation factors (VIF) of all features, ordered by their value in descending
order: (a) from the NSL-KDD dataset; (b) from the UCI-BCW dataset. VIF is displayed on a
logarithmic scale.

Mean values of VIF for the NSL-KDD dataset is 67.22 whereas for the UCI-BCW dataset it is
much larger: 4749.56. It is known that VIF values above 5 or 10 indicate a presence of
multicollinearity. So we can see that these datasets contain a substantial multicollinearity and the
UCI-BCW more than the other.

Given that RF is non-linear ML method and that VIF is calculated using a linear ML method (R2)
it is an open research question if VIF is adequate in determining the suitability of RF methods.

2.3. Existing Algorithms

The scikit-learn RF built-in method for estimation of feature importances gave unreliable results
on both datasets. Across different runs, this method assigned quite different values of importances

Figure 2. Absolute values of Spearman’s rank correlation coefficients of all distinct feature pairs,
ordered by their value in descending order: (a) from the Network Security Laboratory of University
of New Brunswick, Canada (NSL-KDD) dataset; (b) from the UCI Breast Cancer Wisconsin Dataset
(UCI-BCW) dataset.

As a measure of multicollinearity, the variable inflation factor (VIF) is commonly used [2].
It expresses the degree to which a given feature can be predicted from all the other features of the
dataset. We have computed it for all the features of both our datasets and plotted them again ordered
from the largest to the smallest, which is presented in the Figure 3.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 16

(a) (b)

Figure 2. Absolute values of Spearman’s rank correlation coefficients of all distinct feature pairs,
ordered by their value in descending order: (a) from the Network Security Laboratory of University
of New Brunswick, Canada (NSL-KDD) dataset; (b) from the UCI Breast Cancer Wisconsin Dataset
(UCI-BCW) dataset.

As a measure of multicollinearity, the variable inflation factor (VIF) is commonly used [2]. It
expresses the degree to which a given feature can be predicted from all the other features of the
dataset. We have computed it for all the features of both our datasets and plotted them again ordered
from the largest to the smallest, which is presented in the Figure 3.

(a) (b)

Figure 3. Values of variable inflation factors (VIF) of all features, ordered by their value in descending
order: (a) from the NSL-KDD dataset; (b) from the UCI-BCW dataset. VIF is displayed on a
logarithmic scale.

Mean values of VIF for the NSL-KDD dataset is 67.22 whereas for the UCI-BCW dataset it is
much larger: 4749.56. It is known that VIF values above 5 or 10 indicate a presence of
multicollinearity. So we can see that these datasets contain a substantial multicollinearity and the
UCI-BCW more than the other.

Given that RF is non-linear ML method and that VIF is calculated using a linear ML method (R2)
it is an open research question if VIF is adequate in determining the suitability of RF methods.

2.3. Existing Algorithms

The scikit-learn RF built-in method for estimation of feature importances gave unreliable results
on both datasets. Across different runs, this method assigned quite different values of importances

Figure 3. Values of variable inflation factors (VIF) of all features, ordered by their value in descending order:
(a) from the NSL-KDD dataset; (b) from the UCI-BCW dataset. VIF is displayed on a logarithmic scale.

Mean values of VIF for the NSL-KDD dataset is 67.22 whereas for the UCI-BCW dataset it is much
larger: 4749.56. It is known that VIF values above 5 or 10 indicate a presence of multicollinearity.
So we can see that these datasets contain a substantial multicollinearity and the UCI-BCW more than
the other.

Given that RF is non-linear ML method and that VIF is calculated using a linear ML method (R2)
it is an open research question if VIF is adequate in determining the suitability of RF methods.

2.3. Existing Algorithms

The scikit-learn RF built-in method for estimation of feature importances gave unreliable results
on both datasets. Across different runs, this method assigned quite different values of importances

Electronics 2020, 9, 761 7 of 15

to the features so that even their order was not consistent. The first three most important features
along with their importance measures are shown in the Table 1 and summarized in the Table 2 for the
NSL-KDD dataset and likewise in the Tables 3 and 4 for the UCI-BCW dataset.

