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Abstract: In many tasks related to realistic neurons and neural network simulation, the performance
of desktop computers is nowhere near enough. To overcome this obstacle, researchers are developing
FPGA-based simulators that naturally use fixed-point arithmetic. In these implementations, little
attention is usually paid to the choice of numerical method for the discretization of the continuous
neuron model. In our study, the implementation accuracy of a neuron described by simplified
Hodgkin—-Huxley equations in fixed-point arithmetic is under investigation. The principle of
constructing a fixed-point neuron model with various numerical methods is described. Interspike
diagrams and refractory period analysis are used for the experimental study of the synthesized
discrete maps of the simplified Hodgkin-Huxley neuron model. We show that the explicit midpoint
method is much better suited to simulate the neuron dynamics on an FPGA than the explicit Euler
method which is in common use.

Keywords: nonlinear dynamics; scaling; discrete chaotic systems; fixed-point arithmetic;
Hodgkin-Huxley model; FPGA

1. Introduction

The implementation of artificial neural networks (ANNSs) in modern electronic devices requires
different network topologies depending on the solving tasks, which vary from clustering and
classification to pattern recognition. Based on the available training data, the learning model for the
network can be supervised or unsupervised. The first principle, relying on labeled datasets, takes
place in Convolutional Neural Networks (CNNs), which have recently shown impressive performance
in cognitive tasks such as recognition [1,2] and prediction [3,4]. During supervised learning, the
error between the input target and the output of a CNN is minimized by adjusting the synaptic
weights of the network. High accuracy can only be achieved with a large number of training examples
and algorithm cycles, which entails the application of massive-power-consuming computers. This
imposes a significant restriction on the application of CNNs in embedded systems, motivating the
development of neural networks of the third generation—Spiking Neural Networks (SNNs). SNNs,
being unsupervised learners, provide the most realistic natural neural network emulation. Like neurons
in living organisms, SNNs encode information as sequences of spikes, the precise timing between which
is used to update the synaptic weights. The main advantages of SNNs over the previous-generation
ANN s are their computational speed, superior classification abilities, and efficiency in control problems,
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resulting from their ability to derive meaning from few pieces of information about the target. The
most promising practical application of SNNs is the construction of an interface between silicon and
biological neurons, which in future could bring the ability of direct human brain—-computer interaction
and the development of bionic prosthetic systems, such as thought-driven limbs and neural prostheses
for restoring cognitive functions [5,6].

Meanwhile, the limits of a standard computer’s performance for SNN simulation require special
hardware for its acceleration [6]. A perfect platform for implementing neural networks must be
massively parallel, algorithmically flexible, and of low power consumption. Massive parallelism can
be achieved with either an analog or digital simulation approach. Analog simulations of neurons
using silicon-based Very-Large-Scale Integration (VLSI) circuits were pioneered by Mead [7] in the
early 1980s with a focus on their low power consumption when compared to digital systems [8,9].
Modern analog circuits for the implementation of neural oscillators and synaptic memory often include
memristive [10,11] or other experimental CMOS-compatible devices. Despite all these advantages, a
common drawback of analog neuromorphic circuits is the fundamental limitations on measurement: it
is impossible to organize the monitoring of all state variables for each neuron and, therefore, flexible
control of these variables. Thus, from the algorithmic flexibility point of view, neural network simulation
based on digital devices remains relevant. Although advances in GPU-based acceleration of neural
network simulation have been reported [12], most researchers consider FPGAs to be the better-fitting
digital platform. The advantages of FPGAs, including great flexibility, low power consumption, the
ability to work in real time, and small dimensions, have already facilitated the use of SNN algorithms
for embedded systems, for example, for MIMO temperature management [13] or the detection of
impurities in natural gas [14].

The use of FPGA implies two features: the use of discrete models instead of continuous and
the use of fixed-point arithmetic. To conserve the neural model properties, it is necessary to choose
a numerical method that will ensure good correspondence between the dynamics of a continuous
model and those of a discrete model, including the time step, under conditions of limited number
representation accuracy. Nowadays, researchers pay little attention to these implementation features.
For example, in the FPGA-based SNN simulator made by Pani et al. [6], the simplest solver, that is, the
explicit Euler method, is used to implement the Izhikevich neuron. Meanwhile, in a comprehensive
study on SNN numerical simulation [15], strong evidence was presented indicating that the use of
first-order numerical methods with large steps leads to totally incorrect neuron model dynamics. A
very recent article [16] substantiated both the interest in fixed-point arithmetic and the need to perform
fixed-point neuron modeling via a specific approach.

