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Abstract: Sentiment analysis is a rapidly growing field of research due to the explosive growth in
digital information. In the modern world of artificial intelligence, sentiment analysis is one of the
essential tools to extract emotion information from massive data. Sentiment analysis is applied to
a variety of user data from customer reviews to social network posts. To the best of our knowledge,
there is less work on sentiment analysis based on the categorization of users by demographics.
Demographics play an important role in deciding the marketing strategies for different products.
In this study, we explore the impact of age and gender in sentiment analysis, as this can help
e-commerce retailers to market their products based on specific demographics. The dataset is created
by collecting reviews on books from Facebook users by asking them to answer a questionnaire
containing questions about their preferences in books, along with their age groups and gender
information. Next, the paper analyzes the segmented data for sentiments based on each age group
and gender. Finally, sentiment analysis is done using different Machine Learning (ML) approaches
including maximum entropy, support vector machine, convolutional neural network, and long short
term memory to study the impact of age and gender on user reviews. Experiments have been
conducted to identify new insights into the effect of age and gender for sentiment analysis.

Keywords: sentiment analysis; social media; machine learning; lexicon

1. Introduction

The growth of the internet has led to a huge influx of data that holds vast and valuable insights
about the public opinion. Every internet user who expresses an opinion on the web becomes a part
of this information circuit where other users benefit from these public reviews and hence can make
an informed decisions. With the data collected (reviews, posts, comments) from different social media
platform such as Facebook, Twitter, Amazon, Goodreads, IMDb or blogs, the task of using these
reviews to find the polarity of public (positive, negative or neutral) opinion is called Sentiment analysis.
Sentiment analysis is generally performed on movie reviews [1,2], restaurant or food reviews [3,4],
along with data from microblogs [5,6], providing some useful insights to different organizations to
improve business strategies by attracting new customers. The categorization of customers based
on age and gender present an important information that can make products more effectively fullfill
the demands of different age and gender group persons. This fine-grain information about customers
are value-added to enhance the revenue of the company and its reputation in the global market.
E-commerce companies want to know the mindset of the customers. For example, females do more
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shopping in comparision to male in the E-commerce site and certain portals such as firstcry website
are more popular for various products of different age groups including newborn, infant, toddler, etc.
Sentiment analysis [7–10] has evolved over the years with different dictionary-based and machine
learning techniques implemented to obtain better accuracy. With the advent of deep learning
techniques [11–13] in sentiment analysis, prior information has also played a big role in adequately
expressing the polarity of opinions. Kahaki et al. [14] proposed an age estimation system based
on orthopantomographs images. The orthopantomogram is a dental X-ray of the upper and lower jaw.
The geometric mean projection transform was used on Malaysian children dental development dataset
with 456 patient’s X-ray images to extract and classify the 3rd molar teeth in the orthopantomography
images. The proposed system results showed a reliable age estimation method. The importance of age
estimation may also be useful for civil, criminal, law enforcement, airport security and for forensic
purposes. In a similar study on the same Malaysian children dataset, the automatic age assessment [15]
was proposed based on pre-trained deep convolution neural network. The results of this approach
concluded that the method can efficiently classify the images with high accuracy and precision.

Li et al. [16] proposed a framework providing an abstract of the opinions using sentiment
analysis. The authors have taken into consideration the opinion subjectivity and user credibility in
their proposed approach. Lockenhoff et al. [17] analyzed how different age groups express their
emotions. The authors found that older adults describe the positive emotions better than their negative
emotions as compared to younger adults. Another research by Zimmermann et al. [18] for emotion
regulation based on age and gender [19] of the person was able to handle emotions in a better way.
The results showed that people in middle adolescence showed the least emotional regulation as
compared to other age groups. Even gender differences were also encountered as either under or over
estimating a particular emotion. Thus, based on these established psychological differences between
people of different age and gender, we aim to find out whether these differences can also be observed
in the opinions that the individuals express on on-line platforms.