Table 1. The three most important features and their importance—NSL-KDD dataset, 10 runs. Each
row contains the three most important features from a single run with their respective importance
values for the built-in method.

1st Feature Imp. 2nd Feature Imp. 3rd Feature Imp.

dst_bytes 0.111 same_srv_rate 0.059 service 0.056
dst_bytes 0.095 diff_srv_rate 0.092 src_bytes 0.082
dst_bytes 0.112 dst_host_same_srv_rate 0.099 diff_srv_rate 0.080
dst_bytes 0.120 src_bytes 0.098 dst_host_same_srv_rate 0.079
src_bytes 0.091 dst_host_same_srv_rate 0.078 dst_bytes 0.073
src_bytes 0.102 dst_host_same_srv_rate 0.072 flag 0.066
src_bytes 0.126 same_srv_rate 0.093 serror_rate 0.084
src_bytes 0.066 dst_host_serror_rate 0.064 dst_bytes 0.063
src_bytes 0.090 dst_bytes 0.079 same_srv_rate 0.079
dst_bytes 0.109 src_bytes 0.088 dst_host_srv_count 0.077

Table 2. The most frequent feature combinations by importance order—NSL-KDD dataset, 10 runs.
For each importance level, the features that were placed to that level are listed with the percentages of
their occurrence at that level among runs for the built-in method.

Importance Level Feature Frequency (%)

1 dst_bytes 50
1 src_bytes 50
2 dst_host_same_srv_rate 30
2 same_srv_rate 20
2 src_bytes 20
2 diff_srv_rate 10
2 dst_host_serror_rate 10
2 dst_bytes 10
3 dst_bytes 20
3 src_bytes 10
3 service 10
3 diff_srv_rate 10
3 dst_host_same_srv_rate 10
3 flag 10
3 serror_rate 10
3 same_srv_rate 10
3 srv_count 10
. . .

Table 3. The three most important features and their importance—UCI-BCW dataset, 20 runs. Each
row contains the three most important features from a single run with their respective importance
values for the built-in method.

1st Feature Imp. 2nd Feature Imp. 3rd Feature Imp.

worst area 0.104 mean compactness 0.087 worst radius 0.086
mean concave points 0.120 mean radius 0.109 mean concavity 0.075
mean concave points 0.149 worst area 0.084 worst perimeter 0.074
mean concave points 0.147 mean perimeter 0.109 mean concavity 0.093

worst radius 0.130 area error 0.116 worst concave points 0.097
worst concave points 0.123 mean perimeter 0.096 area error 0.070

worst concavity 0.079 mean area 0.073 mean concave points 0.070
worst area 0.140 worst perimeter 0.129 area error 0.113

Electronics 2020, 9, 761 8 of 15

Table 3. Cont.

1st Feature Imp. 2nd Feature Imp. 3rd Feature Imp.

worst perimeter 0.135 worst area 0.094 mean radius 0.089
worst area 0.088 mean area 0.087 mean concave points 0.075

worst perimeter 0.162 mean perimeter 0.151 mean concave points 0.080
mean concavity 0.130 mean concave points 0.122 worst area 0.115

mean concave points 0.096 worst concave points 0.074 mean radius 0.071
worst radius 0.125 worst area 0.082 mean concave points 0.079

worst perimeter 0.176 mean concavity 0.062 worst compactness 0.059
worst perimeter 0.132 worst radius 0.114 mean concave points 0.076

worst concave points 0.079 mean concave points 0.073 mean perimeter 0.070
worst perimeter 0.081 worst radius 0.073 area error 0.072

mean radius 0.107 worst perimeter 0.099 worst area 0.083
mean perimeter 0.101 worst perimeter 0.088 worst radius 0.066

Table 4. The most frequent feature combinations by importance order—UCI-BCW dataset, 20 runs. For
each importance level, the features that were placed to that level are listed with the percentages of their
occurrence at that level among runs for the built-in method.

