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Abstract: Power electronic converters are used to transform one form of energy to another. They are
classified into four types depending upon the nature of the input and output voltages. The inverter is
one among those types; it converts direct electrical current into alternating electrical current at desired
frequency. Conventional types of inverters are capable of producing voltage at the output terminal
that can only switch between two levels. The range of output voltage generated at the output is low
when they are used for high power applications. To improve the voltage profile and efficiency of
the overall system, multilevel inverters (MLIs) are introduced. In multilevel inverters the voltage
at the output terminal is generated from several DC voltage levels fed at its input. The generated
output is more appropriate to a sine wave and the dv/dt rating is also less leading to the reduction in
EMI. Though they possess many advantages compared to the conventional inverters, the structural
complexity and triggering techniques involved in designing multilevel inverters are high. Many
studies are being carried out in defining new topologies of MLI with reduced switch as well as with
the implementation of different PWM techniques. This paper will provide an extensive review on
variety of MLI configurations based on the parameters such as the number of switches, switching
techniques, symmetric, asymmetric, hybrid topologies, configurations based on applications, THD
and power quality.

Keywords: multilevel Inverter; THD; power quality; PWM techniques

1. Introduction

The term MLI (multilevel inverter) was introduced in the late 20th century with the advent of
a three-level converter. With the invention of multilevel inverters, the power rating of the device
was increased owing to the number of levels and the device count was reduced when compared to
conventional models. In recent times, the market for MLIs is becoming high in industrial sectors as well
as in the fields where there is a need for high-power and high-voltage rating devices. Another interesting
factor in the case of multilevel inverter is that it can be easily interfaced with renewable energy sources,
plug in electric vehicles, batteries and capacitors [1]. Apart from this, the MLI delivers a high quality
waveform with reduced harmonic distortion, capable of operating under fundamental and high
frequencies, high power quality and better electromagnetic compatibility. The different classifications
of multilevel inverters are as follows: the cascaded H-bridge multilevel inverter (CHB-MLI), the diode
clamped multilevel inverter (DC-MLI) and the flying capacitor multilevel inverter (FC-MLI). The
classification is shown in Figure 1.
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Figure 1. Basic classification of multilevel inverters (MLI).

In all the above-mentioned topologies, the quantity of electronic power switches required for
designing the topology is high. The number of gate drives associated with these types is also high,
which leads to a complex system. To reduce this complexity, several new topologies of MLI have been
designed and tested by numerous researchers who are working in this field. The schematic of the
newly derived topologies and techniques of MLI is shown in Figure 2.
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Figure 2. Classification of MLI types and techniques.

This paper discusses the different types of new topologies in MLI-based on structural configuration
and also their applications, their switching techniques, THD reduction and power quality issues.
The paper is organized in such a way that the structural configurations are discussed at first, followed
by the switching techniques, then some special topologies, and finally the power quality and harmonic
issues associated with the multilevel inverter.
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2. Structural Configuration of Multilevel Inverters

Based on the structural configuration MLI is classified into three types namely symmetric,
asymmetric and Hybrid MLIs.

2.1. Symmetric Multilevel Inverter

Conventional multilevel inverters such as CHB-MLIs, DC-MLIs and FC-MLIs fall under the
symmetrical category, since the magnitude of the DC voltage sources employed in the system are
equal [2]. A new power circuit topology for an 11-level output was designed and it is given in Figure 3.
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Figure 3. Circuit of 11-level inverter.

To increase the number of levels, two additional switches along with a DC voltage source was
added to the existing configuration as given in [3]. But this configuration is different from the existing
method due to the absence of a bidirectional switch in it. The desired voltage of the circuit configuration
was derived from the following equation,

Nstep = 2n + 1 (1)

where n represents the number of dc voltage sources.
The maximum voltage at the output terminal (Vomax) of this n cascaded multilevel inverter is:

Vomax = n × Vdc (2)

The voltage at the output end (Vo) can be increased by connecting the ‘N’ number of basic circuits.
Though the inverter topology explained in [4] delivers a maximum voltage output, the number of
switches is high. This leads to increased switching losses in the system. To suppress this shortcoming, a
seven-level MLI with four DC sources was proposed by the authors in [5]. The symmetric configuration
works in a fashion based on a pulse pattern, which is unique in nature to trigger the switches at the
proper instant. The reduction in switch count results in low switching losses even though the sources
are less utilized. Instead of using an H-bridge, this topology employs two switches for reversing the
polarity. The seven-level, five-switch MLI is given in Figure 4.
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Figure 4. Circuit of seven-level five-switch inverter.