This study explores the differences in sentiment expressing abilities of different groups and their
subsequent impact on the sentiment reviews. This can be extremely helpful for commercial applications
as they can focus directly on a particular audience that is more receptive towards their product rather
than making a generalized marketing strategy. It will further help in differentiating their brand
from other leading companies to provide better customer support. Oh et al. [20] studied the market
segmentation on basis of gender and age of users to find the travel potential of different groups
based on their incomes and available leisure time. Keshari et al. [21] analyzed the effectiveness
of advertising appeals on different gender and age groups based on how the consumers respond
to these advertisements. Figure 1 demonstrates the basic flow diagram of the framework used for
sentiment analysis, where the data collected from social media is used to extract two datasets on basis
of age and gender. The different sentiment analysis approaches have been implemented on this data.
The main contributions of the paper are as follows:

1. Exploring the impact of user expression based on age and gender using different feature
extraction methods.

2. We create a dataset that contains user reviews along with the user’s age and gender information.
3. A detailed analysis on the impact of user expression is presented through extensive experiments.
4. Finally, a comparison with different machine learning and a dictionary-based classifier is

also discussed.

The rest of the paper is organized as follows. In Section 2, we discuss the existing research work in
sentiment analysis. In Section 3, the methodologies implemented on the dataset have been discussed,
along with a comparison of different approaches. Section 4 describes the experimental results with
dataset description. Finally, in Section 5 the work has been concluded along with discussion of some
future possibilties.
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Figure 1. Data points are collected from the social media along with the user’s age and gender information.
Sentiment analysis is then performed on the newly created data sets.

2. Related Work

In this section, we discuss the recent works of sentiment analysis as researchers try to find
a better approach to predict the sentiment polarity. Twitter and Facebook have been the most popular
social media platforms as people express their opinion about every topic on these social networking
sites, which helps in understanding public sentiment. Appel et al. [22] used twitter sentiment
and movie review datasets to implement a hybrid approach based on ambiguity management,
semantic rules, and sentiment lexicon. The authors compared this proposed hybrid system results
with the standard supervised algorithms such as Naive Bayes (NB) and Maximum Entropy (ME).
The proposed system achieves higher precision score and accuracy than the supervised algorithms.
Similarly, Zainuddin et al. [23] used a twitter dataset of aspect-based sentiment analysis to perform
a fine-grained analysis. They proposed a hybrid approach using a feature selection method that
performs better than the standard methods.

Blogs have been a relevant source of data in sentiment analysis with posts containing reviews
and comments. Fan et al. [24] analyzed blog text to improve the quality of advertisements in the blogs
that were more relevant to the user. To find the blogger’s overall emotions towards any particular topic,
Kuo et al. [25] create a social opinion graph as generally every blogger is somewhat influenced by its
social circle. So their social interactions can be used to find the overall sentiment orientation of the
blogger. Li et al. [26] used opinions expressed on the web such as blogs, reviews and comments to
design a new technique to further enhance the accuracy of clustering based approaches. This approach
is proven to more suitable in finding neutral opinions. The authors [27] proposed a new extraction
and opinion mining system based on a type-2 fuzzy ontology called T2FOBOMIE. The proposed system
received input from a user, extracts the relevant features from an input query and then converts into
to a search query with hotel reviews. The feature opinions, user requirements and hotel information
were integrated in a T2FOBOMIE system to achieve high performance.

Apart from using products, movie, restaurants or book reviews for sentiment analysis, researchers
have also focused on analyzing sentiment in other languages than English. Pak et al. [28] have proposed
a technique that works quite well for other languages as well, though they have not tested their
algorithm on multilingual data . The author [29] has implemented a methodology to find sentiment
polarity within a multilingual framework and the testing was performed using movie reviews in
German language collected from amazon. Similarly, Zhou et al. [30] translated Chinese reviews to
English language and then used English language corpus to perform sentiment analysis on these
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translated reviews. The authors presented that translated reviews outperform original reviews.
Another study on Chinese public figures has been performed in [31] to analyze the opinion polling
of public figures.

