
electronics

Article

Detecting Objects from Space: An Evaluation of
Deep-Learning Modern Approaches

Khang Nguyen 1,2,3,*, Nhut T. Huynh 2,3, Phat C. Nguyen 2,3, Khanh-Duy Nguyen 1,3 ,
Nguyen D. Vo 1,3 and Tam V. Nguyen 4

1 Multimedia Communications Laboratory, University of Information Technology,
Ho Chi Minh City 700000, Vietnam; khanhnd@uit.edu.vn (K.-D.N.); nguyenvd@uit.edu.vn (N.D.V.)

2 Department of Software Engineering, University of Information Technology,
Ho Chi Minh City 700000, Vietnam; 15520589@gm.uit.edu.vn (N.T.H.); 15520601@gm.uit.edu.vn (P.C.N.)

3 Vietnam National University, Ho Chi Minh City 700000, Vietnam
4 Department of Computer Science, University of Dayton, Dayton, OH 45469, USA; tamnguyen@udayton.edu
* Correspondence: khangnttm@uit.edu.vn

Received: 13 February 2020; Accepted: 26 March 2020; Published: 30 March 2020
����������
�������

Abstract: Unmanned aircraft systems or drones enable us to record or capture many scenes from
the bird’s-eye view and they have been fast deployed to a wide range of practical domains, i.e.,
agriculture, aerial photography, fast delivery and surveillance. Object detection task is one of the core
steps in understanding videos collected from the drones. However, this task is very challenging due
to the unconstrained viewpoints and low resolution of captured videos. While deep-learning modern
object detectors have recently achieved great success in general benchmarks, i.e., PASCAL-VOC and
MS-COCO, the robustness of these detectors on aerial images captured by drones is not well studied.
In this paper, we present an evaluation of state-of-the-art deep-learning detectors including Faster
R-CNN (Faster Regional CNN), RFCN (Region-based Fully Convolutional Networks), SNIPER (Scale
Normalization for Image Pyramids with Efficient Resampling), Single-Shot Detector (SSD), YOLO
(You Only Look Once), RetinaNet, and CenterNet for the object detection in videos captured by
drones. We conduct experiments on VisDrone2019 dataset which contains 96 videos with 39,988
annotated frames and provide insights into efficient object detectors for aerial images.

Keywords: object detection; VisDrone2019; aerial imagery; Faster R-CNN; SSD; RFCN; YOLOv3;
RetinaNet; SNIPER; CenterNet

1. Introduction

Object detection is a fundamental yet difficult task in image processing and computer vision
research. It has been an important research topic for decades. Its development in the past two
decades can be regarded as an epitome of computer vision history [1]. Since it plays a principal role
in understanding and absorbing the contexts of images, therefore, object detection is considered to
be a prerequisite measure that offers the computer to detect various objects. Giving a testing image,
object detection could localize the coordinates of the objects and assign the corresponding labels to the
objects in terms of the object category, i.e., human, dog, or cat. The coordinates of a detected object
represent the object’s bounding box [2,3]. Object detection has many applications in robot vision,
autonomous driving, human-computer interaction, intelligent video surveillance. The deep-learning
technology has brought significant breakthroughs in recent years. In particular, these techniques have
produced remarkable development for object detection. Object detection can detect a specific instance,
i.e., Obama’s face, Eiffel Tower, Golden Gate Bridge; or objects of specific categories, i.e., humans,
cars, bicycles. Historically, object detection has mainly directed on the detection of a single category,

Electronics 2020, 9, 583; doi:10.3390/electronics9040583 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-4237-2737
http://www.mdpi.com/2079-9292/9/4/583?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9040583
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 583 2 of 18

for example, person class [4]. In recent years, the research community has started moving towards other
categories than the well-known categories like person, cat, or dog. Here are some common challenges
that object detectors face on aerial images: viewpoints, illuminations, scale variations, perspectives,
intra-class variations, low resolutions, and occlusions. For example, the main challenges in pedestrian
detection come from crowded scenes with heavy overlaps, occlusion, and low-resolution images.

Generic object detection has received significant attention. There are many competition
benchmarks, i.e., PASCAL-VOC [5,6], ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [2],
MS-COCO [7], and VisDrone-DET [8]. There are several notable studies on specific object detection like
face detection [9], pedestrian detection [10] and vehicle detection [11]. Recently, the research community
has focused on deep learning and its applications towards the object recognition/detection tasks. In the
past few years, Convolutional Neural Networks (CNNs) [12,13] have brought breakthroughs in speech,
audio, image, and video processing. CNNs have driven notable progress in visual recognition and
object detection. Many successful CNN architectures, e.g., OverFeat [14], R-CNN [15], Fast R-CNN [16],
Faster R-CNN [17], SSD [18], RFCN [19], YOLO [20], YOLOv2 [21], Faster R-CNN [17], RetinaNet [22],
YOLOv3 [23], and SNIPER [24] have performed well on the task of object detection. For example,
SNIPER, RetinaNet and YOLOv3 are the top models for object detection on MS-COCO dataset [7] with
mAP 46.1%, 40.8%, 33.0%, respectively.

The object detection has now been widely used in many practical scenarios [1]. Its use cases
ranging from protecting personal security to boosting productivity in the workplace. While the
challenges of normal viewpoints have been considered to be the prevalence, in recent years, there
has been increasing interest in flying drones and their applications in healthcare, video surveillance,
search-and-rescue, and agriculture. The drones are now common devices that enable us to record
or capture many scenes as the bird’s-eye view. Visual object detection is an essential component in
the drone application. However, object detection is a very challenging task since video sequences or
images captured by drones vary significantly in terms of scales, perspectives, and weather conditions.
Aerial images are often noisy and blurred due to the drone motion. The ratio of object size to the video
resolution is also small. Therefore, in this paper, we investigate the performance of state-of-the-art
object detectors in the aerial images. Please note that this paper is the extension of our earlier version
which is the best paper in MITA 2019 conference [25]. Our contributions are three-fold.

• To the best of our knowledge, we are among the first ones who investigate the impact of different
deep-learning object detection methods on the given problem.

• Second, we double the number of benchmarking methods compared to the MITA paper [25].
• Last but not least, we also increase the number of benchmarking classes in VisDrone dataset.

In particular, we evaluate full 10 classes in this paper (vs. 2 human classes, namely pedestrian and
people, in the MITA paper).

The remainder of the paper is organized as follows. In Section 2, the related works are presented.
Section 3 and Section 4 present the benchmarked methods and the experimental results, respectively.
Finally, Section 5 concludes our work.