This paper provides the results of an investigation of the neuron model described by the simplified
Hodgkin—-Huxley equations [17] in a fixed-point implementation. In Section 2, we propose the
neuron fixed-point model, as well as the data type conversion (scaling) technique. In Section 3, the
numerical experiments, including resonance excitability analysis, chaotic spiking generation analysis,
and examination of the neural refractory period and hysteresis, are described. Simulations were carried
out in NI LabVIEW 2019 software. Section 4 concludes the paper. A comparative table and some
recommendations are given here.

2. Numerical Simulation of the Simplified Hodgkin—-Huxley Model Using Fixed-Point Arithmetic

The original system of Hodgkin-Huxley (HH) equations [18] is a classical phenomenological
neuron model that determines the dynamical behavior of membrane ion gates. This dynamical system
is of the fourth order and includes transcendental functions that make it time-consuming for large-scale
computer simulations and complicated for pure mathematical analysis. Insightful simplifications of
the HH model to two-dimensional systems were presented by Rinzel [19] and later by Wilson [17]; the
second one is used in this study.
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An equivalent electrical circuit for the simplified HH model is shown in Figure 1. The circuit
comprises membrane capacitance C and two voltage-sensitive conductive elements Gy, and Gk,
accordingly connected in series with batteries Enj, and Ex.

Extracellular Medium

V[Na v]K

|+

® Intracellular Medium
Figure 1. A compact equivalent circuit for the simplified Hodgkin-Huxley (HH) model.

The circuit dynamics is described by the following differential equations:

C‘fi—‘{ = —(17.81 +47.71V + 32.63V?)(V — 0.55) — 26.0R(V + 0.92) + I

1
R — 1(—R+1.35V +1.03) v

where V is the potential difference between the neuron’s membrane and the environment, R is the
recovery variable, I is the input current, C = 0.8 pF/cm2 is the membrane capacity, and 7 = 1.9 ms is the
recovery time constant. The right-hand side of the first equation is the sum of the input current and
Na+ and K+ ion currents. The passive leakage current of the original HH model is absorbed into the
Na+ current. The second equation represents the behavior of the recovery variable R, which describes
the K+ channel as a memristive element.

To move from a continuous model of dynamical system (1) to the set of investigated ordinary
differential equation (ODE) solvers, the following methods of numerical integration were used: the
Explicit Euler method (EE), the Semi-Explicit Euler method (SEE), the Explicit Midpoint method (EMP),
and the Modified Explicit Midpoint method with a smoothing step (MEMP). The choice of explicit
methods of the first and second order was determined by the simplicity of their implementation in
integer representation and the visibility of the observed numerical effects.

2.1. Floating to Fixed Point Model Conversion

Conversions of ODE solvers with floating points to integer solvers were implemented using the
approach described in [20]. First, the minimum and maximum possible values of each state variable
of system (1) were determined by preliminary simulation. After that, the largest modulus value was
selected among all state variables and system parameters to determine the required number of bits to
store the integer part of the fixed-point data type (FXP). It was shown that to store the integer part
of the state variables and parameters required not less than six bits. Thus, all state variables and
constant coefficients of system (1) were converted to the FXP data type, where one bit is allocated for
a sign, seven bits are allocated for storing the integer part, and the remaining bits are allocated for
the fractional part. It should be noticed that the number of bits of the integer part was increased by
one in order to guarantee an overflow avoidance of the bit grid during calculations. In the research,
integer models of 32-bit and 64-bit FXP data types were explored, the fractional parts of which take
24 and 56 bits, respectively. Investigation of models with a longer bit grid is not of interest at the
moment, since modern computing platforms do not support arithmetic operations on a hardware
level for machine words longer than 64 bits. For the same type, the software implementation of these
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operations requires additional hardware costs that negate all the benefits of using an integer data
type. It would be advantageous to get 16-bit FXP system models, which would allow the use of
low-power and less-expensive hardware platforms for implementing large neural networks. However,
preliminary simulation showed that system (1) cannot be adequately represented in a case of such
limited bit length.