The output voltage levels for the investigated topology can be calculated as follows:

p = (2 ∗ (S − 3)) (3)

where, p = number of output voltage levels,
S = number of switches

p = (2 ∗ Vdc − 1) (4)

where, Vdc = number of dc sources
One of the main advantages of the symmetrical multilevel inverter is that it possesses very high

modularity, which is absent in case of the asymmetrical MLI. Several research works are being carried
out in the field of multilevel inverters, especially in symmetric and asymmetric configurations due
their simplicity and efficiency compared to the conventional inverters. Such topologies are explained
in a number of studies [6–10], where researches used a high number of power electronic semiconductor
switches and gate drive circuits. Due to this, the circuit becomes complex and expensive. On account of
this, a novel MLI with a reduced number of switching devices is suggested for producing a nine-level
output. The circuit is shown in Figure 5.
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The overview of the symmetrical configuration for M-level output is given as:
The required number of controlled switches is given by

(M + 5)/2 (5)
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The number of driver circuits required

= (M + 5)/2 (6)

The total number of diodes is given by

(M + 1) (7)

The number of DC sources required can be determined as

(M − 1)/2 (8)

Apart from this, the authors have also given a cascaded version of this nine-level topology [11], as
shown in Figure 6.
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Figure 6. Cascaded MLI circuit.

The above configuration is designed in such a way that it has the ability to decrease the stress
across the devices so that it can be employed in applications where there is a need for higher voltage.
The H-bridge and the DC sources are switched with high switching frequency.

2.2. Asymmetric Multilevel Inverter

The only difference in the asymmetric multilevel inverter topology to that of symmetrical type
is the rating of the DC input voltages and its control techniques. A cascaded H-bridge MLI with a
lesser number of bridges is analyzed in [12]. This topology is capable of delivering maximum voltages
at higher speeds even with minimum switching frequency. A seven-level asymmetric cascaded type
inverter made up of two H-bridges for each phase is given in Figure 7. The DC source for the two
H-bridges H1 and H2 is Vdc/2 and Vdc respectively.

In the above figure, it is clearly shown that the asymmetrical inverter uses only two bridges (with
eight switches) for generating seven levels of output. The inverter is also subjected to different PWM
Techniques and the THD is found to be low. Another asymmetric configuration is proposed by the
authors in [13] with a high frequency link as shown in Figure 8.

The high frequency link employed in the system is used to supply the supplementary bridge,
which is made up of a series-resonant converter along with a ferrite core (torroid core) transformer and
diode rectifiers. The transformer used in this topology is to provide galvanic isolation between the
bridges. The operation of MLI is based on a control mechanism called nearest level control (NLC).
The controller will match a voltage signal close to the reference signal value. The power delivered in
this system is inversely proportional to the frequency.
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The controller is operated in such a way that the output voltage has to be varied whenever the
source voltage is changed. This results in maintaining the voltage levels of the DC–AC converter and
the total harmonic distortion.

One more cascaded H-bridge MLI is suggested by the researchers in [14] for a seven-level output.
From the Figure 9, it is clearly understood that the number of switching devices gets reduced in this
topology when compared to the conventional cascaded multilevel inverter configuration.

For the same seven-level output, a new MLI topology with switched capacitor (SC) technique is
proposed and the circuit is given in Figure 10. It consists of a chopper and H-bridge inverter at the
front and back, respectively.

A combination of switches is turned ON for producing a positive voltage and negative voltages [15].
The asymmetric topology is also capable of producing higher levels of voltage, as explained by

the authors in [16]. The authors analyzed a 21-level MLI made up of a full bridge converter with
semiconductor switches and different voltage sources. A set of switches was used to obtain the different
levels of voltage. The circuit configuration is shown in Figure 11.
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2.3. Hybrid Multilevel Inverter

The hybrid multilevel inverter is an amalgamation of symmetric and asymmetric inverter
topologies. A novel hybrid MLI for drive applications was proposed in [17]. In this paper, the authors
discussed a three-phase inverter in which each leg of inverter delivers two outputs for each single phase
inverter and induction motor. This is capable of operating as three single-phase MLIs. The voltage
levels are obtained by matching the capacitor voltages with that of Vdc. The circuit is given in Figure 12.
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A similar topology was investigated by the researchers for a three-phase application [18,19]. In this
topology, each leg is meant for a single phase and it was designed with an H-bridge in series with a DC
voltage source. The circuit diagram for both the topologies is shown in Figures 13 and 14 respectively.
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An hybrid MLI based on switched capacitor technique is given in Figure 15. Here, a basic unit
along with an H-bridge configuration is proposed for developing the positive, negative and zero
voltages respectively. The magnitude of the voltage generated is given by

Vk = (5)V1 (9)

Due to the implementation of different voltage sources, it is 80 percent asymmetric in nature [20].
To overcome the drawbacks of utilizing more switches even for low-level inverters, a new hybrid

cell technology was proposed by the authors in [21]. The high level of voltage was achieved with the
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arrangement of multilevel VSIs (voltage source inverters). The number of DC voltage sources and
switches required for the implementation of the topology are selected based on the following expression:

M = (P + 5)/2 (10)

Vndc = (P − 1)/2 (11)

where P is the number of levels, M is the number of switches and Vndc is the number of DC voltage
sources. The circuit topology is as follows in Figure 16.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 38 

 

 

Figure 14 

Figure 13. and 14. Circuit diagram for three-phase MLI. 