The analysis of opinions expressed by people from different genders or different age groups should
align with their psychological differences, as is illustrated by different research groups. There have
been multiple research studies on how different individuals handle different emotions and the way
these individuals express their emotions even before the advent of internet. The authors [32] examined
gender differences in conducting a study on 400 college students in five age groups from preschoolers
to adults. The study aligned with the stereotypes of gender and age emotional expressiveness.
Stoner et al. [33] considered people of both genders and in different age groups to study their anger
expressing ability. The research showed that young adult group expressed anger more as compared to
old adult age group. In this study, the author did not find out much differences on basis of gender in
this aspect.

A research by Davis [34] on gender differences in negative emotions showed that boys expressed
a greater negative affect as compared to girls when they were disappointed. Brody et al. [35]
researched more on gender and emotional expression and showed that gender differences in
emotional expressiveness were culturally specific in asian international students. Another study by
Kring et al. [36] in which they showed emotional videos to a group of students and reaffirmed that
women are generally more expressive than men even in case of experienced emotions. A study by
Birditt [37] examined age and gender differences in description of emotional reactions. It contained
185 individuals as 85 males and 100 female aged from 13 to 99 which showed that adolescents
and young adults were reported more likely to describe anger and giving more intensive aversive
responses as opposed to the male adult group.

3. Methodology

To process the reviews, the steps in the Figure 2 are followed. Firstly, the dataset segregated
into two sets on basis of age and gender and then separated into categories based on the specific age
and gender. Secondly, each particular data group is divided in training data and testing reviews.

Figure 2. Flow Diagram representing the steps taken for sentiment analysis where the classifier
algorithm is implemented at the end of training after the data pre-processing and feature extraction
and it used in testing step to produce the final results. The user reviews need to go through
pre-processing and feature extraction in the testing phase as well before being passed on to
the classifier algorithm.
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The reviews [38] are pre-processed to remove the unnecessary information from the reviews
that has no effect on the polarity of the sentence. So, we perform data cleansing through the steps as
shown in Table 1. Then, the feature extraction steps are performed as explained in Section 3.1.2.
Finally, the classifier algorithm predicts the label which when compared to the ground truth
gives the accuracy of the classifier. We have collected data regarding people’s preference for
the books (hard cover, kindle ebooks or audio books) along with their age and gender information.
We implement different algorithms for sentiment analysis on each set of data separately and the results
are then compared to identify the respective differences between the groups. Also, a dictionary-based
approach has been implemented on the collected dataset.

Table 1. Pre-processing steps that have been performed on the user reviews for doing data cleansing
and removing uninformative parts that has no effect on the sentiment score of the sentence.

S.No. Description of Noisy and Uninformative Parts in Reviews

1.
Removing punctuations, numbers and symbols since they do not add any
substantial meaning to the sentence that may affect it’s sentiment score.

2.
Removing stop words as they make no impact on the sentiment score of the
expressed opinion.

3. Replacing the acronyms of a word with the actual word.

4. Transforming the text to lowercase.

5. Replacing emoticons with the sentiment that the emoticon expresses.

6. Tokenize the review.

3.1. Feature Extraction

Bag of words feature [39] extraction is used in NB, ME and SVM methods, while word2vec creates
a feature vector using either Continuous bag of words or Skip gram model which is further used in
LSTM and CNN. The methods are explained below.

3.1.1. Bag-of-Words

Bag of words model is a very flexible and simple model used for feature extraction. This model
keeps a track of number of occurrences, also called term frequency of every word that appears in
the sentence. Also, a specific subjectivity score is assigned to each word of the sentence. The score for
each word is added up to find the total score. Depending upon this total score, the polarity of each
sentence is decided.

3.1.2. Word2Vec

Word2Vec model is used for forming word embeddings. It is a two-layer neural network created
by Tomas Mikolov at google to process text. It takes the text dataset as an input and then outputs a set
of vectors [40]. Word2Vec is a combination of two techniques, i.e., Skip-gram model and Continuous
bag of words (CBOW) model. This model is very useful as it detects similarities of words in its vector
form rather than textual format. These similarities are detected on the basis of word’s meaning guessed
through its past appearances and association with other words.