After converting all variables and constants to the FXP data type, adequate simulation is still not
guaranteed. In the process of calculations, the values of state variables can overflow the bit grid. This
situation is most probable while calculating the (17.81 + 47.71V + 32.63V?) part of the first equation of
system (1). This was considered while generating the FXP solvers and compensated by organizing the
correct order of calculation. For example, the algorithm suitable for the integer implementation of the
ODE solver of system (1), constructed on the basis of the Euler method, looks as follows:

Vi) = Vi + (-£17.81 - 247.71V — £32.63V2)(V - 0.55) — £26.0R(V - 0.92) + I

2
R(i41) = Ry — #R+ 1354V + 1.03% @

where F is the constant integration step size, and i is the solution time.

2.2. Accuracy of the Fixed Point Simulation

Let us estimate the accuracy of various implementations of system (1) on the basis of the difference
between the values of the state variables of the 32-bit and 64-bit FXP models in comparison to the
floating-point model (double, DBL) in the time domain. Figure 2 provides charts of absolute error for
the EMP-based solvers.
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Figure 2. The absolute error of (a) 32-bit fixed-point (FXP) and (b) 64-bit FXP models compared with
that of the double (DBL) model.

The simulation was performed with the parameters given in equation (1). The initial conditions
for all models are the same: Cy) = —0.65, R(g) = 0.097. The integration step size is h = 0.001. The input
current was set according to the following law: I = 0.075 + 0.007 sin[27 0.2646(i + h)]. The models
based on the EE, SEE, and MEMP methods demonstrate similar behavior and errors in the case of
the same simulation parameters. With increasing simulation time, the effects of the accumulation of
differences between the FXP and DBL models can be observed (Figure 3).
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Figure 3. The absolute error of (a) 32-bit FXP and (b) 64-bit FXP models compared with that of the DBL
model in the case of long simulation time.

Figure 3 shows that error accumulation leads to a complete divergence between the trajectories
of the two models. For the 32-bit EMP-based solver, it occurs after 30 ms of simulation, while the
64-bit solver switches to a different operational mode after 400 ms. It should be noted that the process
of distancing the trajectory of the integer solution from the trajectory of the solution of the original
algorithm is inevitable not only due to the limitations of the bit grid but also because of the different
order of arithmetic operations in the solvers. However, the stability of the solution is retained, as was
confirmed in a series of experiments.

3. Results

3.1. Resonant Spike Generation

The simplified HH neuron model can demonstrate a stationary mode, damped subthreshold
oscillations, and spike generation mode. Therefore, considering Izhikevich’s classification [21], the HH
model is a bistable resonator.

In Figure 4 the represented dynamical maps demonstrate the behavior of system (1), which was
implemented using the solvers under investigation, when applying a pulse signal to its input with
amplitude I = 4.5 pA and different values of period T and pulse width w. The period T ranged from
20 to 40 ms with step AT = 0.05, and the pulse width ranged from 10 to 30 ms with step Aw = 0.05.
The white areas on the diagrams of Figure 4 correspond to the stationary mode and the mode of
subthreshold oscillations, while blue areas correspond to the spiking mode for the considered 32-bit
and 64-bit FXP and DBL solvers built using the following methods: EE, SEE, EMP, and MEMP. The
integration step size for all experiments was the same & = 0.01 ms.
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Figure 4. Areas of spiking mode for dynamical system (1) relative to period T and pulse width w when
applying pulsed input current with amplitude I = 4.5 pA for 32-bit FXP, 64-bit FXP, and DBL solvers
based on the EE, SEE, EMP, and MEMP methods.

6 of 16
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The results showed that the excitability regions mainly form diagonal bands. The number of
bands depends on the integration method used. The solvers based on the IE and SEE methods create
the smallest excitability area: just three bands. The EE method leads to the highest number of bands
in the excitability area, while the second-order methods EMP and MEMP give intermediate results.
The transition to an integer data representation reduces the excitability area for each of the considered
solvers. Table 1 provides a numerical assessment of this phenomenon. The number of lost excitability
areas for the 32-bit and 64-bit FXP solvers relative to the DBL solvers for given simulation parameters
was calculated as a percentage.

Table 1. The difference in area for the spiking mode for DBL and FXP solvers.