2. Related Work

2.1. CNN Models

CNN-based architectures have been backbones in many detection frameworks.
Popular architectures include AlexNet [12], ZFNet [26] VGGNet [27], GoogLeNet [28], ResNet [29]
and DenseNet [30]. We briefly introduce these models as follows.

Known as a pioneering work, AlexNet [12] consists of eight layers: five convolutional (conv1,
conv2, conv3, conv4 and conv5) layers and three fully connected (fc6, fc7 and fc8) layers. The fc8
is a SoftMax classifier. The convolutional layers are connected directly: conv3, conv4 and conv5.
The convolutional layers are connected via an Overlapping Max-Pooling layer: conv1–conv2,



Electronics 2020, 9, 583 3 of 18

conv2–conv3, conv5–fc6. AlexNet used 11 × 11, 5 × 5 and 3 × 3 kernels. Later, Reference [26]
proposed ZFNet by modifying AlexNet. ZFNet uses 7 × 7 kernels. The small kernels retain more
information than the big kernels. By proposing a deeper network, VGGNet [27] outperforms AlexNet
in the image classification task. Similarly, GoogLeNet [28] won the ILSVRC2014 competition by
increasing the number of layers. In particular, it includes 22 layers: 21 convolutional layers and a fully
connected layer.

The number of layers is increasing in CNN architectures. The CNNs require a lot of
computational resources. There are several problems: gradient vanishing, exploding, and degrading.
Degradation occurs when we add more layers into deep networks, the accuracy becomes saturated
and then decrease quickly. To overcome this problem, ResNet [29] introduces many residual blocks.
In a residual block, each layer is fed directly to the layers about 2–3 hops away using skip-connections.

DenseNet [30] was proposed by Huang et al. in 2017. It includes many dense blocks. A dense
block consists of composite layers which are densely connected together. The input of one layer is the
output of all previous layers, so input information is shared.

2.2. Object Detection Methods

Object detection methods are mainly divided into one-stage frameworks and two-stage
frameworks. Two-stage frameworks are more accurate than one-stage frameworks, but one-stage
frameworks usually achieve real-time detection. The two-stage approach includes two steps: the first
stage creates region proposals, the second stage classifies region proposals. The one-stage approach
predicts object regions and object classes at the same time.

CNN-based Two-Stage frameworks: Two-stage frameworks mainly include R-CNN [15],
SPP-Net [31], Fast R-CNN [16], Faster R-CNN [17], RFCN [19], Mask R-CNN [32], and SNIPER [24].

R-CNN [15] is a method for detecting objects based on the ImageNet pre-trained model. R-CNN
uses Selective Search algorithm to generate region proposals. Then, these regions are warped and fed
into the pre-trained model to extract high-level features. Finally, several SVM classifiers are trained
based on these features to identify object classes. Fast R-CNN [16] was introduced to solve some
R-CNN’s limitations, i.e., the computational speed. Fast R-CNN feeds the whole image into ConvNet
to create convolutional feature map instead of 2000 regions as R-CNN.

Faster R-CNN [17] proposes a Region Proposal Network (RPN) to detect region proposals instead
of Selective Search, which is used in R-CNN and Fast R-CNN. Faster R-CNN is 10× faster than Fast
R-CNN, and 250× faster than R-CNN in reference time. RFCN introduces the positive sensitive score
map, which improves speed but remains accurate compared to Faster R-CNN. Mask R-CNN extends
Faster R-CNN with instance segmentation and introduces Align Pooling.

CNN-based one-stage frameworks: The most common examples of one-stage object frameworks
are YOLO, YOLOv2, YOLOv3 [23], SSD [18], and RetinaNet. You Only Look Once (YOLO [20]) is one
of the first approaches to build a one-stage detector. Unlike R-CNN family, YOLO does not use a region
proposal component. Instead, it learns to regress bounding-box coordinates and class probabilities
directly from image pixels. This significantly boosts the speed of the detecting process. Single-Shot
MultiBox Detector (SSD [18]) is also a one-stage detector which also aims at high speed object detection.
However, unlike YOLO, SSD adopts a multi-scale approach. It then adds many convolutional layers
decreasing in size sequentially. This can be regarded as a pyramid representation of an image, where
earlier levels contain feature maps that are useful to detect small objects and deeper levels are expected
to detect larger objects. Each of these layers has a set of predefined anchor boxes (also known as
default boxes or prior boxes) for every cell. The model will learn and predict the offsets corresponding
to correct anchor boxes. The approach has made a successful attempt on creating an efficient detector
for objects in various sizes while maintaining a low inference time.



Electronics 2020, 9, 583 4 of 18

3. Benchmarked State-of-the-Art Object Detection Methods

In this section, we provide further details of the benchmarked object detection methods. Figure 1
visualizes the methods in the chronological order. Meanwhile, Figure 2 depicts the framework
structures of different state-of-the-art object detectors.

Figure 1. Timeline of state-of-the-art object detection methods. The benchmarked methods are marked
in red and boldfaced font.

Figure 2. The benchmarked methods adopted in this paper: Faster R-CNN, SSD, RFCN, RetinaNet,
SNIPER, YOLOv3, and CenterNet.



Electronics 2020, 9, 583 5 of 18

3.1. Faster R-CNN

Faster R-CNN [17] is an extension of the R-CNN [15] and Fast R-CNN [16] methods for object
detection. R-CNN requires a forward pass of the CNN for around 2000 region proposals (ROI) for every
single image. Later, Fast R-CNN was able to solve the problem of R-CNN by sharing the computation
of convolution between different proposals (feature map). The detection process is sped up but still
depends on the region proposal method (Selective Search). Region proposals were generated by
additional methods, i.e., Selective Search or Edge Box. To solve this problem, Ren et al. [17] introduced
the Region Proposal Network (RPN).

Faster R-CNN consists of two main components, namely the RPN and the Fast R-CNN detector.
RPN initializes squared reference boxes of aspect ratios and diverse scales at each convolutional feature
map location. Each squared box is mapped to a feature vector. The feature vector is fed into two fully
connected layers, an object category classification layer, and a box regression layer. Faster R-CNN
enables highly efficient region proposal computation because RPN shares convolutional features with
Fast R-CNN. With an image of arbitrary size as an input, RPN is trained end-to-end to generate
high-quality region proposals as output. The Fast R-CNN detector also uses the ROI pooling layer
to extract features from each candidate box and performs object classification and bounding-box
regression. The entire system is a single, unified network for object detection.