An hybrid MLI based on switched capacitor technique is given in Figure 15. Here, a basic unit 

along with an H-bridge configuration is proposed for developing the positive, negative and zero 

voltages respectively. The magnitude of the voltage generated is given by 

Vk = (5)V1 (9) 

Due to the implementation of different voltage sources, it is 80 percent asymmetric in nature 

[20]. 

 

Figure 15. MLI based on switched capacitor. 

To overcome the drawbacks of utilizing more switches even for low-level inverters, a new 

hybrid cell technology was proposed by the authors in [21]. The high level of voltage was achieved 

with the arrangement of multilevel VSIs (voltage source inverters). The number of DC voltage 

sources and switches required for the implementation of the topology are selected based on the 

following expression: 

M = (P + 5)/2 (10) 

Vndc = (P − 1)/2 (11) 

where P is the number of levels, M is the number of switches and Vndc is the number of DC voltage 

sources. The circuit topology is as follows in Figure 16. 

Figure 14. Circuit diagram for three-phase MLI.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 38 

 

 

Figure 14 

Figure 13. and 14. Circuit diagram for three-phase MLI. 

An hybrid MLI based on switched capacitor technique is given in Figure 15. Here, a basic unit 

along with an H-bridge configuration is proposed for developing the positive, negative and zero 

voltages respectively. The magnitude of the voltage generated is given by 

Vk = (5)V1 (9) 

Due to the implementation of different voltage sources, it is 80 percent asymmetric in nature 

[20]. 

 

Figure 15. MLI based on switched capacitor. 

To overcome the drawbacks of utilizing more switches even for low-level inverters, a new 

hybrid cell technology was proposed by the authors in [21]. The high level of voltage was achieved 

with the arrangement of multilevel VSIs (voltage source inverters). The number of DC voltage 

sources and switches required for the implementation of the topology are selected based on the 

following expression: 

M = (P + 5)/2 (10) 

Vndc = (P − 1)/2 (11) 

where P is the number of levels, M is the number of switches and Vndc is the number of DC voltage 

sources. The circuit topology is as follows in Figure 16. 

Figure 15. MLI based on switched capacitor.

A neutral-point clamp with floating capacitors capable of producing multilevel voltages is
investigated in [22,23] and filed for patent (Efficiency and Dense Architecture: EDA5). The circuit
configuration of the mentioned topology is shown in Figure 17.
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3. Reduced number of Switches

Some of the modified MLIs with minimum number of switches have also been discussed here
in this literature. A new idea was proposed by the authors of [24] for producing very high levels of
stepped voltage. This can act as a replacement for the conventional cascaded MLI with numerous
switch counts. The suggested topology was tested for both symmetric and asymmetric configuration
for a switch count of six, as shown in Figure 18.

A seven-level inverter made up of six power semiconductor devices is investigated by the authors
of [25]. Both the performance and output rating of the inverter is maintained even though the switch
count was reduced. The topology comprises of three DC voltage sources at the supply side and a full
bridge circuit. It is a modification of the work implemented in [26], in which nine switches were used
for obtaining a seven-level output. The circuit is given in Figure 19.

Apart from normal techniques, this paper has implemented a novel technique for MLI by
combining the process of level generation and polarity generation. The general configuration consists
of n-number of DC sources for generating 3n levels of voltage at the output. The topology can be
extended to higher levels of voltage by adding additional DC sources with the basic unit. The circuit
for a nine-level inverter based on the above technique is shown in Figure 20.



Electronics 2020, 9, 433 11 of 33
Electronics 2020, 9, x FOR PEER REVIEW 11 of 38 

 

 

Figure 18. Circuit for modified MLI with minimum number of switches. 

A seven-level inverter made up of six power semiconductor devices is investigated by the 

authors of [25]. Both the performance and output rating of the inverter is maintained even though 

the switch count was reduced. The topology comprises of three DC voltage sources at the supply 

side and a full bridge circuit. It is a modification of the work implemented in [26], in which nine 

switches were used for obtaining a seven-level output. The circuit is given in Figure 19. 

 

Figure 19. Circuit for seven-level H-bridge inverter. 

Apart from normal techniques, this paper has implemented a novel technique for MLI by 

combining the process of level generation and polarity generation. The general configuration 

consists of n-number of DC sources for generating 3n levels of voltage at the output. The topology 

can be extended to higher levels of voltage by adding additional DC sources with the basic unit. The 

circuit for a nine-level inverter based on the above technique is shown in Figure 20. 