3.2. Dictionary-Based Classifier

Valence Aware Dictionary and Sentiment Reasoner [41] (VADER) is a dictionary-based approach
that maps words to sentiment by building a or a ‘dictionary of sentiment’. In this approach,
each word present in the sentence is assigned a score as per the meaning of that word in the dictionary.
A final compound score of the sentence is calculated which varies from −1 to 1. This score represents
whether the sentence is positive or negative. The compound score for each sentence in the dataset
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is combined and an average score for the whole document is analyzed. To compare it with the other
machine learning approaches, we convert the average score to accuracy by dividing the score of the
whole document by the total number of reviews in that particular data set. VADER focuses on the
words used in the sentence and then assigns score to each word based on the dictionary.

3.3. Machine Learning Based Classifiers

We discuss in detail five machine learning based algorithms to determine the sentiment accuracy
of the dataset.

3.3.1. Naive Bayes

This is a probabilistic model based on the Bag-of-words module to store only the frequencies
of each word and ignore their positioning with respect to each other. By using Bayes Theorem,
it estimates the probability that a feature set will belong to a particular predefined label. Naive Bayes
classification model [42], based on the distribution of words present in the document or sentence,
computes the posterior probability that this document or sentence will belong to a particular class.
The probability is based on the distribution and frequency of the words rather than their positioning
with respect to each other.

P(label| f eatures) =
P(label) ∗ P( f eatures|label)

P( f eatures)
, (1)

where P(label|features) determines the probability that a feature set belongs to a particular label.
P(label) is the prior estimate of the label. P(features|label) is the probability that the given feature set
belongs to this particular label and P(features) is the prior estimate that this given feature set occurred.
However, this classification system makes one fundamental assumption, i.e., words in a reviews,
category pair occur independent of other words.

3.3.2. Maximum Entropy

Maximum Entropy (ME) [43] belongs to the class of exponential models. Its polarity is more
based on the positioning of words rather than their frequencies. It does not assume that all the features
are independent of each other like Naive Bayes. Based on the principle of ME, from all the models,
we pick the one that has the largest entropy. The ME classifier uses encoding to convert the feature sets
into vectors. Then for computation of most likely labels for each feature set, we combine the calculated
weight for each feature [44].

The Maximum Entropy modeling technique provides a probability distribution that is as close to
the uniform distribution, so its result is better than Naive Bayes.

3.3.3. Support Vector Machine (SVM)

Support Vector Networks works for multiple machine learning problems such as regression
and classification. The main principle that works behind SVM is finding a particular linear classifier that
separates all the classes in the search space in the best possible manner. After the pre-processing of the
reviews, the improved feature sets were used for sentiment classification, i.e., positive and negative
reviews. With the help of hyper plane in support vector machine the data is divided into two classes
such as positive and negative. This hyperplane used to map the new examples or the data in the test
cases in the same search plane and predict the class to which the data example has more probability
of belonging [45].

3.3.4. Long Short Term Memory (LSTM)

Recurrent Neural Networks (RNN) focus on the issue of considering the past information so as
to understand the meaning of current and next words. LSTM network [46] is a type of RNN that is
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capable of handling long term dependencies as otherwise it was difficult for RNN to connect multiple
long term dependencies [47]. After being first introduced by Hochreiter and Schmidhuber in 1997,
LSTM has gone through multiple changes over the years. LSTM solves the problem of vanishing
and exploding gradient [48], which is a severe limitation for RNN.

The steps of LSTM are defined as: The first step is to decide the information that is going to be
deleted from the memory cell. A sigmoid layer executes this decision after looking at prior information
it−1 and current input ct. This sigmoid layer outputs a number between 0 and 1 that determines
the amount of information that needs to be retained based on weight Wo. ot represents the output
of the current cell, and bo is the bias for this particular cell.

ot = σ(Wo ∗ [it−1, ct] + bo). (2)

Next, it decides the new information that is to be updated into the memory cell. It is done through
two steps, a sigmoid layer to decide the values to update and a tanh layer to create a vector of new
values. nt denotes the information that is to be updates based on weight Wn and bias bn and Ṽt is
the data to be included in the current state information. An LSTM cell is shown in Figure 3.