Importance Level Feature Frequency (%)

1 worst perimeter 25
1 mean concave points 20
1 worst area 15
1 worst concave points 10
1 worst radius 10
1 mean concavity 5
1 mean perimeter 5
1 mean radius 5
1 worst concavity 5
2 worst area 15
2 worst perimeter 15
2 mean perimeter 15
2 mean area 10
2 mean concave points 10
2 worst radius 10
2 area error 5
2 worst concave points 5
2 mean compactness 5
2 mean concavity 5
2 mean radius 5
3 mean concave points 25
3 area error 15
3 mean concavity 10
3 mean radius 10
3 worst area 10
3 worst radius 10
3 mean perimeter 5
3 worst compactness 5
3 worst concave points 5
3 worst perimeter 5
. . .

The experiments with the package rfpimp [16] using its methods of permutation feature importance
and drop-column feature importance gave similarly unreliable results. On the less multicollinear
NSL-KDD dataset, the only consistent result was that the src_bytes was the most important feature.
All the other features appeared on the list of the most important features randomly, even sometimes
with zero importance, while at other runs with non-zero one. On the more multicollinear UCI-BCW
dataset, no feature was consistently placed at the top.

Electronics 2020, 9, 761 9 of 15

All the importance measure values obtained from the rfpimp methods were very low. They were
consistently below 0.01, which is far lower than the sensible lower limit of 0.15 recommended by the
package authors.

These results show that usual methods of determining the most important features are inadequate
to support the task of feature selection in cases where the data exhibit stronger multicollinearity.
The main problem here is a lack of consistency of the results. If, according to these methods, several
features were designated as most important in different runs then we might need to include all of
them in the final dataset to avoid loss of information. This would make the feature selection process
less efficient.

These shortcomings of existing methods prompted us to find a new method of defining feature
importance in the multicollinear settings.

2.4. Proposed Algorithm

The proposed greedy feature selection algorithm is defined as follows. We start with a RF model,
pre-trained on the dataset at hand. This model serves only as a baseline for determining an end
criterion later in the procedure. Then we take an empty output dataset and successively add individual
features from the original dataset that yield the best prediction quality. In the first step, when the
output dataset is empty, we try each of the feature alone and get their individual prediction quality.
The feature with the best prediction quality is added to the output dataset. In the second step, all the
remaining features are evaluated along with the one chosen in the first step and the best quality feature
in this combination is added to the output dataset. An important part of the procedure is that a new
model is trained for each evaluated feature, including the hyperparameter search. This procedure of
adding the best quality feature to the output dataset is repeated until the prediction quality of the new
model is lower than the prediction quality of the original model only for a predefined small value ε.
In the datasets with a large multicollinearity, the number of necessary steps proves to be quite low.
Therefore, the number of necessary training runs is acceptable. Pseudo-code for this procedure is
shown in Algorithm 1.

The hyperparameter space search is performed every time a feature is evaluated for inclusion
to the output dataset. It turns out that if we omit this step, the results can be numerically unstable.
With this step included, the best prediction quality is achieved and so the most informative feature
is selected.

Algorithm 1 Greedy Feature Selection.

1 Train a model on input dataset and remember its accuracy
2 Define ε, margin = Accε
3 Define empty output set of features
4 Estimate hyperparameter search space for the given dataset
5 Repeat until the best accuracy ≥margin or all features are used {
6 For each feature not in the output set {
7 Make temporary feature set from output set plus the current feature
8 Train the model with hyperparameter search using temporary feature set
9 Obtain predictions from the newly trained model

10 Calculate prediction accuracy
11 }
12 Find the temporary feature set with the best accuracy and least trees used
13 Make the temporary feature set found in the previous line the new output set
14 If the best accuracy from the current step is less than the one from the previous step {
15 Finish the loop and make the output dataset the one from previous step
16 }
17 }
18 Return the output dataset

Electronics 2020, 9, 761 10 of 15

We refer to the block of lines 6–16 in the Algorithm 1 as a “step”. A step finds a feature to be
added to the output dataset by using the criterion of the best accuracy and least trees used. The line
12 consists of the important part, which is the least-trees-used criterion and this is a key novelty of
our method.

