# Performance Analysis of Cooperative Low-Power Wide-Area Network for Energy-Efficient B5G Systems

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. System Model

## 3. Error Performance Analysis

#### 3.1. Outage Probability

#### 3.2. Bit Error Rate (BER)

#### 3.3. Diversity Order

## 4. Numerical Results

## 5. Conclusions

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## Abbreviations

LPWAN | Low-power wide-area network |

BER | Bit error rate |

MRC | Maximum-ratio combining |

IoT | Internet of Things |

LTE | Long-term evolution |

LTE-MTC | LTE machine-type-communications |

NB-IoT | Narrow band-IoT |

LoRa | Long range |

BLE | Bluetooth low energy |

mMTC | Massive machine-type-communications |

GW | Gateway |

RRH | Remote radio head |

SNR | Signal-to-noise ratio |

CDI | Channel distribution information |

ID | IoT device |

AWGN | Additive white Gaussian noise |

p.d.f. | Probability density function |

c.d.f. | Probability distribution function |

QPSK | Quadrature phase-shift keying |

N | The total number of GWs that participate in the cooperative communication |

${K}_{i}$ | The total number of antennas of i-th GW |

K | The total sum of antennas of all GWs that participate in the cooperative communication |

${d}_{i}$ | The distance between ID and i-th GW |

$\alpha $ | Path loss factor |

$\Gamma (\xb7)$ | The gamma function |

${}_{2}{F}_{1}(\xb7)$ | The Gaussian hyper-geometry function |

## Appendix A. Hyper-Erlang Distribution

## Appendix B. The Taylor Expansion of P_{b}

## References

- 3GPP TR 45.820, Cellular System Support for Ultra-Low Complexity and Low Throughput Internet of Things (CIoT) v13.1.0. Available online: https://3gpp.org/ftp/Specs/archive/45_series/45.820 (accessed on 11 April 2019).
- Sornin, N.; Luis, M.; Eirich, T.; Kramp, T.; Hersent, O. LoRaWAN Sepcification. Available online: https://lora-alliance.org/resource-hub/lorawanr-specification-v10 (accessed on 11 April 2019).
- Bluetooth SIG, Specification of the Bluetooth System, Core Specification. Available online: https://www.bluetooth.com/specifications/bluetooth-core-specification/ (accessed on 11 April 2019).
- Qin, Z.; Li, F.Y.; Li, G.Y.; McCann, J.A.; Ni, Q. Low-Power Wide-Area Networks for Sustainable IoT. IEEE Wireless Commun.
**2019**, 26, 140–145. [Google Scholar] [CrossRef] - Barriquello, C.H.; Bernardon, D.P.; Canha, L.N.; Soares e Silva, F.E.; Porto, D.S.; da Silveira Ramos, M.J. Performance assessment of a low power wide area network in rural smart grids. In Proceedings of the 52nd International Universities Power Engineering Conference (UPEC), Heraklion, Greece, 28–31 August 2017. [Google Scholar]
- Mikhaylov, K.; Petaejaejaervi, J.; Haenninen, T. Analysis of Capacity and Scalability of the LoRa Low Power Wide Area Network Technology. In Proceedings of the 22th European Wireless Conference, Oulu, Finland, 18–20 May 2016. [Google Scholar]
- Ochoa, M.N.; Guizar, A.; Maman, M.; Duda, A. Evaluating LoRa energy efficiency for adaptive networks: From star to mesh topologies. In Proceedings of the IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017. [Google Scholar]
- Vejlgaard, B.; Lauridsen, M.; Nguyen, H.; Kovacs, I.Z.; Mogensen, P.; Sorensen, M. Coverage and Capacity Analysis of Sigfox, LoRa, GPRS, and NB-IoT. In Proceedings of the IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017. [Google Scholar]
- Gambiroža, J.Č.; Mastelić, T.; Šolić, P.; Čagalj, M. Capacity in LoRaWAN Networks: Challenges and Opportunities. In Proceedings of the 4th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 18–21 June 2019; 2019. [Google Scholar]
- Bembe, M.; Abu-Mahfouz, A.; Masonta, M.; Ngqondi, T. A survey on low-power wide area networks for IoT applications. Telecommun. Syst.
**2019**, 71, 249–274. [Google Scholar] [CrossRef] - Centenaro, M.; Vangelista, L.; Zanella, A.; Zorzi, M. Long-range communication in unlicensed bands: The rising starts in the IoT and smart city scenarios. IEEE Wireless Commun.
**2016**, 23, 60–67. [Google Scholar] [CrossRef] [Green Version] - Finnegan, J.; Brown, S. An Analysis of the Energy Consumption of LPWA-based IoT Devices. In Proceedings of the 2018 IEEE International Symposium on Networks, Computers and Communications (ISNCC), Rome, Italy, 19–21 June 2018. [Google Scholar]
- Dongare, A.; Narayanan, R.; Gadre, A.; Luong, A.; Balanuta, A.; Kumar, S.; Iannucci, B.; Rowe, A. Charm: Exploiting Geographical Diversity though Coherent Combining in Low-Power Wide-Area Networks. In Proceedings of the 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Porto, Portugal, 11–13 April 2018. [Google Scholar]
- Khan, F.A.; He, H.; Xue, J.; Ratnarajah, T. Performance Analysis of Cloud Radio Access Networks with Distributed Multiple Antenna Remote Radio Heads. IEEE Trans. Signal Process.
**2015**, 63, 4784–4799. [Google Scholar] [CrossRef] [Green Version] - Kadri, T.; Smaili, K. Convolutions of Hyper-Erlang and of Erlang Distributions. Int. J. Pure Appl. Math.
**2015**, 98, 81–89. [Google Scholar] [CrossRef] [Green Version] - Georgiou, O.; Raza, U. Low Power Wide Area Network Analysis: Can LoRa Scale? IEEE Wireless Commun. Lett.
**2017**, 6, 162–165. [Google Scholar] [CrossRef] [Green Version] - Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Yeom, J.S.; Jang, S.J.; Ko, K.S.; Jung, B.C. BER Performance of Uplink NOMA with Joint Maximum-Likelihood Detector. IEEE Trans. Veh. Technol.
**2019**, 68, 10295–10300. [Google Scholar] [CrossRef] - Kadri, T.; Smaili, K. The Exact Distribution of the Ratio of Two Independent Hypoexponential Random Variables. Br. J. Math. Comput. Sci.
**2014**, 4, 2665–2675. [Google Scholar] [CrossRef]