Figure 3. Long Short Term Memory cell, the data flow is from left to right where the current cell input
parameter is ct, it−1 is the output from the previous LSTM cell containing prior information, which is
forwarded to the current cell. Both these values are concatenated based on the parameters nt which
denotes the information that is to be updated, ot which represents the output within the current cell
giving the final output value for this layer as it that serves as prior information to the next LSTM cell.

nt = σ(Wn ∗ [it−1, ct] + bn), (3)

Ṽt = tanh(WV ∗ [it−1, ct] + bV). (4)

Now this information is updated into the next cell Vt by multiplying the old state with ot.

Vt = ot ∗Vt−1 + nt ∗ Ṽt (5)
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In the last step, we again implement a sigmoid layer to find ft that denotes the information which
will be given as output based on weight W f and bias b f . The tanh layer updates the required parts
and gives it as the output of the cell.

ft = σ(W f ∗ [it−1, ct] + b f ), (6)

it = ft ∗ tanh(Vt). (7)

The final output it from this cell will serve as prior information for the next cell to find out
its subsequent cell state. Nowdays, LSTM are increasingly used to classify test data over other
classification algorithms. It is trained on book review dataset with 32 neurons per layer followed by
a sigmoid activation function. The netwok has been trained on different epochs and achieved good
accuracy compare to other algorithms.

3.3.5. Convolution Neural Network (CNN)

CNN was originally developed for computer vision and its applications, it makes use of local
features of the image on which multiple layers with convolving features can be implemented.
To implement CNN on the textual reviews, we train a CNN model [49] on book reviews dataset
with a single layer on top of the features extracted from the sentences using the word2vec model.
First layer is the convolution layer where we slide multiple filters of different sizes over the 128 word
embeddings dimensions to produce a feature map based on the particular filter. Max-pooling layer
follows this by convolving the results of previous layer into one long feature vector. Max pooling
layer finds the most prominent feature vector from the feature map belonging to every filter, which
is then passed on to fully connected softmax layer. Dropout regularization is performed before we
use softmax layer to classify the result. Regularization randomly drops out some hidden units from
the layer to prevent the co-adaptation on training data which may lead to over-fitting. This network is
shown in Figure 4.

Figure 4. First layers of the model form low-dimensional vectors from the sentence words. The convolution
is done by the next layer, using multiple filter sizes such as sliding over 3 or 4 words at a time. Next, the result
is max-pooled into a long feature vector and the final results is given using a softmax layer after adding
dropout regularization.

4. Experiments and Discussion

In this section, we first describe the dataset, explaining the process of data collection and its further
processing that we have done in our experiment. We present the results (see Sections 4.2.1 and 4.2.2)
obtained from the feature extraction methods and different classifiers.
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4.1. Dataset Description

One of the most crucial parts of this study is data collection. Generally, datasets for sentiment
analysis are easily available on the internet which can not be used here as along with the expressed
opinion. The micro-blogging and other sites like twitter, Facebook, Amazon, Goodreads, and IMDb do
not divulge their user’s personal information due to privacy concerns so we create a new dataset that
contains all the required information.

The dataset for this experiment is created by collecting opinions of nearly 900 users from
the social networking site Facebook. The users have answered a questionnaire containing multiple
questions that ask their reviews on preferences of book medium as a Google Form. The questionnaire
consisted of questions based on the user’s opinions regarding kindles, paperbacks, hardcover, picture,
and audiobooks. Further, the questionnaire discusses if the user’s thought that digital mediums such as
kindle or ebooks could replace hardcover or paperbacks for them. The questions elaborated on whether
the user liked audiobooks better than other formats and a short description of their opinions. The form
registers the user’s opinion, along with the gender and age groups to which they belonged. Along with
the user opinions, they have also stated their preference as a positive/negative opinion that serves as
the ground truth for the classifiers.