Often, multiple features achieved the same accuracy at some step in our experiments. The final
choice among them (line 12 in Algorithm 1) was then performed in two ways: the first way was using
the first or random one, and the second way was using the feature that was modelled by means of the
lowest number of trees. As it is confirmed in the results section, the least-trees-used approach proved
to be better.

This algorithm is theoretically not guaranteed to converge. It is, theoretically, possible to reach a
local maximum that is dealt with by the exit condition of the line 14 if the new accuracy is less than
the accuracy from the previous step. If the algorithm does not end up in a local maximum then it
finishes at least when coming to use all the input features, for which we have obtained a working
model beforehand. In all our experiments with the two given datasets, the algorithm concluded a lot
earlier, by using only a small subset of features.

Random Forests calculates the feature importance values in the process of building the trees and
in the scikit-learn implementation provides them as an output property feature_importances_ of a
trained RandomForestRegressor or RandomForestClassifier object. Feature selection based on these
values commonly consists of sorting the features by their importance and eliminating some number of
the least important ones. In the proposed algorithm, the process is reversed so that we gradually add
features to the new dataset and the basic criterion to include them is the best accuracy.

Commonly, the feature selection process based on the feature importances ends after some
predefined number of features is eliminated. This principle is implemented, e.g., in the popular helper
functions RFE and RFECV in the scikit-learn Python package. In the proposed algorithm, a different
principle is implemented so that it terminates the feature selection process after a sufficiently high
accuracy is achieved.

The algorithm and an application to use it are deposited at the public repository https://github.
com/fdrobnic/GFS.

3. Results

Initial accuracy of models trained on the original datasets Acc0 was on average 0.9999398 with
σ = 6.84 × 10−6 in 10 runs for the NSL-KDD dataset and 0.99895 with σ = 0.00149 in 20 runs for the
UCI-BCW dataset.

The exact run times were not part of our research interest, but we made a rough estimation of
the computing time until the goal accuracy was achieved using the given computer resources. Total
computing time until the goal accuracy was achieved was on average 12 h 39 min 28 s with σ= 2 h
50 min 12 s in 10 runs for the NSL-KDD dataset and on average 5 min 51 s with σ = 19 s in 20 runs
for the UCI-BCW dataset. The experiments were performed on a laptop with four core CPU with a
clock speed of 3 GHz. Parallel processing during training and prediction was employed by setting the
classifier and the GridSearchCV function parameter n_jobs to -1, which means to use all available CPU
cores. Such computing time implies that our proposed method of feature selection is not suitable to
be performed in real time. Nevertheless, this seemingly large consumed time can pay off in lowered
processing and communication costs in the aforementioned use case of IoT. We consider such amount
of time not too high for a one-time process of finding most informative features, which was our
primary goal. A possibility for reducing the computing time would be using a smaller sample of the
data, especially from the NSL-KDD dataset. On the other side, the computing time of predictions
on the whole datasets used to find the accuracy of these models was substantially shorter, it was
0.30 ± 0.05 s for the NSL-KDD dataset and 0.117 ± 0.001 s for the UCI-BCW dataset. There was no
significant difference between computing times on the whole datasets compared to computing times

https://github.com/fdrobnic/GFS
https://github.com/fdrobnic/GFS

Electronics 2020, 9, 761 11 of 15

on the reduced datasets, possibly because Python is an interpreted language and the runtime overhead
contributes the majority of the time consumed.