3.2. RFCN: Region-Based Fully Convolutional Networks

A limitation of Faster RCN is that it does not share computations after ROI pooling. The amount
of computation should be shared as much as possible. Faster R-CNN overcomes the limitations of
Fast R-CNN but it still contains several non-shared fully connected layers that must be computed for
each of hundreds of proposals. Region-based Fully Convolutional Network [19] was proposed as an
improvement to Faster R-CNN. It consists of shared, fully convolutional architectures. In RFCN, fully
connected layers after ROI pooling are removed, all other layers are moved prior to the ROI pooling to
generate the score maps. RFCN infers 2.5 to 20 times faster than Faster R-CNN, yet it still maintains a
competitive accuracy.

Backbone Architecture. The incarnation of RFCN in [19] is based on ImageNet pre-trained
ResNet-101 model. To compute feature maps, the average pooling layer and the fc layer are removed.
Instead, RFCN only uses the convolutional layers, and attaches a randomly initialized 1024-d 1 × 1
convolutional layer to reduce dimension at the last convolutional block in ResNet-101. In addition,
RFCN uses the k2(C + 1) channel convolutional layers to generate scope maps.

Position-sensitive score maps and Position-sensitive ROI pooling. RFCN regularly divides
each ROI rectangle into k× k bins, then each bin has a size of ≈ w

k ×
h
k for an ROI rectangle of a size

w× h. For each category, the last convolutional layer is built to create k2 score maps. Inside the (i, j)-th
bin (0 ≤ i, j ≤ k− 1), a position-sensitive ROI pooling operation pools only over the (i, j)-th score map:

rc (i, j | 	) = ∑
(x,y)∈bin(i,j)

zb,j,c (x + x0, y + y0|	) /n (1)

For the c-th category, rc(i, j) is the aggregated response in the (i, j)-th bin; zb,j,c is a score map
among k2(C + 1) maps; (x0, y0) represents the ROI’s top left corner; and the number of pixels in the
bin is marked as n. 	 is the set of learnable parameters; and the (i, j)-th bin is located at

[
i w

k
]
≤ x ≤[

(i + 1)w
k
]

and
[

j h
k

]
≤ y ≤

[
(j + 1) h

k

]
.

The k2 position-sensitive scores are averaged to obtain a (C + 1)-dimensional vector for each
ROI rc (	) = ∑i,j rc (i, j|	). Then the SoftMax responses for categories are computed sc (	) =

erc(	)/ ∑C
c′=0

er
c′
(	).

The RFCN resolves bounding-box regression similar to Fast R-CNN with k2(C + 1)-d
convolutional layer, and appends a sibling 4k2-d convolutional layer additionally.



Electronics 2020, 9, 583 6 of 18

The position-sensitive ROI pooling makes a 4k2-d vector for each ROI. Then, a bounding box
as t = (tx, ty, tw, th) uses a 4-d vector aggregated by average voting.

Training. The loss function is defined on each ROI and calculated by the sum of cross-entropy
losses and box regression loss:

L(s, tx,y,w,h) = Lcls(s∗c ) + λ [c∗ > 0] Lreg(t, t∗), (2)

where c∗ is the ground-truth label of ROI. For classification, Lcls(s∗c ) = − log(s∗c ) denotes the
cross-entropy losses, Lreg denotes the bounding-box regression loss and t∗ is the ground-truth box.
If the argument is valid, [c∗ > 0] receives a value of 1, otherwise, 0.

Inference. The feature maps are the results of calculations on an image with a single scale of 600
shared between RPN and RFCN (as showed in Figure 2). Then, the RFCN part evaluates score maps
and regresses bounding boxes based on ROIs which are proposed by the Region Proposal Network
(RPN) part.

3.3. SNIPER: Scale Normalization for Image Pyramids with Efficient Resampling

SNIPER is an effective, multi-scale training method for identification, object detection and object
separation [24]. Instead of processing pixels based on the pyramid (SN), SNIPER treats the context
areas around the ground truths (called chips) at an appropriate scale. This greatly increases the speed
during training when it operates on low-resolution chips. Relying on the memory efficient design,
SNIPER benefits from mass standardization during the training process without having to synchronize
standardized statistics on the GPU.

3.3.1. Chip Generation

SNIPER generates chips Ci at multiple scales {s1, s2, ..., si, ..., sn} in the image. For each scale,
the image is first re-sized to width (Wi) and height (Hi). On this canvas, K× K pixel chips are placed at
equal intervals of d pixels.

3.3.2. Chip Selection

All favorable chips are chosen greedily to cover the highest amount of valid ground-truth boxes.
If it is completely enclosed inside a chip, a ground-truth box is said to be covered. Although positive
chips cover all the positive instances, a significant portion of the background is not covered by them.
In multi-scale training architecture, each pixel is processed at all scales in the picture. A naive strategy
is to use object suggestions to define areas where objects are likely to present. If there are no region
proposals in an image, it is considered to be background.

3.4. SSD: Single-Shot Detector

SSD [18] is a one-stage solution, which has tremendously reduced inference time and resulted in
an accurate, high speed detector that can be used for real-time video processing.

3.4.1. Base Network VGG-16

SSD is built on top of VGG-16 base network [27] that focuses on simplicity and depth. In particular,
the model uses 16 convolutional layers with only 3× 3 filters to extract features. As the model goes
deeper, the number of filter doubles after each max-pooling layer. Noticeably, the convolutional layers
of the same type are combined as shown in Figure 2. At the end, three fully connected layers are
followed by 4096 channels. The last one contains 1000 channels for each class and is concatenated with
a SoftMax layer to return the detection results. The model works well on classification and localization
tasks and has achieved 89% mAP on PASCAL-VOC 2007 dataset. VGG-16 has been one of the most
interesting models to research even though it is not as fast as the newer ones. Its architecture has been
reused in many models because of its valuable extracted features.



Electronics 2020, 9, 583 7 of 18

3.4.2. Model Architecture

SSD extends the pre-trained VGG-16 model (on ImageNet [10]) by adding new convolutional
layers conv8_2, conv9_2, conv10_2, conv11_2 in addition to using the modified conv4_3 and fc_7 layers
to extract useful features. Each layer is designed to detect objects at a certain scale using k anchor
boxes, where 4k offsets and c class probabilities are computed by using 3× 3 filters. Thus, given a
feature map with a size of m× n, the total number of filters to be used is kmn(c + 4). The anchor boxes
are chosen manually. Here, we use the original formula, as follows, to calculate anchor box scales at
different levels.

sk = smin +
smax − smin

m− 1
(k− 1) (3)

k ∈ [1, m] where smin = 0.2 and smax = 0.9.