The number of switches required for the inverter for a specific value of voltage can be 

determined using the following formula. 

Number of switches: 

(NS) = 4m + 1 (12) 

where m is the number of DC sources [27]. 

Figure 18. Circuit for modified MLI with minimum number of switches.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 38 

 

 

Figure 18. Circuit for modified MLI with minimum number of switches. 

A seven-level inverter made up of six power semiconductor devices is investigated by the 

authors of [25]. Both the performance and output rating of the inverter is maintained even though 

the switch count was reduced. The topology comprises of three DC voltage sources at the supply 

side and a full bridge circuit. It is a modification of the work implemented in [26], in which nine 

switches were used for obtaining a seven-level output. The circuit is given in Figure 19. 

 

Figure 19. Circuit for seven-level H-bridge inverter. 

Apart from normal techniques, this paper has implemented a novel technique for MLI by 

combining the process of level generation and polarity generation. The general configuration 

consists of n-number of DC sources for generating 3n levels of voltage at the output. The topology 

can be extended to higher levels of voltage by adding additional DC sources with the basic unit. The 

circuit for a nine-level inverter based on the above technique is shown in Figure 20. 

The number of switches required for the inverter for a specific value of voltage can be 

determined using the following formula. 

Number of switches: 

(NS) = 4m + 1 (12) 

where m is the number of DC sources [27]. 

Figure 19. Circuit for seven-level H-bridge inverter.
Electronics 2020, 9, x FOR PEER REVIEW 12 of 38 

 

 

Figure 20. Nine-level inverter circuit. 

Like the above-mentioned topology, another new technique has been discussed in [28] to 

eliminate the voltage imbalance and also to protect the false conduction. This is done by designing 

an MLI without any capacitors and diodes. The circuit topology given in Figure 21 proved to be the 

best in terms of switching losses and THD. 

 

Figure 21. Multilevel inverter to reduce switching losses. 

The switching losses can also be reduced by implementing a circuit configuration like that 

shown in [29]. It consists of nine switches and two DC voltage sources for generating a voltage signal 

at nine levels. Though the switch count is high when compared to the previous topologies, it is lesser 

in count than that of a conventional inverter for the same level of voltage. The circuit is given in 

Figure 22. 

Figure 20. Nine-level inverter circuit.



Electronics 2020, 9, 433 12 of 33

The number of switches required for the inverter for a specific value of voltage can be determined
using the following formula.

Number of switches:
(NS) = 4m + 1 (12)

where m is the number of DC sources [27].
Like the above-mentioned topology, another new technique has been discussed in [28] to eliminate

the voltage imbalance and also to protect the false conduction. This is done by designing an MLI
without any capacitors and diodes. The circuit topology given in Figure 21 proved to be the best in
terms of switching losses and THD.
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The switching losses can also be reduced by implementing a circuit configuration like that shown
in [29]. It consists of nine switches and two DC voltage sources for generating a voltage signal at nine
levels. Though the switch count is high when compared to the previous topologies, it is lesser in count
than that of a conventional inverter for the same level of voltage. The circuit is given in Figure 22.Electronics 2020, 9, x FOR PEER REVIEW 13 of 38 
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A symmetrical inverter with reduced switch count is implemented in [30]. This can be extended
for higher voltage levels by adding the required number of voltages and switches.

The formula for calculating the number of switches is defined as follows:

NS = m + 3 (13)

NL = 2NS − 5 (14)
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where m is the number of DC sources in the symmetrical MLI.
The maximum value of voltage at the output end can be expressed as

Vo = nVdc (15)

The basic unit and the same topology for nine-level output voltage are given in
Figures 23 and 24 respectively.
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Figure 24. Basic unit and nine-level MLI.

Previously we have seen many topologies with reduced switch count and DC sources. In all the
cases, as the number of level increases the switches and sources gets increased. This may lead to circuit
complexity. To overcome this drawback, a novel design was implemented in [31], which generated
the same number of voltage levels per phase with the help of only two batteries and eight switches.
In this newly defined circuit, the number of devices and batteries reduced as the levels increased.
The schematic is shown in Figure 25.

Similar to a neutral point clamp inverter discussed in the asymmetric section of this literature, a
hybrid model combining a three-level NPC connected in series with a three-level H-bridge cells [32].
The general configuration of this topology is given in Figure 26. The bus voltage ratio is used to increase
the voltage levels and also to optimize the switching losses of the device. The power distribution
among the cells is improved with the hybridization technique. It also results in reduced switch count.
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Figure 26. Generalized three-level NPC circuit.