Accuracy improvement due to choosing the feature that was modelled at the step 11 of Algorithm
1 using the least trees was substantial, especially in the case of the UCI-BCW dataset. By choosing one
of equally good features at random (or simply the first one) the average accuracy was 0.99584 with
σ = 0.00407 and with the least-trees-used optimization it was 0.99877 with σ = 0.00168 which is nearly
as good as the initial accuracy on the whole dataset. The results with the least-trees-used option were
also more consistent, at least at the first step. In both cases, the most probable feature at the first step
was “mean concave points”. With the first option, it was chosen in 66.67% of runs and with the second
option in 95% of all runs. In the case of the NSL-KDD dataset, the difference between qualities of both
options was smaller, but also in favour of the least-trees-used option. The criterion of the least trees
used can be regarded as a form of “regularization” that prevents the model to adhere to the training
dataset too strictly [23] (p. 596). We have therefore chosen the least-used-trees option, and only the
results obtained from the least-used-trees option will be evaluated.

Even with hyperparameter search after each feature addition, the selected features were different
among runs. The Tables 5 and 6 summarize the most common feature combinations from the NSL-KDD
and the UCI-BCW dataset, respectively. Variations in selection of a feature at some step is indicated with
multiple features present in the row of that step and percentage of runs where that feature was selected.

Table 5. The most frequent feature combinations—NSL-KDD dataset, 10 runs. For each step, the features
that were selected at that step are listed with the percentages of their occurrences at that step among
runs for the newly proposed method.

Step Feature Frequency (%)

1 src_bytes 100
2 dst_host_same_srv_rate 100
3 service 100
4 count 100
5 dst_host_srv_count 100
6 flag 70
6 dst_host_diff_srv_rate 30
7 dst_bytes 80
7 dst_host_count 10
7 rerror_rate 10
8 dst_host_srv_diff_host_rate 40
8 dst_host_srv_serror_rate 20
8 hot 10
8 land 10
8 protocol_type 10
8 srv_count 10
9 dst_host_srv_diff_host_rate 30
9 dst_host_srv_serror_rate 30
9 duration 10
9 num_access_files 10
9 num_failed_logins 10
9 protocol_type 10

10 dst_host_srv_diff_host_rate 30
10 dst_bytes 10
10 dst_host_diff_srv_rate 10
10 dst_host_srv_serror_rate 10
10 land 10
10 num_failed_logins 10
11 dst_host_srv_serror_rate 30
11 num_shells 10
12 dst_host_same_src_port_rate 10
12 num_outbound_cmds 10
13 dst_host_srv_serror_rate 10

Electronics 2020, 9, 761 12 of 15

Table 6. The most frequent feature combinations—UCI-BCW dataset, 20 runs. For each step, the features
that were selected at that step are listed with the percentages of their occurrences at that step among
runs for the newly proposed method.

Step Feature Frequency (%)

1 mean concave points 95
1 mean concavity 5
2 radius error 15
2 mean area 10
2 symmetry error 10
2 worst area 10
2 worst radius 10
2 worst texture 10
2 compactness error 5
2 concave points error 5
2 mean perimeter 5
2 mean radius 5
2 mean symmetry 5
2 perimeter error 5
2 worst compactness 5

Note that different runs reached the goal in different number of steps for the NSL-KDD dataset
(this is indicated in the sum of percentages not giving 100% for the steps 10 and above). Two examples
of the shortest chains are shown in the Table 7.

Table 7. The smallest feature combinations—NSL-KDD dataset. For each step, the features that were
selected at that step in two shortest runs are listed for the newly proposed method. Note the equality
of selected features in several steps.

Step One of the Runs Equal? Another Run

1 src_bytes = src_bytes
2 dst_host_same_srv_rate = dst_host_same_srv_rate
3 service = service
4 count = count
5 dst_host_srv_count = dst_host_srv_count
6 flag dst_host_diff_srv_rate
7 dst_bytes = dst_bytes
8 dst_host_srv_serror_rate dst_host_srv_diff_host_rate
9 dst_host_srv_diff_host_rate dst_host_srv_serror_rate

At every step, accuracy of the trained model increased and finally reached the goal accuracy, as
presented by boxplots in Figure 4 for each of two datasets. It is clearly visible that the less multicollinear
dataset needed more steps to achieve the goal accuracy and started from a lower accuracy than the
more multicollinear one.