3.5. RetinaNet

RetinaNet [22] is another one-stage detector. It aims to tackle the class imbalance problem between
foreground and background remaining in one-stage detector. RetinaNet uses two main techniques:
FPN backbone and focal loss as the loss function. FPN is built on top of a convolutional neural
network and is responsible for extracting convolutional feature maps from the entire image. By using
focal loss, RetinaNet changes weights in the loss function, focuses on hard, misclassified examples,
which improves the prediction accuracy. With ResNet (FPN) as a backbone for feature extraction
and two specific subnetworks for classification and bounding-box regression, RetinaNet has achieved
state-of-the-art performance.

3.5.1. Class Imbalance

As a one-stage detector, RetinaNet has a much larger set of candidate object locations which is
regularly sampled across an image (∼100 k locations), covering spatial positions, scales and aspect
ratios tightly. The easily classified background examples still dominate the training procedure.
Bootstrapping or hard example mining is typically used as a solution for this problem. However, they
are not efficient enough. To solve this, RetinaNet proposes a new loss function which can adaptively
tune the contributed weights of object classes during training.

3.5.2. Focal Loss

Focal loss is computed by adding (1− pi)
γ to cross-entropy loss as a modulating factor.

k

∑
i=1

(yilog(pi)(1− pi)
γ) + (1− yi)log(1− pi)pγ

i ) (4)

3.5.3. RetinaNet Detector Architecture

RetinaNet adopts ResNet for deep feature extraction. ResNet builds a rich multi-scale feature
pyramid from an input image of single resolution by using Feature Pyramid Network (FPN) [33].
It combines low-resolution, high-resolution, and semi-weak characteristics through a top-down
pathway and lateral connections.

3.6. YOLO: You Only Look Once

YOLO is an object detection system targeted for real-time processing. Recently, the third version
of YOLO has been published, YOLOv3 is extremely fast and accurate. In mAP measured at 0.5 IOU
YOLOv3 is on par with focal loss but about 4 × faster.

YOLOv3 takes an input image to predict 3D tensors respectively to three scales and each scale is
divided into N × N grid cells. During training, each grid cell considers a class that it likely is and be



Electronics 2020, 9, 583 8 of 18

responsible for detecting that class. Simultaneously, each grid cell is assigned with 3 initial prior boxes
with various sizes. Finally, non-max suppression is applied to select the best boxes.

3.6.1. Feature Extraction

YOLOv3 uses a variant of Darknet, which originally has a 53-layer network trained on ImageNet.
According to [23], Darknet-53 is better than ResNet-101 and 1.5 × faster. Darknet-53 has a performance
similar to ResNet-152 and is 2 × faster.

3.6.2. Detection at Three Scales

YOLOv3 is different from its predecessors since it performs the detection process at three different
scales. In YOLOv3, the detection is done by applying 1 × 1 detection kernels on feature maps of
three different sizes at three different places in the network. YOLOv3 makes prediction at three scales,
which are precisely given by down sampling the dimensions of the input image by 32, 16 and 8,
respectively. Detections at different layer helps address the issue of detecting small objects, a common
issue in YOLOv2.

3.6.3. Objective Score and Confidences

The object score illustrates the probability that an object is contained inside a bounding box and
its value ranging from 1 to 0. A sigmoid is applied to compute the objectness scores. In terms of
class confidences, they depict the probabilities of the detected object which belongs to a particular
class. In YOLOv3, Non-maximum Suppression (NMS) is used to decide a class score and it is meant to
alleviate the problem of multiple detections of the same object.

3.7. CenterNet

One-stage and two-stage detection have limitations: anchor box is designed with manual
proportions that are easily affected by data and fixed during training. This requires a high
computation cost, but the anchors are not always accurate. To address that, recently a series
of anchor-free methods [34–36] are proposed. CenterNet [37] is a one-stage detector, anchor-free
method. Reference [37] proposed a new center-based framework based on a single Hourglass network
without FPN structure [38]. The object is represented by the central point of the bounding box.
Other information is calculated by regression such as object size, dimension, and pose.

3.7.1. Object as Points

CenterNet considers the center point of an object as a prerequisite to localize the bounding box.
As a result, Reference [37] use a keypoint estimator ŷ to predict all center points and single a single
size prediction for all object categories to alleviate the computational burden.

3.7.2. From Points to Bounding Boxes

CenterNet identifies the peak points in the heatmap before detecting all the values meet or greater
than its 8-related neighbors and keep the top 100 points. Subsequently, each keypoint location is
given by an integer coordinate (xi, yi) and the key point estimator value as a measure of its detection
confidence is applied to produce the bounding box as below:

(x̂i + δx̂i − ŵi/2, ŷi + δŷi − ĥi/2, x̂i + δx̂i + ŵi/2, ŷi + δŷi + ĥi/2), (5)

where (δx̂i, δŷi) = Ôx̂i ,ŷi
is the offset prediction and (ŵi, ĥi) = Ŝx̂i ,ŷi

is the size prediction [37].



Electronics 2020, 9, 583 9 of 18

4. Benchmark Experiments

In this section, we first introduce the benchmark dataset and the evaluation metrics. We then
detail the model configuration and discuss the experimental results.

4.1. Dataset

VisDrone2019 dataset [39] consists of 288 videos with 261,908 frames and 10,209 static images that
do not match the frames of videos. Data is collected from unmanned aerial vehicles such as DJI Mavic,
Phantom series (3, 3A, 3SE, 3P, 4, 4A, 4P). The videos and images are collected at different times of
day. The frames in the videos have the highest resolution of 3840 × 2160 and the still image is 2000 ×
1500. Some images in the dataset are shown in the Figure 3. VisDrone2019 includes ten predefined
categories of objects: pedestrian, person car, van, bus, truck, motor, bicycle, awning-tricycle, and tricycle.
Only the training data is released by the contest organizers. In this paper, we use 56 clips of VID-train
data, with 24,313 frames of the VisDrone2019 dataset as training data; and 7 clips of VID-val, with 2860
frames for model evaluation.

Figure 3. Some exemplary frames of videos in the VisDrone2019 dataset [39].