We have selected this domain because we intended to avoid topics with unbalanced spectrum
of audience like sports, fashion or television that leaned more towards a particular gender or age group.
The responses given by the users to the questionnaire is shown in Figure 5, from the overall reviews
we have received, 60% are positive, while the other 40% are negative. From this dataset, we have also
segregated the reviews into separate groups, first based on gender, where we have data in a 70% to 30%
division to more opinions expressed by the female users. Based on age demographics, the dataset
has four age groups into which the users have identified themselves. From the total reviewers, 40%
of them belong to the age group of Below 20. The age group 21–34 has nearly 30%, while 20% are in
the 35–50 age group. The rest of the users belong to the oldest age group of Above 50.

Figure 5. The collected reviews segregated into positive and negative reviews.
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4.2. Result Analysis

We have shown the result of machine learning and dictionary-based approaches on the basis
of age and gender information. The results of these classifiers are expressed in terms of accuracy [50].

Accuracy =
Correctly Predicted Observations

Total number of observations
. (8)

4.2.1. Effect of Age

The extracted dataset based on age is divided into four groups: one group with age below 20,
second with age from 21 to 34, third from 35 to 50 and the last one with age above 50. Thus, a total
four groups are created containing positive and negative responses from people of that particular age
group. Another group (without age information) containing reviews from all the age groups is formed
to compare its results to the other groups as shown in Figure 6.

Figure 6. Comparison on basis of Age between different Feature Extraction and Classifier techniques:
(a) Machine Learning classifiers using Bag-of-words feature extraction method; (b) Dictionary-based
approach; (c) Machine Learning approaches using word2vec feature extraction method.

Pre-processing of all the reviews is performed individually by removing the punctuations,
symbols and the stop words from the user reviews as explained in Section 3.1.1. Bag-of-words
model on pre-processed data is used to create feature vector which is then used in different classifiers
such as NB, ME and SVM. The low dimensional feature vectors are formed from sentences using
word2vec model which are then used in LSTM and CNN methods. VADER is also implemented
on the pre-processed data. After these approaches are implemented on the separated groups of data
individually, the results are recorded.

The ’Above 50’ age group performs better as compared to all other age groups in all the classifiers
with the highest accuracy of 78% in CNN and SVM classifier. ’Below 20’ age group has better accuracy
compared to the other two middle age groups where the age group ’21–34’ performs better than
the other age group in all instances, even though the difference between these two age groups are not
considerable. Better performance of the eldest age groups shows that the sentiment analysis approaches
are able to predict the sentiment in this age group more easily as compared to others groups. The group
of data without any age information performs better in LSTM and CNN as compared to other machine
learning approaches, where it performs worse than the groups with age information.
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4.2.2. Effect of Gender

We label the full dataset into two groups (Male and Female) based on gender containing
their positive and negative reviews. Pre-processing, feature extraction and different classifiers are
implemented on these data groups similarly as in Section 3. The results are represented in Figure 7.

Figure 7. Comparison on basis of Gender between different Feature Extraction and Classifier techniques:
(a) Machine Learning classifiers using Bag-of-words feature extraction method; (b) Dictionary-based
approach; (c) Machine Learning approaches using word2vec feature extraction method.

It can be clearly seen that female data generates better accuracy as compared to the data without
gender information and the male data. Female data has the best accuracy in CNN classifier of 80%,
which is better than the other classifiers. This result aligns with the psychological studies that females
express their opinion better as compared to their male counterparts. The sentiment in female data is
easier to predict, hence giving a better accuracy. This pattern of female data having better accuracy can
be observed in all the machine learning approaches.

5. Conclusions and Future Work

In this paper, we have compared multiple sentiment analysis techniques on the dataset collected
from nearly 900 users from Facebook along with the users’ age and gender information. We extracted
this dataset into four groups to analyze the impact of age and gender on the way the user expresses
his/her opinion. Machine learning and Dictionary-based techinques have been performed to know
the sentiment analysis of the reviews. With respect to gender, female data recorded the best accuracy
while for age, the Above ’Age 50’ group has the better accuracy as compared to all other age groups.
The results can be further improved by collecting more data for both male and female and different
age groups.

In future work, we can also include exploration of reviews in audio and visual format to detect
emotions from the way of speech and facial expressions of the user to provide more comprehensive
investigations from different aspects.
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