Many research works have also been carried out in this area as discussed in [33,34]. The structure
for both the topologies is shown in Figures 27 and 28 respectively.
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One more configuration based on bidirectional and unidirectional switches is explained by
the authors of [35,36]. In this paper, the authors used the CE (common emitter) configuration.
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The unidirectional switches comprised one power device and one reverse diode which blocked
the voltage in one polarity and makes the current flow through both paths. The same concept
was applied for bidirectional switch configuration as well. The circuit configurations are shown in
Figures 29 and 30 respectively.Electronics 2020, 9, x FOR PEER REVIEW 16 of 38 
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Figure 30. Bidirectional switch MLI circuit.

With the same concept, another paper proposed a structure based on the asymmetric structure
which combined a reduced switch MLI and a cascaded MLI. The different levels of voltages were
generated with a combination of unidirectional and bidirectional switches. The generated voltage
had different paths since the sources were connected in different directions and it served as the major
benefit of this topology [37]. The circuit topology is shown in Figure 31.

An overview of all the topologies discussed is given in the Table 1.
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Table 1. Classification of MLI based on its number of elements and structure.

Paper Reference
Number and

Year

Type of
Inverter

No. of DC
Sources

No. of
Switching

Devices

Number of
Diodes

No. of
Voltage
Levels

Voltage Gain and No.
of Voltage Levels

Formula
Switching Techniques Limitations Advantages

[4] & 2010 Symmetric 3 8 0 11 Vo,max = n*Vdc Carrier redistribution (CR)
technique -

A new algorithm has been proposed for the
generation of maximum voltage without losing

any level in output voltage waveform.

[5] & 2013 Symmetric 4 5 0 7 � = (2 × ∗ � − 3) Carrier based PWM technique Fails to determine suitable
PWM technique Lower THD level

[11] & 2016 Symmetric 4 7 3 9 - Multicarrier PWM technique It cannot be implemented for medium to
high voltage application

Cost is very low for designing the same level of
voltage when compared with conventional

method

[11] & 2016 Symmetric(modified) 4 10 2 9 - Multicarrier PWM technique
The values of dc sources get increased

proportionally in the range of ‘5:1’ for all
‘k’ number of cells.

It is applicable to wide range of voltage
applications

[12] & 2013 Asymmetric 2 8 0 7 Vo, max = (2N+1-1)Vdc Level Shifted PWM technique Unique filter design is required to
reduce harmonics Lower THD level

[13] & 2016 Asymmetric 2 10 2 7 (P1/P0) = (V1/Vo) On/OFF control Proper PWM technique is not
implemented

Suitable for medium power application such as
PV, fuel cell, and battery application

[14] & 2016 Asymmetric
cascaded MLI 6 12 0 7 M = Am/(Ac(k-1)) Multicarrier PWM technique Number of switches are high It can be utilized in crucial industrial

applications.

[16] & 2017 Asymmetric 4 12 0 21 - Multicarrier PWM technique Proper voltage balancing is required Requires less number of devices

[17] & 2012 Hybrid 1 (along with
4 capacitors) 18 0 9 - SPWM technique Complex control strategy The capacitor voltage of single phase inverters

are regulated by a sliding mode control

[18] & 2012 Hybrid 1 (along with
4 capacitors) 18 0 9 Lph = 2Ninv + 1 Fundamental switching scheme No modification has been made in carrier

or modulating signal Need for large inductor is eliminated

[19] Hybrid 3 7 3 9 V = 2S − 1.Vdc Not defined Proper PWM technique is not
implemented

Produces high number of levels with less
number of switches

[20] & 2015 Hybrid 2 12 0 25 Vk = (5 kí1) V1.
Symmetrical Step Control
Method & Fundamental

Switching Frequency Scheme

Symmetrical step control doest not give
efficient results

THD is low while using fundamental
frequency technique

[21] & 2016 Hybrid 1 (along with
3 capacitors) 6 0 7 Vndc = (N − 1)/2 Hybrid Modulation - THD is 3.21%

[24] & 2017 Reduced
Switch MLI 2 6 0 7 - Not defined Proper PWM technique is not

implemented
The conversion efficiency of the converter

increases because of less number of switches.

[26] & 2014 Reduced
Switch MLI 3 9 0 7 - Multicarrier APOD technique - Reduced switch count

[27] & 2019 Reduced
Switch MLI 2 9 0 9 kVdc Phase disposition Complex control strategy Utilization of a novel converter using voltage

multiplier concept reduces the DC source count.

[28] Reduced
Switch MLI 4 8 0 9 - Phase Opposition Disposition - Minimized THD and Switching losses

[30] Reduced
Switch MLI 1 5 2 11 Vo = nVdc Multicarrier based level-shift

PWM - Reduced Power loss

[31] Reduced
Switch MLI 2 8 0 9 V = V1 + V2 Not defined

Proper PWM technique is not
implemented and filter design is required

to reduce harmonics
Reduced switch count

[38] & 2016 Reduced
Switch MLI 1 9 2 9 - High Frequency Modulation Complex control strategy THD is low and the voltage stress on the power

switches in the back-stage is relatively relieved
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3.1. Multilevel Smart Inverter

A multilevel inverter (MLI) can act as a smart inverter by making some changes in the control
system of the inverter topology. A modified hybrid multilevel inverter with less switches was proposed
in [38]. In order to make the inverter a smart device, IoT was employed for its control. Initially, the
parameters of the inverter were scrutinized with the help of IoT widgets and settling measures. The
parameters that are not comparable (inactivity of packages) were combined together and separated
from the IoT gadget and the rest of the parameters were given to the goal gadget. This helped to find
the change probabilities for the associations. The overall system is given in Figure 32.
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Figure 32. Block diagram for multilevel inverter circuit.