The number of unbalanced objects between classes is as follows. In VID-train, pedestrian (234,305),
people (94,396), bicycle (40,255), car (505,301), van (46,940), truck (30,498), tricycle (28,338), awning-tricycle
(13,011), bus (9653) and motor (102,819). In VID-val, pedestrian (32,404), people (17,908), bicycle (6842),
car (31,821), van (6842), truck (1359), tricycle (3769), awning-tricycle (1718), bus (264) and motor (12,025).
The class distribution of Visdrone VID is depicted in Figure 4. As a quick glimpse through the training
set, there are the wide discrepancy in terms of the weather, the light source direction and the time
interval as well as the drone motion in Figure 5.



Electronics 2020, 9, 583 10 of 18

Figure 4. The class distribution in Visdrone VID-Train, Val Dataset.

Figure 5. Some example images of the challenge.

4.2. Evaluation Metrics

In this work, we use the Average Precision (AP) measurement [3,40], the commonly used metric
to assess object detection accuracy. Given two bounding boxes, one for ground truth (the actual
class label) and one for the detection result (the predicted class label), we use the Intersection over
Union (IoU) to calculate the similarity between the two boxes and the score of the predicted box. It is
computed as the intersected area (Si) divided by the union (Sj) of the two areas. An IoU threshold η

indicates whether the prediction is an object or not. If the actual class label is the predicted class label
and IoU > η, it is considered a positive else it is considered a negative.

IoU =
Si ∩ Sj

Si ∪ Sj
(6)

The AP computes the average precision value for recall value over 0 to 1. The mean Average
Precision (mAP) is computed by taking the average over the AP of all classes. Precision is the
proportion of the predicted bounding boxes matching actual ground truth. Recall is the proportion of
ground-truth objects being correctly detected. For object detection, we report the performance results
with AP (IoU = 0.50), AP (IoU = 0.75). The AP [3] summarizes the shape of the precision/recall curve,
and is defined as the mean precision at a set of 11 equally spaced recall levels [0, 0.1, . . . , 1]:

AP =
1
11
× ∑

r∈{0,0.1,...,1}
pinterp(r) (7)



Electronics 2020, 9, 583 11 of 18

where:
pinterp(r) = maxr̃:r̃≥r p(r̃) (8)

4.3. Model Configuration

To make a fair comparison, namely each detection model at its best, we adjust the model’s
parameters following the recommendation of [41–43]. We provide the detailed configuration as below.

• For YOLOv3, we have trained a new model which adopts darknet53 (YOLOv3 code is available
at: https://github.com/AlexeyAB/darknet) as pre-trained weights for the convolutional layers.
In implementation, YOLO v3 uses a total of 9 anchors with three for each scale. It assigns the
three biggest anchors for the first scale, the next three for the second scale, and the last three for
the third. As we aim to detect effectively on 3 scales, we recalculate nine anchors correspondingly.

• For RetinaNet, we used ResNet152 as backbone model and changed anchor parameters
(RetinaNet code is at: https://github.com/fizyr/keras-retinanet).

• SNIPER is the new architecture that allows us to improve AP by using negative chip mining.
We adopt the available model (SNIPER code is at: https://github.com/mahyarnajibi/SNIPER).
We extracted the required proposals for chip selection.

• For SSD, we used VGG16 as the pre-trained model and adjusted the aspect ratio used in the
original SSD300 (SSD code is at: https://github.com/pierluigiferrari/ssd_keras).

• We trained Faster R-CNN (Faster R-CNN code is available at:https://github.com/rbgirshick/py-
faster-rcnn ), RFCN (RFCN code is at: https://github.com/YuwenXiong/py-RFCN), CenterNet
(CenterNet code is at: https://github.com/xingyizhou/CenterNet) with default parameters.

Table 1 summarizes the detailed configuration. All models are trained or finetuned by using
GeForce RTX 2080 Ti 11GB GPU run on Ubuntu 16.04.5 LTS OS.

Table 1. Configuration of SNIPER, RetinaNet, YOLOv3 and SSD.

Architecture Configuration
Attribute Default Adjusted

RetinaNet

Base size
Strides
Ratios
Scales

32 64 128 256 512
8 16 32 64 128
0.5 1 2
1 1.2 1.6

32 64 128 256 512
8 16 32 64 128
0.5 1 2
0.5 1 1.2 1.6 2.0

YOLOv3 Anchors

10, 13,
16, 30,
33, 23,
30, 61,
62, 45,
59, 119,
116, 90,
156, 198,
373, 326

20, 310,
35, 626,
20, 3751,
69, 1135,
92, 2038,
54, 6129,
50, 8045,
107, 12908,
117, 15654

SSD Ratio

[2],
[2, 3],
[2, 3],
[2, 3],
[2],
[2]

[1.0, 2.0, 0.5]
[1.0, 2.0, 0.5, 3.0, 1.0/3.0]
[1.0, 2.0, 0.5, 3.0, 1.0/3.0]
[1.0, 2.0, 0.5, 3.0, 1.0/3.0]
[1.0, 2.0, 0.5]
[1.0, 2.0, 0.5]

SNIPER Scales
[1400, 2000]
[800, 1280]
[480, 512]

[1600, 2200]
[800, 1280]
[480, 512]

4.4. Results

As aforementioned, we benchmark six state-of-the-art methods: Faster R-CNN, RFCN, SSD with
default parameters and SNIPER, YOLOv3, RetinaNet with adjusted parameters which is presented in

https://github.com/AlexeyAB/darknet
https://github.com/fizyr/keras-retinanet
https://github.com/mahyarnajibi/SNIPER
https://github.com/pierluigiferrari/ssd_keras
https://github.com/rbgirshick/py-faster-rcnn
https://github.com/rbgirshick/py-faster-rcnn
https://github.com/YuwenXiong/py-RFCN
https://github.com/xingyizhou/CenterNet


Electronics 2020, 9, 583 12 of 18

detail in Table 1. Table 2 shows the training time of the methods. RFCN and YOLOv3 take the least
training time. Meanwhile, SSD requires a remarkable time for training. Table 3 shows the runtime
performance of different methods. SSD and YOLOv3 achieve the fastest running time among the rest.
In the meantime, RFCN only processes 1.75 frames per second. One-stage object detectors clearly run
faster than the two-stage ones.

Table 2. Training time of Faster R-CNN, RFCN, SNIPER, RetinaNet, YOLOv3, SSD with VisDrone2018
on GeForce RTX 2080 Ti GPU.

Architecture Training Time (hours)

Faster R-CNN 8.20
RFCN 4.30

SNIPER 62.50
RetinaNet 10.61
CenterNet 5.3
YOLOv3 4.70

SSD 251.18

Table 3. Runtime performance of Faster R-CNN, RFCN, SSD, YOLO, SNIPER, RetinaNet with
VisDrone2019 on GeForce RTX 2080 Ti GPU.