It is true that, even with the least-trees-used criterion implemented, there were cases where the
same minimum number of used trees was achieved with more than one feature. In this case, it would
be possible that a domain expert would choose among those features based on knowledge not known
to us. It could be facilitated by extending our software to provide a user with such choice in the course
of model training, which is known as the human-in-the-loop approach.

In case of the NSL-KDD dataset, number of selected features was varying among runs from nine to
13, whereas in case of UCI_BCW dataset, it was consistently two. The Figure 5 displays these numbers
as a pair of boxplots to provide a statistical information about them.

Electronics 2020, 9, 761 13 of 15
Electronics 2020, 9, x FOR PEER REVIEW 14 of 16

(a) (b)

Figure 4. Accuracy of the trained models at each step, shown as boxplots: (a) from the NSL-KDD
dataset; (b) from the UCI-BCW dataset.

In case of the NSL-KDD dataset, number of selected features was varying among runs from nine
to 13, whereas in case of UCI_BCW dataset, it was consistently two. The Figure 5 displays these
numbers as a pair of boxplots to provide a statistical information about them.

Figure 5. Number of selected features for each dataset, shown as boxplots.

We have, thus, verified that the proposed greedy forward feature selection method with least-
trees-used criterion does indeed achieve the imposed goal. It does find a consistent subset of input
features that can be used in training a model and obtaining that model’s predictions with an accuracy,
which is almost as high as the initial accuracy of a model trained on the complete dataset and is lower
than that only for a small margin ε.

4. Conclusions

The greedy forward feature selection algorithm with least-trees-used criterion for use in highly
multi-collinear datasets is proposed and tested on two benchmark datasets, which are widely used
in the scientific community. Their multicollinearity was determined using pairwise Spearman’s rank
correlation coefficients on the features and using the standard multicollinearity measure—variable
inflation factor (VIF). Both measures showed that both datasets are multi-collinear and that the UCI-
BCW dataset is more multi-collinear than the NSL-KDD dataset.

We have shown that it is possible to find the most important features even in datasets with a
high multicollinearity where existing methods do not give consistent results. Our method achieves
better results with more multi-collinear datasets. In the case of the NSL-KDD dataset, the necessary

Figure 4. Accuracy of the trained models at each step, shown as boxplots: (a) from the NSL-KDD
dataset; (b) from the UCI-BCW dataset.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 16

(a) (b)

Figure 4. Accuracy of the trained models at each step, shown as boxplots: (a) from the NSL-KDD
dataset; (b) from the UCI-BCW dataset.

In case of the NSL-KDD dataset, number of selected features was varying among runs from nine
to 13, whereas in case of UCI_BCW dataset, it was consistently two. The Figure 5 displays these
numbers as a pair of boxplots to provide a statistical information about them.

Figure 5. Number of selected features for each dataset, shown as boxplots.

We have, thus, verified that the proposed greedy forward feature selection method with least-
trees-used criterion does indeed achieve the imposed goal. It does find a consistent subset of input
features that can be used in training a model and obtaining that model’s predictions with an accuracy,
which is almost as high as the initial accuracy of a model trained on the complete dataset and is lower
than that only for a small margin ε.

4. Conclusions

The greedy forward feature selection algorithm with least-trees-used criterion for use in highly
multi-collinear datasets is proposed and tested on two benchmark datasets, which are widely used
in the scientific community. Their multicollinearity was determined using pairwise Spearman’s rank
correlation coefficients on the features and using the standard multicollinearity measure—variable
inflation factor (VIF). Both measures showed that both datasets are multi-collinear and that the UCI-
BCW dataset is more multi-collinear than the NSL-KDD dataset.

We have shown that it is possible to find the most important features even in datasets with a
high multicollinearity where existing methods do not give consistent results. Our method achieves
better results with more multi-collinear datasets. In the case of the NSL-KDD dataset, the necessary

Figure 5. Number of selected features for each dataset, shown as boxplots.

We have, thus, verified that the proposed greedy forward feature selection method with
least-trees-used criterion does indeed achieve the imposed goal. It does find a consistent subset
of input features that can be used in training a model and obtaining that model’s predictions with an
accuracy, which is almost as high as the initial accuracy of a model trained on the complete dataset and
is lower than that only for a small margin ε.