A novel MLI configuration was analyzed in [39–41]. It delivers a nine-step output voltage with
high voltage gain. It consisted of a developed switched capacitor circuit (DSCC) at the source terminal
of the inverter and another circuit was a conventional H-bridge circuit. The H-bridge circuit connected
at the end terminal of the inverter produced the negative sequence of voltage levels at the output.
The circuit of multilevel inverter is given in Figure 33.
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To maintain a high voltage profile, an intelligent control technique can be used to control the
operations of the multilevel inverter. Another topology of MLI was discussed in [42]. In this paper, the
authors have implemented a circuit by integrating a full bridge inverter and combination of switched
DC sources [43]. The generalized circuit diagram of the above-mentioned hybrid MLI is shown in
Figure 34.Electronics 2020, 9, x FOR PEER REVIEW 21 of 38 

 

 

Figure 34. Circuit diagram for hybrid MLI. 

This hybrid configuration can be extended to high number of output voltage levels by adding 

corresponding switches and DC sources. The SDCS design operates in asymmetric manner in order 

to increase the voltage level at output side. 

3.2. PWM Techniques for MLI 

Numerous research works are being carried out on multilevel inverters by several researchers 

in the field of power electronics. In order to switch these inverters, various modulation techniques 

are used. Among all those types, carrier based and space vector modulation techniques are most 

commonly used. 

For a multilevel inverter, the modulation techniques such as single-carrier sinusoidal pulse 

width modulation (SCSPWM) and subharmonic PWM (SHPWM) can be used. Between the two 

categories, subharmonic PWM is an exclusive control strategy for multilevel inverters. The further 

classifications of SHPWM techniques are the phase-shifted carrier PWM method (PSPWM) and the 

carrier disposition PWM methods. 

In the carrier disposition method, the multicarrier waveforms are obtained with the 

implementation of any one of techniques discussed below: 

 phase disposition (PD); 

 phase opposition disposition (POD); 

 Alternative Phase Opposition Disposition (APOD). 

For instance, an m-level MLI using a level-shifted multicarrier modulation scheme requires (m 

– 1) triangular carriers, all having the same frequency and amplitude [44-45]. 

3.3. Phase Disposition Method: 

In the phase disposition (PD) method, all carriers are selected within the same phase. With 

reference to the related research works in this field, this method results in low THD at higher 

modulation indices than the other schemes [46]. The simulated waveform in the MATLAB/Simulink 

software for carrier waves and reference signals is shown in Figure 35. 

Figure 34. Circuit diagram for hybrid MLI.

This hybrid configuration can be extended to high number of output voltage levels by adding
corresponding switches and DC sources. The SDCS design operates in asymmetric manner in order to
increase the voltage level at output side.

3.2. PWM Techniques for MLI

Numerous research works are being carried out on multilevel inverters by several researchers
in the field of power electronics. In order to switch these inverters, various modulation techniques
are used. Among all those types, carrier based and space vector modulation techniques are most
commonly used.
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For a multilevel inverter, the modulation techniques such as single-carrier sinusoidal pulse width
modulation (SCSPWM) and subharmonic PWM (SHPWM) can be used. Between the two categories,
subharmonic PWM is an exclusive control strategy for multilevel inverters. The further classifications
of SHPWM techniques are the phase-shifted carrier PWM method (PSPWM) and the carrier disposition
PWM methods.

In the carrier disposition method, the multicarrier waveforms are obtained with the implementation
of any one of techniques discussed below:

• phase disposition (PD);
• phase opposition disposition (POD);
• Alternative Phase Opposition Disposition (APOD).

For instance, an m-level MLI using a level-shifted multicarrier modulation scheme requires (m – 1)
triangular carriers, all having the same frequency and amplitude [44,45].

3.3. Phase Disposition Method

In the phase disposition (PD) method, all carriers are selected within the same phase. With
reference to the related research works in this field, this method results in low THD at higher modulation
indices than the other schemes [46]. The simulated waveform in the MATLAB/Simulink software for
carrier waves and reference signals is shown in Figure 35.
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Figure 35. Waveform for phase disposition.