EE Solver SEE Solver EMP Solver MEMP Solver
EXP32 (1073%) 2.41 0.075 0.131 0.156
EXP64 (1073%) 2.35 0.018 0.012 0.006

As one can see from Table 1, the FXP solvers of system (1) based on the EE method most strongly
lost sensitivity to the pulse signal. However, these losses were calculated in thousandths of a percent.

3.2. Chaotic Spike Generation

A series of computational experiments were carried out for the case when dynamical system (1)
goes into a chaotic mode of generating action potentials in response to a signal I = Iy + A sin(2nwt).
The interspike interval histograms were used as an analysis tool. They represent the dependence
between the number of intervals n among spikes and their duration ¢. In [22], it was concluded that
the application of interspike interval histograms to solvers based on first-order methods is impractical
because they do not maintain the chaotic mode of the system. The diagrams for the DBL, 32-bit
FXP, and 64-bit FXP solvers built using the methods EMP and MEMP are represented in Figure 5.
Simulations were conducted on the time interval T = 105 ms with integration step / = 0.01 for all
solvers under consideration.

Figure 5 shows that the total number and duration of time intervals differ for all neuron models
under consideration. However, it cannot be said that 32-bit FXP solvers are inferior to 64-bit EXP
solvers in this series of experiments. It should be also noticed that differences in data type more
strongly affect the solvers based on the EMP method: for the FXP64 EMP solver, intervals longer than
22 ms were not detected, although such intervals were observed on the prototype of the DBL solver.

3.3. Refractory Period

In this part of the research, we investigated the refractory period of the neuron model solvers.
This period is the response time of a neuron model when two short-term current pulses are sent to its
input. A common representation of input and output signals is provided in Figure 6.
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Figure 5. The interspike interval histograms (150 bins) for the DBL, 32-bit FXP, and 64-bit FXP solvers
built using the methods EMP and MEMP.
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Figure 6. Input and output signals generated during refractory analysis of system (1).
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The time interval between the first and the second pulses ranged from 50 to 70 ms. The pulse
width was 1 ms. Simulations were conducted on the time interval T = 100 ms with integration step h =
0.005 ms. The results provided in Figure 6 were obtained for the input pulse amplitude A = 20 pA.

Figure 7a demonstrates that the occurrence times of spikes for system (1) almost coincide. The
experiments showed that the data type of the EE, SEE, EMP, and MEMP solvers affects this characteristic
significantly less than the numerical integration method that forms the basis of the solver. The maximum
values of discrepancy in the time of occurrence of the second spike for the FXP solvers compared to the
DBL solvers based on the same numerical integration method are given in Table 2. Figure 7b represents
the differences between the DBL solvers on the basis of EE, SEE, EMP, and MEMP. The difference in
time of occurrence of the second spike here reached tenths of a millisecond.

56-
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__ 704
= = | 55.85-
E E
'ﬁ 65- % 55.8-
o o
2. 2. | 55.75
L'a o
: 60-| e s
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50 : : : : : : : : T 1 55.55
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Delay between pulses [ms] 54 5425 545 5475 55 5525 555
Delay between pulses [ms]
(a) (b)

Figure 7. The refractory periods of the EE, SEE, EMP, and MEMP solvers of the system (1) while
sending two pulse signals with amplitude A = 20 pA. The subgraph shows the observable difference
between solutions obtained by various methods.

Table 2. The maximum values of discrepancy in the time of occurrence of the second spike for DBL
and FXP solvers while sending two pulse signals with amplitude A = 20 pA.

EE Solver SEE Solver EMP Solver MEMP Solver
FXP32 (ms) 1.375 x 1073 2.771 x 1073 1.287 x 1072 1.841 x 1073
FEXP64 (ms) 1.101 x 10712 8.458 x 10713 8.549 x 10713 1.001 x 10713

Table 2 demonstrates that all FXP solvers of system (1) give a similar discrepancy in occurrence
time of the system (1) response regardless of the accuracy order of the integration method on which
they are based.

In the case of input pulse amplitude A = 12 uA and the same simulation parameters, we obtained
the results represented in Figure 8.
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Figure 8. The refractory periods of the EE, SEE, EMP, and MEMP solvers of the system (1) while
sending two pulse signals with amplitude A = 12 uA. The subplot shows the difference between the
trajectories in a larger scale.