Architecture FPS (Frames Per Second)

Faster R-CNN 2.78
RFCN 1.75

SNIPER 7.6
SSD 76.9

YOLOv3 7.5
RetinaNet 5.9
CenterNet 7.1

Figure 6 visualizes the detection results of benchmarking methods. As a closer look, Tables 4 and 5
show the detailed results of six methods and the average performance with a threshold of IoU set as
0.5 and 0.75, respectively. In accordance with Table 4 (IoU = 0.5), CenterNet, RetinaNet and SNIPER
are the only three algorithms achieving more than 25% mAP score. YOLOv3 ranks in the fourth with
more than 20% mAP score. We observe that SSD is inferior, and RFCN performs better than Faster
R-CNN. SSD performs the worst, only producing 10.80% mAP score. However, SSD ranks in the third
with 9.10% on the bus class. As seen in Table 5 (IoU = 0.75), SNIPER, CenterNet and RetinaNet are the
only three algorithms achieving more than 11% mAP score. RFCN ranks in the fourth with more than
8% mAP score. We observe that YOLOv3 performs the worst (3.20% mAP score). In the meantime,
Faster R-CNN performs better than SSD.



Electronics 2020, 9, 583 13 of 18

Figure 6. Visualization results of different object detection methods. Color legend: car, truck, bicycle,
van, moto, pedestrian, people, bus, tricycle, awning-tricycle. Best view in high 400% resolution.

Regarding the performance, YOLOv3 has good performance with 7.5 FPS and 25.08 mAP
(IoU = 0.5) then it drops rapidly to 3.2 mAP (IoU = 0.75) because YOLOv3 is does not perform
well at localization. Instead, YOLOv3 is well-known for its runtime performance. We have performed
the detection of YOLOv3 and realized the small confidence score for each object (<30%) due to the
similarity of features. Therefore, we literally set the low confidence for the object detection demand
with this YOLOv3. Meanwhile, CenterNet, RetinaNet and SNIPER achieve better detection results.

Table 4. The AP (IoU = 0.50) scores on the VisDrone2019 Validation set of each object category. The top
three results are highlighted in red, blue and green fonts.

Detectors Pedestrian People Bicycle Car Van Truck Tricycle A-Tricycle Bus Motor mAP

Faster R-CNN 21.36 11.02 16.97 46.85 18.72 16.96 12.22 10.81 9.09 11.13 17.51
RFCN 21.20 7.05 16.16 44.22 20.12 28.10 19.45 15.21 13.28 10.76 19.55

SNIPER 37.97 23.74 34.73 56.51 31.90 6.72 21.05 14.60 12.86 22.39 26.24
SSD 13.20 5.50 12.70 36.90 9.60 7.70 1.30 9.10 9.10 4.60 10.97

YOLOv3 32.64 16.92 36.94 51.67 33.65 12.83 8.97 26.01 4.87 26.36 25.08
RetinaNet 50.21 31.14 23.53 52.05 27.27 23.92 21.16 23.55 8.97 20.81 28.26
CenterNet 56.74 37.37 27.06 59.86 30 27.51 24.33 26.61 9.87 23.52 32.28



Electronics 2020, 9, 583 14 of 18

Table 5. The AP (IoU = 0.75) scores on the VisDrone2019 Validation set of each object category. The top
three results are highlighted in red, blue and green fonts.

Detectors Pedestrian People Bicycle Car Van Truck Tricycle A-Tricycle Bus Motor mAP

Faster R-CNN 3.30 0.71 9.09 19.12 9.09 9.09 1.64 3.03 9.09 0.95 6.51
RFCN 3.03 1.40 2.60 24.85 11.31 12.45 9.09 2.13 9.30 9.09 8.52

SNIPER 17.71 12.16 20.08 46.10 27.21 5.21 12.46 8.39 12.24 8.06 16.96
SSD 6.10 0.10 9.10 18.00 7.10 3.40 0.60 9.10 9.10 0.60 6.32

YOLOv3 4.03 1.22 1.27 9.44 1.94 4.67 2.36 4.78 1.43 0.95 3.20
RetinaNet 11.01 2.20 5.89 34.86 17.58 17.62 4.76 9.86 6.28 2.94 11.30
CenterNet 12.55 2.64 6.77 41.48 20.57 20.97 5.47 11.44 7.16 3.26 13.23

4.5. Analysis of Feature Maps Extraction

Figure 7 depicts feature maps of Faster R-CNN, RFCN, SSD, YOLO, SNIPER, RetinaNet,
and CenterNet, on a real aerial image. We extracted feature maps at the final convolution layer.
These feature maps offer deeper insights into how different methods capture object features from the
aerial viewpoint.

As also seen from Figure 7, SNIPER, RetinaNet as well as CenterNet produce optimal feature
maps. We observe that the object shapes are well captured with larger values, whereas the
background is with smaller values. This is because focal loss is adept at learning imbalanced
classes (foreground/background) while chip mining is extracted from a proposal network trained
for a short training schedule, which identifies regions where objects are likely to be present.
Simultaneously, keypoint estimation of CenterNet is considered to be the essential factor that facilitates
finding center points and regresses to all other object properties, such as size, location, orientation.

Regarding YOLO and SSD: in the feature map obtained by SSD, the object shapes are not clear,
and the edges of objects are not preserved. This explains why this method detects aerial objects
inaccurately which is ascribed to shallow layers in a neural network. Simultaneously, the features
maps extracted by YOLO is better than SSD’s ones where object regions are more prominent from the
background. However, the edges of the objects are still blurred.

As far as Faster R-CNN and RFCN feature maps are concerned, the object shapes are well
preserved but are not clearly distinguished from the background. This is due to the variance of various
angles of images, which is considered to be an obstacle of early feature extractors.

(a) Input Image (b) Faster R-CNN (c) RFCN (d) SNIPER

(e) SSD (f) YOLOv3 (g) RetinaNet (h) CenterNet
Figure 7. Visualization of feature maps from different state-of-the-art object detection models.