3.4. Phase Opposition Disposition

In this method, there is no harmonic at the carrier frequency and its multiples and the diffusion
of harmonics occurs in that region [47]. The simulation of the POD technique was carried out in
MATLAB/Simulink environment and waveform is shown in Figure 36.

Electronics 2020, 9, x FOR PEER REVIEW 22 of 38 

 

 

Figure 35. Waveform for phase disposition. 

3.4. Phase Opposition Disposition 

In this method, there is no harmonic at the carrier frequency and its multiples and the diffusion 

of harmonics occurs in that region [47]. The simulation of the POD technique was carried out in 

MATLAB/Simulink environment and waveform is shown in Figure 36. 

 

Figure 36. Waveform for phase opposition method. 

3.5. Alternate Phase Opposition Disposition 

In this method, each carrier signal is shifted by 180 degrees in phase from the other signal. This 

method gives almost the same results as the POD method but the only difference is that the triple-n 

harmonics are eliminated due to the cancellation of line voltages [48-49]. The simulation of the 

APOD technique was carried out in MATLAB/Simulink environment and waveform is given in 

Figure 37. 

 

Figure 37. Waveform for alternate phase opposition method. 

9.965 9.97 9.975 9.98 9.985 9.99 9.995 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

M
o
d

u
la

ti
o

n
 s

ig
n

a
l

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

M
o
d

u
la

ti
o

n
 S

ig
n

a
l

9.965 9.97 9.975 9.98 9.985 9.99 9.995 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

M
o
d

u
la

ti
o

n
 S

ig
n

a
l

Figure 36. Waveform for phase opposition method.
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3.5. Alternate Phase Opposition Disposition

In this method, each carrier signal is shifted by 180 degrees in phase from the other signal. This
method gives almost the same results as the POD method but the only difference is that the triple-n
harmonics are eliminated due to the cancellation of line voltages [48,49]. The simulation of the APOD
technique was carried out in MATLAB/Simulink environment and waveform is given in Figure 37.
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3.6. Multilevel Carrier PWM Technique

The conventional multilevel carrier PWM is capable of comparing several carrier wave signals
with a single reference signal per phase. For a p-level inverter, p-1 carriers with the same frequency
and amplitude are used. The authors have explained a novel PWM technique in which the carrier
signals are disposed alternatively [50]. The waveforms for both conventional and modified multilevel
PWM signals are shown in Figures 38 and 39 respectively.
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A hybrid-PWM technique was discussed in [51] using multiple carriers. This technique is a
hybrid between the carrier-disposition PWM and the phase-shifted PWM. The carriers are shifted
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both vertically and in phase in order to produce a pulse [52]. Thus, it includes the features of both the
techniques. The waveform is shown in Figure 40.
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Another hybrid modulation technique is investigated in [53]. The authors have explained a PWM
technique with the hybridization of the fundamental frequency modulation (FPWM) and multiple
sinusoidal modulations (MSPWM) techniques. The generated wave has reduced switching loss as in
the case of FPWM and also delivers as good harmonic characteristics as that of a MSPWM method. This
hybrid modulation scheme is integrated with sequential switching and simple base PWM circulation
scheme in order to balance the power dissipation among the power modules.

3.7. Depenbrock’s Discontinuous PWM Technique (DPWM)

This is a discontinuous PWM technique in which a zero-sequence signal is injected to
a sine wave [54,55]. This kind of signal is termed as Depenbrock’s discontinuous PWM
technique. The waveform for single-phase and three-phase Depenbrock’s PWM is shown in
Figures 41 and 42 respectively.
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3.8. Selective Harmonic Elimination (SHE)

The purpose of the SHE-PWM technique is to get rid of certain lower order harmonics [56–59].
Other than triple-n harmonics (since they are getting eliminated naturally in three-phase applications),
the remaining order of harmonics can be removed by means of proper filter. But the drawback in
SHE is that it cannot obtain solutions for non-linear equations easily. Therefore, certain optimization
techniques have to be implemented. The model waveform for the SHE method is shown in Figure 43.Electronics 2020, 9, x FOR PEER REVIEW 25 of 38 
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3.9. Space Vector PWM Technique

In the space vector modulation technique, the reference vector is approximated by switching
among the nearest voltage space vectors [60–65]. The steps involved in the implementation of SVPWM
are [66–68].

• Identification of each sector;
• Proper switching of voltage space vectors has to be determined;
• The duration of each voltage space vectors in the switching sequence should be identified;
• Determination of an optimum switching sequence.

To determine the operating sector a fractal-based technique was discussed by the authors in [69].
A fractal scheme based on a 60-degree-coordinate SVPWM was implemented in order to reduce the
computational complexity. A multilevel inverter (five-level) in a 60◦ coordinate system is shown in
Figure 44.
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A similar topology was discussed in [70] where the same two coordinate systems were implemented.
The vector diagram for the 60-degree SVPWM of this topology is shown in Figure 45.Electronics 2020, 9, x FOR PEER REVIEW 26 of 38 
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Several other SVPWM topologies were discussed [71–77] by the researchers for three-level inverters
and higher levels.