In the case of this amplitude, disappearance of the second spike at some intervals of time delay
of the second input pulse was observed. The differences in behavior for the considered solvers of
system (1) are retained. This can be seen in Figure 8b. However, compared to the previous experiment,
the solvers on the basis of EE, SEE, and EMP match up to hundredths of a millisecond, and just the
MEMP-based solver demonstrates a significantly different time of occurrence of the second spike on
the system (1) output, calculated in tenths of a millisecond.

The FXP solvers give a greater discrepancy with DBL solvers in terms of response time with the
input signal amplitude A = 12 pA. Similar to in the previous experiment, this difference is less significant

than the difference between solvers based on various integration methods. This is represented in
Table 3.

Table 3. The maximum values of discrepancy in the time of occurrence of the second spike for DBL
and FXP solvers while sending two pulse signals with amplitude A = 12 pA.

EE Solver SEE Solver EMP Solver MEMP Solver
FXP32 (ms) 4.659 x 1073 2.775 x 1073 7.022 x 1073 10.916 x 1073
FXP64 (ms) 1.240 x 10~11 3.711 x 10712 6.658 x 10712 5.866 x 10712

3.4. Hysteresis

In this part of the study, we explored the response of various neuron models to the half-period
of the triangular wave. Such analysis allows for estimating the difference in hysteresis for system (1)
solvers. Figure 9 illustrates an example of the input and output signals. The simulation was performed
on the time interval T = 400 ms with integration step /1 = 0.005 ms. The period of the input signal was
T = 800 ms, and the amplitude of the input signal was A = 40 pA.
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Figure 9. Hysteresis produced by system (1) in response to a triangular current ramp.

In order to evaluate the differences between the solvers in detail, the interspike interval histograms
of system (1) were plotted. An example of these diagrams is shown in Figure 10. The time in
milliseconds is plotted on the y axis and the number of interspike intervals on the x axis.
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[=1
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4

Figure 10. Interspike intervals for dynamical system (1) when applying a triangular input signal of
period T = 800 ms and amplitude I = 40 pA for DBL (a) and 32-bit FXP (b) Euler method solvers.

The processing of the results obtained during these two experiments is summarized in Tables 4
and 5.

Table 4. Spiking beginning time errors between FXP and DBL solvers, ms.

Data Type EE Solver SEE Solver EMP Solver MEMP Solver
FXP32 25 25 22 30
FXP64 0 7 7 8

Table 5. The largest interspike interval errors between FXP and DBL solvers, ms.

Data Type EE Solver SEE Solver EMP Solver MEMP Solver

FXP32 0.117 0.003 0.05 0.12
FXP64 0.001 0.097 0.053 0.03
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According to the results of the hysteresis analysis, we can conclude that the MEMP method is the
worst for fixed-point implementation. The EE method reproduces hysteresis properly even on 32 bits,
but it poorly reproduces interspike intervals. The EMP method provides minor error compared to DBL
for both bit lengths and can therefore be recommended for practical use.

3.5. Variation of the Integration Step Size

In discrete solvers of chaotic systems, the integration step size affects the system mode defining
the rate of accumulation of rounding error. It leads to the emergence of a chaotic mode in points where
it was not in the original system, and to the disappearance of this mode in the points where it exists in
the prototype. To estimate the divergence of the DBL and FXP models using this criterion we built
bifurcation diagrams that use the discretization step as a nonlinearity parameter. The charts of such
dependency are called h-diagrams [23,24]. h-diagrams of the DBL and FXP solvers built on the basis of

EMP are presented in Figure 11.

8- 8-
" "
£ g
24 24
g g
—— ——
= A=
o o
4 e
o &
g g
= A=
T T T 1 2 T T T 1
0.001 0.01 0.02 0.03 0.001 0.01 0.02 0.03
Step-Size, h Step-Size, h

(a) (b)
Figure 11. h-diagrams for system (1) built with EMP solvers: (a) 32-bit FXP, (b) DBL, and 64-bit FXP.

The DBL and FXP solvers demonstrate chaotic model behavior for parameters specified in system
(1) and values of integration step size h € [0.001;0.03]. Differences between the DBL solver and 64-bit
FXP solver are insignificant and almost invisible. However, different from them, the 32-bit solver
demonstrates chaotic behavior at small integration step sizes. The models based on the EE, SEE, and
MEMP methods give close results. A more detailed demonstration of the difference in dependency of
chaotic mode on integration step size for the researched models can be seen in Figure 12.
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Figure 12. The numbers of interspike intervals for 32-bit FXP, 64-bit FXP, and DBL solvers obtained by
the methods (a) EE, (b) SEE, (¢) EMP, and (d) MEMP.