4. Conclusions

The greedy forward feature selection algorithm with least-trees-used criterion for use in highly
multicollinear datasets is proposed and tested on two benchmark datasets, which are widely used in
the scientific community. Their multicollinearity was determined using pairwise Spearman’s rank
correlation coefficients on the features and using the standard multicollinearity measure—variable
inflation factor (VIF). Both measures showed that both datasets are multicollinear and that the UCI-BCW
dataset is more multicollinear than the NSL-KDD dataset.

We have shown that it is possible to find the most important features even in datasets with a
high multicollinearity where existing methods do not give consistent results. Our method achieves
better results with more multicollinear datasets. In the case of the NSL-KDD dataset, the necessary
number of steps and thus the number of selected features was from nine to thirteen, whereas in the
case of the more multicollinear UCI-BCW dataset, this number was only two. We were in both cases
able to perform predictions using such reduced feature set with an accuracy comparable to that of the

Electronics 2020, 9, 761 14 of 15

complete initial dataset. Note that the primary goal of our research was not like classical ML problems
of achieving as good prediction quality as possible, but instead to perform a feature selection, which
would give such feature subset that would support similar prediction quality as the original dataset.
The feature selection process consumes some computing time. It is, however, performed once and in
advance so that the reduced model can be built, which then potentially uses less processing power and
less communication in the prediction phase of its lifecycle, when it may perform a lot of predictions.

Because in the process we build new models, our method serves more to the purpose of finding
most informative features from a given dataset rather than that of explanation of existing model
predictions. However, in this way we can understand what features can drive any model due to
quantity of information they can provide with regard to the predicted variables.

The method could be improved further by implementing a human-in-the-loop approach where
domain expert would assist in choosing the most appropriate feature from a subset of equally
performing features, based on the domain knowledge.

We initially developed and tested the algorithm for the feature selection stage during modelling
of the influence of bio-psycho-social features of children and adolescents on their motor efficiency.
The preliminary test results were promising. As the algorithm proved to be excellent for multicollinear
datasets, we generalized it and now we present it in this article in its generic form. We expect it to
become an important tool for the scientific community.

The proposed algorithm is not limited to any domain, as long as supervised machine learning
environment is provided. It means that the records of the training dataset are labelled with class labels.

We published the software that can be used to reproduce the results presented here on the public
repository: https://github.com/fdrobnic/GFS.

Author Contributions: Conceptualization, F.D.; methodology, F.D.; software, F.D.; validation, F.D., A.K. and M.P.;
investigation, F.D.; resources, F.D.; writing—original draft preparation, F.D.; writing—review and editing, A.K.
and M.P.; visualization, F.D.; supervision, A.K. and M.P. All authors have read and agreed to the published version
of the manuscript.

Funding: The authors acknowledge the financial support from the Slovenian Research Agency (research core
funding No. P2-024, ICT4QoL—Information and Communications Technologies for Quality of Life).

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Witten, I.H.; Frank, E.; Hall, M.A. Data Mining—Practical Machine Learning Tools and Techniques, 3rd ed.;
Elsevier: Amsterdam, The Netherlands, 2011.

2. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R;
Springer: New York, NY, USA, 2013.

3. Ribeiro, M.T.; Singh, S.; Guestrin, C. Why Should I Trust You? Explaining the Predictions of Any Classifier.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Diego, CA, USA, 13–17 August 2016; pp. 1135–1144.

4. Holzinger, A.; Biemann, C.; Pattichis, C.S.; Kell, D.B. What Do We Need to Build Explainable AI Systems for the
Medical Domain? 2017. Available online: https://arxiv.org/abs/1712.09923 (accessed on 30 September 2018).

5. Explainable Artificial Intelligence. Available online: https://www.darpa.mil/program/explainable-artificial-
intelligence (accessed on 22 September 2018).

6. Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI).
IEEE Access 2018, 6, 52138–52160. [CrossRef]

7. Edwards, L.; Veale, M. Slave to the Algorithm? Why a “Right to an Explanation” Is Probably Not the Remedy You
Are Looking For; Social Science Research Network: Rochester, NY, USA, 2017.

8. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
9. Breiman, L.; Cutler, A. Random Forests—Classification Description. Available online: https://www.stat.

berkeley.edu/~{}breiman/RandomForests/cc_home.htm (accessed on 8 October 2019).

https://github.com/fdrobnic/GFS
https://arxiv.org/abs/1712.09923
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
http://dx.doi.org/10.1109/ACCESS.2018.2870052
http://dx.doi.org/10.1023/A:1010933404324
https://www.stat.berkeley.edu/~{}breiman/RandomForests/cc_home.htm
https://www.stat.berkeley.edu/~{}breiman/RandomForests/cc_home.htm

Electronics 2020, 9, 761 15 of 15

10. Lipton, Z.C. The Mythos of Model Interpretability. ACM Queue 2019, 16, 1–27. [CrossRef]
11. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
12. Pustišek, M.; Dolenc, D.; Kos, A. LDAF: Low-Bandwidth Distributed Applications Framework in a Use Case

of Blockchain-Enabled IoT Devices. Sensors 2019, 19, 2337. [CrossRef] [PubMed]
13. Starc, G. The ACDSi 2014—a decennial study on adolescents’ somatic, motor, psycho-social development

and healthy lifestyle: Study protocol. Anthropol. Noteb. 2014, 21, 107–123.
14. Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273–324. [CrossRef]
15. Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T. Conditional variable importance for random forests.

BMC Bioinform. 2008, 9, 307–317. [CrossRef] [PubMed]
16. Parr, T.; Turgutlu, K.; Csiszar, C.; Howard, J. Beware Default Random Forest Importances. Available online:

https://explained.ai/rf-importance/index.html (accessed on 6 October 2019).
17. Horel, E.; Giesecke, K. Computationally Efficient Feature Significance and Importance for Machine Learning

Models. 2020. Available online: https://arxiv.org/abs/1905.09849 (accessed on 27 November 2019).
18. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;

Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
19. Python—Scikit Learn GridSearchCV without Cross Validation (Unsupervised Learning)—Stack Overflow.

Available online: https://stackoverflow.com/questions/44636370/scikit-learn-gridsearchcv-without-cross-
validation-unsupervised-learning#55326439 (accessed on 3 October 2019).

20. Breiman, L.; Cutler, A. Random Forests for Scientific Discovery. Available online: https://www.math.usu.
edu/adele/RandomForests/ENAR.pdf (accessed on 10 December 2019).

21. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set.
In Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense
Applications, Ottawa, ON, Canada, 8–10 July 2009.

22. NSL-KDD Dataset. Available online: https://www.unb.ca/cic/datasets/nsl.html (accessed on 6 December 2019).
23. Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction,

2nd ed.; Springer: New York, NY, USA, 2009.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/3233231
http://dx.doi.org/10.3390/s19102337
http://www.ncbi.nlm.nih.gov/pubmed/31117186
http://dx.doi.org/10.1016/S0004-3702(97)00043-X
http://dx.doi.org/10.1186/1471-2105-9-307
http://www.ncbi.nlm.nih.gov/pubmed/18620558
https://explained.ai/rf-importance/index.html
https://arxiv.org/abs/1905.09849
https://stackoverflow.com/questions/44636370/scikit-learn-gridsearchcv-without-cross-validation-unsupervised-learning#55326439
https://stackoverflow.com/questions/44636370/scikit-learn-gridsearchcv-without-cross-validation-unsupervised-learning#55326439
https://www.math.usu.edu/adele/RandomForests/ENAR.pdf
https://www.math.usu.edu/adele/RandomForests/ENAR.pdf
https://www.unb.ca/cic/datasets/nsl.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Tools
	Data
	Existing Algorithms
	Proposed Algorithm

	Results
	Conclusions
	References