**Figure 1.**Uplink cooperative technique in a low-power wide-area network (LPWAN) with multiple antenna gateways (GWs).

**Figure 2.**Outage probability performance of the LPWAN while varying the total received SNR when $N=3$, $({K}_{1},{K}_{2},{K}_{3})\in \left\{(1,3,5)(5,3,1)\right\}$, ${d}_{1}=1$, ${d}_{2}=4$, ${d}_{3}=8$, $R=1.5$, and $\alpha =3$.

**Figure 3.**BER performance of LPWAN for varying the total received SNR when $N=3$; i.e.,$({K}_{1},{K}_{2},{K}_{3})\in \left\{(1,3,5)(5,3,1)\right\}$, ${d}_{1}=1$, ${d}_{2}=4$, ${d}_{3}=8$, and $\alpha =3$.

**Figure 4.**Diversity order of LPWAN according to the number of total received antennas when ${d}_{1}=1$, ${d}_{2}=3$, and ${d}_{3}=5$.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

You, C.S.; Yeom, J.S.; Jung, B.C.
Performance Analysis of Cooperative Low-Power Wide-Area Network for Energy-Efficient B5G Systems. *Electronics* **2020**, *9*, 680.
https://doi.org/10.3390/electronics9040680

**AMA Style**

You CS, Yeom JS, Jung BC.
Performance Analysis of Cooperative Low-Power Wide-Area Network for Energy-Efficient B5G Systems. *Electronics*. 2020; 9(4):680.
https://doi.org/10.3390/electronics9040680

**Chicago/Turabian Style**

You, Chang Seok, Jeong Seon Yeom, and Bang Chul Jung.
2020. "Performance Analysis of Cooperative Low-Power Wide-Area Network for Energy-Efficient B5G Systems" *Electronics* 9, no. 4: 680.
https://doi.org/10.3390/electronics9040680