Electronics 2020, 9, 583 15 of 18

4.6. Discussion

SSD is a unified object detector, which adopts a multi-scale approach. SSD uses a VGG16
network as a feature extractor and adds eight convolutional layers and ten layers separately, it also
uses convolutional layers to reduce spatial dimension and resolution. To detect multi-scale objects,
SSD makes independent object detections from multiple feature maps. Aspect ratios in SSD which are
used as the anchor box scaling factors, so we widen the ratios range to ensure most objects could be
captured. The higher resolution feature maps are responsible for detecting small objects, the first layer
for object detection is conv4_3 which has a spatial dimension of 38× 38, a pretty large reduction from
the original input image. Furthermore, small objects can only be detected in left most feature maps.
However, those maps contain low-level features, like edges or color patches that are less informative
for classification. Shallow layers in a neural network may not generate enough high-level features to
predict small objects [27]. Therefore, SSD usually performs worse for small objects compared to other
detection methods. Although SSD is the penultimate detector, it achieves the second with 12.7% on the
bicycle class, the third with 5.5% on the people class, 9.1% on the awning-tricycle class, 9.10% on the bus
class and 4.6% on the motor class.

SSD is competitive with Faster R-CNN, RFCN on more substantial objects, which has poor
performance on small objects. Faster R-CNN combines the Region Proposal Network (RPN) into
Fast R-CNN. RPN produces box proposals based on the feature extractor. These box proposals
are used to crop features from the same intermediate feature map. They fed to the remainder of
the feature extractor to predict a class and refine box for each proposal. RFCN is similar to Faster
R-CNN. RFCN crops features from the last feature layer before prediction to reduce the amount
of computation. RFCN proposed a position-sensitive mechanism to keep translation variance for
localization representations. Faster R-CNN has a mAP of 17.51%. Faster R-CNN ranks in the third
with 16.96% on the truck class. RFCN has much better performance than Faster R-CNN and SSD,
producing 19.55% AP. RFCN achieves the first with 28.10% on the truck class and 13.28% on the bus
class, which ranks in the third with 19.45% on the people and 15.21% on the awing-tricycle class.

As far as the outstanding detectors are concerned, CenterNet, RetinaNet and SNIPER are the
three algorithms that top the statistics in both IoU thresholds (0.5 and 0.75). CenterNet ranks first with
32.28%, followed by RetinaNet with 28.26% in case the threshold of IoU = 0.5. Paradoxically, in case
the threshold of IoU = 0.75, which favors high accurate results, the figure for SNIPER overtakes that
for CenterNet and achieves the best performance.

In particular, CenterNet achieves outstanding results in the benchmark dataset with both IoU
thresholds. Please note that CenterNet object detector builds on keypoint estimation networks, finds
object centers, and regresses to their size. The experimental results show that CenterNet works well
with small IoU threshold, 0.5. Regarding SNIPER, the valid range, boxes, which the square root of
their area lies in each range are marked as valid in that scale. Therefore, we increased the valid range
to significantly detect objects in various sizes (small, medium and large objects) as shown in Table 1.
Simultaneously, chip mining plays an important role in eliminating regions that are likely to contain the
background and this measure could adapt to each viewpoint hence alleviating the drawback of diverse
scales. As a result, these enhancements cooperate with the pyramid feature map to surpass other
detectors in terms of average precision. In particular, at the 0.75 IOU threshold, SNIPER outperforms
YOLOv3, with 16.96% and 3.2% respectively. This is mainly because YOLOv3 is inferior in terms of
localization. Regarding Retina, by changing anchors, RetinaNet has an increment in terms of AP, 2.3%
for people class. A scale adjustment has widened the variety of scaling factors to use per anchor location
which could improve detection for the diverse size objects. Concurrently, the focal loss is designed to
address a severe imbalance between foreground and background classes during training, as a result,
this approach could tackle the problems of the unbalanced dataset, in which the number of training
samples for car and bus classes outnumbers those from other classes.



Electronics 2020, 9, 583 16 of 18

5. Conclusion and Future Work

In this paper, we experimented the state-of-the-art object detection methods, namely Faster
R-CNN, RFCN, SSD, YOLO, SNIPER, RetinaNet, and CenterNet, on aerial images. Among them,
CenterNet, SNIPER and RetinaNet achieve the best performance in terms of average precision.
Concurrently, YOLO is considered to be the optimal choice for real-time object detection applications
which require the high FPS and moderate precision in detecting object. We notice the main challenges
in the problem, for example, occlusion, scale, and class imbalance. From the aerial view, many objects
are occluded, and their sizes are varied. We also notice the class imbalance issue during the training
process. For example, most of the detectors perform much better on the car and pedestrian classes
than on the awning-tricycle, tricycle, and bus classes due to more instances collected in the car and
pedestrian classes.

In the future, we would like to investigate the fusion of different object detectors to even boost the
state-of-the-art performance. In addition, we are interested in the task of aerial image segmentation.
Obviously, the bounding boxes provided by the object detectors are very useful for the segmentation
task. We also consider adopting the use of transfer learning [44] to consolidate and enhance the
efficiency of training time.

Author Contributions: K.N. is responsible for discussion, paper writing and revising. N.T.H. and P.C.N. focus on
training model, benchmark evaluation, and paper writing. K.-D.N. and N.D.V. are in charge of ideas, evaluation
and paper writing. T.V.N. is responsible for ideas, discussion, paper structure, paper writing and revising.
All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant
number C2018-26-03.

Acknowledgments: We are grateful to the NVIDIA corporation for supporting our research in this area.
The authors would like to thank the editors and the reviewers for their professional suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PASCAL Pattern Analysis, Statistical modelling and ComputAtional Learning
PASCAL-VOC PASCAL Visual Object Classes Dataset
MS-COCO Microsoft Common Objects in Context Dataset
ILSVRC ImageNet Large Scale Visual Recognition Challenge
ROI Region of Interests
VGGNet Visual Geometry Group Network
ZFNet Zeiler Fergus Networks
CNN Convolutional Neural Networks
R-CNN Regional CNN
SSD Single-Shot Detector
YOLO You Only Look Once Detector
RFCN Region-based Fully Convolutional Networks
SNIPER Scale Normalization for Image Pyramids with Efficient Resampling

References

1. Zou, Z.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. arXiv 2019, arXiv:1905.05055.
2. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;

Bernstein, M. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252.
[CrossRef]

3. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results 2007. Available online: http://www.pascal-network.org/challenges/
VOC/voc2007/workshop/index.html/ (accessed on 5 October 2007)

4. Zhang, X.; Yang, Y.H.; Han, Z.; Wang, H.; Gao, C. Object class detection: A survey. ACM Comput. Surv. 2013,
46, 10. [CrossRef]

http://dx.doi.org/10.1007/s11263-015-0816-y
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html/
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html/
http://dx.doi.org/10.1145/2522968.2522978


Electronics 2020, 9, 583 17 of 18

5. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc)
challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [CrossRef]

6. Everingham, M.; Eslami, S.A.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object
classes challenge: A retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]

7. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco:
Common objects in context. Comput. Vis. ECCV 2014, 8693, 740–755.