3.10. FPGA Based Modulation Technique

A novel technique based on FPGA control was proposed in [78]. It proved to the best in improving
the modulation index range and also the power quality. The control block for PWM generation using
FPGA is shown in Figure 46.
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3.11. Area Integration PWM Technique

This is a newer scheme explained by the authors in [79] for the generation of PWM pulses.
It involves evolutionary programming (EP) for optimizing the pulse width [79]. The basic idea behind
this technique is the integration of total area of the pulses with a sine region. Thus, it is named the area
integration PWM (AIPWM) technique. The basic idea for a seven-level output with six pulses per half
cycle using this AIPWM method is shown in Figure 47.
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4. Special Topologies of MLI

4.1. Switched DC Source MLI

A new topology of MLI with alternate DC sources linked on the opposite polarities was designed
by the authors in [80]. This kind of arrangement reduces the number of power semiconductors, which
are responsible for generating multilevel output. This topology can be used in medium-voltage drive
applications in order to provide isolated DC sources. It is mainly applicable to battery-powered
applications (such as electric vehicles and submarine propulsion). The general structure is shown in
Figure 48.

Electronics 2020, 9, x FOR PEER REVIEW 27 of 38 

 

 

Figure 47. Basic schematic showing Area Integration Pulse Width Modulation (AIPWM) technique. 

4. Special Topologies of MLI 

4.1. Switched DC Source MLI 

A new topology of MLI with alternate DC sources linked on the opposite polarities was 

designed by the authors in [80]. This kind of arrangement reduces the number of power 

semiconductors, which are responsible for generating multilevel output. This topology can be used 

in medium-voltage drive applications in order to provide isolated DC sources. It is mainly 

applicable to battery-powered applications (such as electric vehicles and submarine propulsion). 

The general structure is shown in Figure 48. 

 

Figure 48. Circuit diagram for switched DC-source MLI. 

 

Figure 48. Circuit diagram for switched DC-source MLI.



Electronics 2020, 9, 433 25 of 33

4.2. Reverse Connected Voltage Source MLI

The reverse connected topology was discussed by the authors for MLIs starting with five-level
voltages in [81]. An H-bridge configuration with four main switches and a single voltage source acts
as the main circuit. One leg of the main circuit had complementary switches and reverse-connected
voltage sources. To extract N-level output voltage, N + 3 switches had to be used. The circuit topology
is shown in Figure 49.
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4.3. Implementation of MLI Using LM350 Voltage Regulator

A five-level inverter using an LM350 voltage regulator was implemented in [82] for low power
applications, typically in the range of 30 W. With reference to the data sheet of LM350, the parameters
were chosen for the design of inverter. The different values of output voltages were obtained by
adjusting the terminals of the LM350 IC where the series biasing resistors were also connected.
A microcontroller is employed for the proper selection of resistor. The desired values were generated
by operating the inverter using a control program. The concept is explained with the help of a block
diagram shown in Figure 50.
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4.4. Hardware Implementation of Cascaded Seven Level Inverter

The hardware prototype was implemented for a conventional cascaded seven-level inverter at
R&D Power Electronics Laboratory of SEEE, at SASTRA Deemed University and the readings were
noted. The overall circuit comprised several H-bridge inverters, which were connected in series to
provide a sinusoidal output voltage. The inverter was divided into number of cells associated with an
H-bridge in each cell and the voltage could be obtained by adding the values of voltage generated by
each cell. For example, if there are k cells in an H-bridge multilevel inverter then the number of output
voltage levels was 2k + 1.

Cascaded inverters are more advantageous when compared to other two conventional types as
they require fewer components than the other configurations. This results in weight and cost reduction
of the overall system. Figure 51 shows a k level cascaded H-bridge inverter.
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The cyclone IV FPGA controller was employed in the control unit of multilevel inverter.
The hardware was set up and configured in the R&D lab at SASTRA Deemed University, India
for the circuit topology shown in Figure 52.

The inverter operated under open-loop and closed-loop conditions with a motor load at the
speed of 1300 rpm. In order to measure the voltage, a set of lamps was connected across a phase
and the readings were noted. The generated waveforms for the output voltage under open-loop and
closed-loop conditions were shown in Figures 53 and 54 respectively.

From Figures 53 and 54, it can be clearly observed that the inverter generated seven levels of
output at a maximum of 274 V and 254 V respectively.
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5. Conclusions

Multilevel inverters have become one of the major devices in the field of power electronics since
they can be used for both high-power and high-voltage applications. The multilevel inverter has more
benefits too, such as high resolution, low modularity, reduced switch count for higher levels of voltage
and in terms of its control mechanism. This work has been carried out in such a way that it covers the
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