Figure 12 shows the dependency of the number of time intervals between spikes on integration
step sizes. It can be noticed that methods of the second accuracy order (EMP, MEMP), compared to
methods of the first order (EE, SEE), depend less on the integration step size and provide more stable
solutions within the entire selected integration step size range. However, they are more sensitive to the
data type used. On small integration step sizes € [0.001;0.007], a significant difference between the
DBL solver and 32-bit FXP solver can be observed. This is not present in solvers built on the basis of
first-order methods.

4. Discussion and Conclusions

Software models can be not applicable in many practical and scientific tasks because of their low
performance and negative influence of the operating systems in real-time applications. In the last
decade, scholars have intensively worked on high-speed realistic implementation of neuromorphic
system in hardware. Meanwhile, these studies focused mainly on the interaction of neurons and the
overall network architecture, while comparatively little attention has been paid to numerical solvers
needed to synthesize finite-difference models reproducing single neuron dynamics. For example,
in recent work by Pani et al. [2], a 32-bit FPGA implementation of the Izhikevich neuron using the
explicit Euler method was shown. A good correspondence between the fixed-point model and the
floating-point simulation was established; this may confuse followers, as for the various neuron models,
different network architecture and different bit-length FPGA simulation results may not be that close
to the software simulation results. In our work, we focused on the dynamics of individual neurons
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and studied it in the case of various numerical methods and bit lengths to help developers correctly
choose a numerical implementation.

Our present study is devoted to the possibility of a realistic spiking neuron model implementation
(the simplified Hodgkin-Huxley model) using fixed-point arithmetic with bit lengths of 32 (FXP32) and
64 (FXP64) bits, which is relevant when implementing neuromorphic systems on FPGAs. For numerical
simulation of the neuron dynamics, four methods were chosen: the Explicit Euler method (EE), the
Semi-Explicit Euler method (SEE), the Explicit Midpoint method (EMP), and the Modified Explicit
Midpoint method with a smoothing step (MEMP). These methods were tested on various problems
often found in the scientific literature on natural and artificial neuron studies. Therefore, the obtained
results can be considered valid for a wide class of problems associated with neuron simulation.

To summarize the results of all the experiments, Table 6 is given. In the left column for each bit
length, the method providing the smallest simulation error compared to the double (DBL) data type is
placed. Methods listed in the right-hand columns are the runners-up.

Table 6. Table summarizing the results of the study.

FXP32 FXPo64
Test Method Providing Second-Best Method Providing Second-Best

Lowest Error Method(s) Lowest Error Method(s)
Resonant spike generation SEE EMP MEMP EMP
Chaotic spike generation EMP EE MEMP SEE
Refractory period EMP EE MEMP EMP

Hysteresis (spiking phase error) EMP EE, SEE EE EMP, SEE

Hysteresis (largest interspike interval) SEE EMP EE MEMP

The following conclusions can be drawn from the results of the study:

e  With a 32-bit word length, the EMP method having second-order algebraic accuracy turned
out to be the best solver. Among the first-order methods, the SEE method is preferable. The
MEMP method seems to be worse for a low-bit implementation due to the higher number of
arithmetical operations.

e  With a bit length of 64 bits, the MEMP method turned out to be the most accurate. The other three
methods competed well with each other for accuracy in various tests. Taking into account its
second-order algebraic accuracy, the EMP method is preferable.

e  Figure 12 shows that when using the EMP and MEMP methods with different integration steps,
the dynamics of the neuron remains relatively unchanged, while the EE and SEE methods strongly
affect the dynamics. The difference in the number of time intervals at various steps can reach 2
times, so the use of the Euler method and its modifications in neural network emulators cannot
be recommended.

e Summarizing the two last points, in the general case, one should choose the EMP method to
reproduce the dynamics of neurons in fixed-point arithmetic.

In future studies, we will check intermediate bit lengths (such as 40 bits) to establish a smoother
dependence of the method preference according to data type. The implementation of a neuron and
neuromorphic system model on FPGA is also of interest.
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