8. Zhu, P.; Wen, L.; Du, D.; Bian, X.; Ling, H.; Hu, Q.; Wu, H.; Nie, Q.; Cheng, H.; Liu, C. VisDrone-VDT2018:
The vision meets drone video detection and tracking challenge results. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 10 September 2018.

9. Zafeiriou, S.; Zhang, C.; Zhang, Z. A survey on face detection in the wild: Past, present and future.
Comput. Vis. Image Underst. 2015, 138, 1–24. [CrossRef]

10. Dollar, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian detection: An evaluation of the state of the art.
IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 743–761. [CrossRef]

11. Yang, Z.; Pun-Cheng, L.S. Vehicle detection in intelligent transportation systems and its applications under
varying environments: A review. Image Vis. Comput. 2018, 69, 143–154. [CrossRef]

12. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems 25 (NIPS 2012); Neural Information Processing Systems
Foundation, Inc.: Vancouver, BC, Canada, 2012; pp. 1097–1105.

13. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
14. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition,

localization and detection using convolutional networks. arXiv 2013, arXiv:1312.6229.
15. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and

semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 23–28 June 2014; pp. 580–587.

16. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, 7–13 December 2015; pp. 1440–1448.

17. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. arXiv 2015, arXiv:1506.01497.

18. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector.
Comput. Vis. ECCV 2016, 9905, 21–37.

19. Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks.
In Proceedings of the 30th International Conference on Neural Information Processing Systems, Red Hook,
NY, USA, 5–10 December 2016; pp. 379–387. Available online: https://arxiv.org/abs/1605.06409 (accessed
on 21 June 2016)

20. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, 27–30 June 2016; pp. 779–788.

21. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

22. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.

23. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
24. Singh, B.; Najibi, M.; Davis, L.S. SNIPER: Efficient multi-scale training. arXiv 2018, arXiv:1805.09300.
25. Huynh, N.; Nguyen, P.; Vo, N.; Nguyen, K. Detecting Human from Space: An Evaluation of Deep Learning

Modern Approaches. In Proceedings of the 15th International Conference on Multimedia Information
Technology and Applications, University of Economics and Law, Vietnam National University, Ho Chi Minh
City, Vietnam, 27 June 2019.

26. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. Comput. Vis. ECCV 2014,
8689, 818–833.

27. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. Int. Conf.
Learn. Represent. 2015, arXiv:1409.1556.

http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1007/s11263-014-0733-5
http://dx.doi.org/10.1016/j.cviu.2015.03.015
http://dx.doi.org/10.1109/TPAMI.2011.155
http://dx.doi.org/10.1016/j.imavis.2017.09.008
http://dx.doi.org/10.1038/nature14539
https://arxiv.org/abs/1605.06409


Electronics 2020, 9, 583 18 of 18

28. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

29. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) recognition, Las Vegas, NV, USA, 27–30
June 2016; pp. 770–778.

30. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

31. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

32. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969.

33. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object
detection. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 2117–2125.

34. Law, H.; Teng, Y.; Russakovsky, O.; Deng, J. Cornernet-lite: Efficient keypoint based object detection. arXiv
2019, arXiv:1904.08900.

35. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27
October–2 November 2019; pp. 6569–6578.

36. Zhou, X.; Zhuo, J.; Krahenbuhl, P. Bottom-up object detection by grouping extreme and center points.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long
Beach, CA, USA, 15–20 June 2019; pp. 850–859.

37. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850.
38. Wu, X.; Sahoo, D.; Hoi, S.C. Recent advances in deep learning for object detection. Neurocomputing 2020.

[CrossRef]
39. Zhu, P.; Wen, L.; Bian, X.; Ling, H.; Hu, Q. Vision meets drones: A challenge. arXiv 2018, arXiv:1804.07437.
40. Vo, N.D.; Nguyen, K.; Nguyen, T.V.; Nguyen, K. Ensemble of Deep Object Detectors for Page Object

Detection. In Proceedings of the 12th International Conference on Ubiquitous Information Management
and Communication (IMCOM ’18), Langkawi, Malaysia, 5–7 January 2018; Association for Computing
Machinery: New York, NY, USA, 2018. [CrossRef]

41. Redmon, J. Windows and Linux Version of Darknet Yolo v3 & v2 Neural Networks for Object Detection.
2019. Available online: https://github.com/AlexeyAB/darknet (accessed on 13 February 2020).

42. Gihub, F. Keras Implementation of RetinaNet Object Detection. 2019. Available online: https://github.com/
fizyr/keras-retinanet. (accessed on 13 February 2020).

43. Ferrari, P. SSD300 Training Tutorial. 2019. Available online: https://github.com/pierluigiferrari/ssd_keras
(accessed on 13 February 2020)

44. Chauhan, V.; Joshi, K.D.; Surgenor, B. Image Classification Using Deep Neural Networks: Transfer Learning
and the Handling of Unknown Images. In Proceedings of the International Conference on Engineering
Applications of Neural Networks, Crete, Greece, 24–26 May 2019; pp. 274–285. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://dx.doi.org/10.1016/j.neucom.2020.01.085
http://dx.doi.org/10.1145/3164541.3164644
https://github.com/AlexeyAB/darknet
https://github.com/fizyr/keras-retinanet
https://github.com/fizyr/keras-retinanet
https://github.com/pierluigiferrari/ssd_keras
http://dx.doi.org/10.1007/978-3-030-20257-6_23
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	CNN Models
	Object Detection Methods

	Benchmarked State-of-the-Art Object Detection Methods
	Faster R-CNN
	RFCN: Region-Based Fully Convolutional Networks
	SNIPER: Scale Normalization for Image Pyramids with Efficient Resampling
	Chip Generation
	Chip Selection

	SSD: Single-Shot Detector
	Base Network VGG-16
	Model Architecture

	RetinaNet
	Class Imbalance
	Focal Loss
	RetinaNet Detector Architecture

	YOLO: You Only Look Once
	Feature Extraction
	Detection at Three Scales
	Objective Score and Confidences

	CenterNet
	Object as Points
	From Points to Bounding Boxes


	Benchmark Experiments
	Dataset
	Evaluation Metrics
	Model Configuration
	Results
	Analysis of Feature Maps Extraction
	Discussion

	Conclusion and Future Work
	References

