

 electronics-09-00373

electronics-09-00373

Electronics 2020, 9(2), 373; doi:10.3390/electronics9020373

Article

HEAP: A Holistic Error Assessment Framework for Multiple Approximations Using Probabilistic Graphical Models

Jiajia Jiao

College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

Received: 27 January 2020 / Accepted: 20 February 2020 / Published: 22 February 2020

Abstract

:

Approximate computing has been a good paradigm of energy-efficient accelerator design. Accurate and fast error estimation is critical for appropriate approximate techniques selection so that power saving (or performance improvement) can be maximized with acceptable output quality in approximate accelerators. In the paper, we propose HEAP, a Holistic Error assessment framework to characterize multiple Approximate techniques with Probabilistic graphical models (PGM) in a joint way. HEAP maps the problem of evaluating errors induced by different approximate techniques into a PGM issue, including: (1) A heterogeneous Bayesian network is represented by converting an application’s data flow graph, where various approximate options are {precise, approximate} two-state X*-type nodes, while input or operating variables are {precise, approximate, unacceptable} three-state X-type nodes. These two different kinds of nodes are separately used to configure the available approximate techniques and track the corresponding error propagation for guaranteed configurability; (2) node learning is accomplished via an approximate library, which consists of probability mass functions of multiple approximate techniques to fast calculate each node’s Conditional Probability Table by mechanistic modeling or empirical modeling; (3) exact inference provides the probability distribution of output quality at three levels of precise, approximate, and unacceptable. We do a complete case study of 3 × 3 Gaussian kernels with different approximate configurations to verify HEAP. The comprehensive results demonstrate that HEAP is helpful to explore design space for power-efficient approximate accelerators, with just 4.18% accuracy loss and 3.34 × 105 speedup on average over Mentor Carlo simulation.

Keywords:

error assessment; approximate computing; probabilistic graphical models; multiple approximations

1. Introduction

Power and energy efficiency have motivated the coming forth of new approximate techniques for designing accelerators for applications with inherent resilience to errors [1]. By relaxing the quality of output results in image processing, data mining, pattern recognition applications, imprecise calculation, storage and communication can achieve more power saving and performance improvement. This approximate computing paradigm can be applied in different components of application-specified accelerators with different quality-power (or performance) tradeoffs at different abstractions layers [2]. There have been a variety of approximate techniques proposed for gaining power saving or performance improvement, which cover all the sites in approximate computing [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17], approximate storage [18,19,20,21,22,23,24,25,26,27,28,29,30], and approximate communication [31,32,33,34,35,36]. How to utilize these approximate techniques is a significant issue for designing a cost-effective approximate accelerator.

Error assessment (In the paper, error assessment is to evaluate the actively induced errors impacts on application output quality, where an approximate accelerator adopts some approximate techniques to gain power saving or performance. It is different from the random soft errors caused by high energy particles. Error assessment, error analysis, and error estimation are interchanged to use in the following paper) of approximate accelerators is critical for appropriate approximate techniques selection to maximize the power saving or performance improvement with acceptable output quality. Two kinds of approaches are usually used to characterize the error impacts of approximate techniques on final output quality. First is Mentor Carlo simulation to capture dynamic execution of applications exactly in approximate architectures. It often uses a large number of simulations to get the accurate statistical results [37,38,39]. This general-purpose approach provides dependable estimation, but requires too much time. The other is fast analytical modeling to characterize applications’ output quality in the underlying approximate architectures. It calculates the output quality of approximate configuration with a few formulas very quickly. However, these analytical models are usually limited to certain approximate sites such as approximate adders or approximate multipliers for calculation [40,41], approximate SRAM/DRAM/SSD/PCM [42,43,44,45] for storage, and approximate data transmission for communication [31,32,33,34,35,36]. Particularly, there are a variety of accuracy-power/performance tradeoffs for a specified approximate component. For example, approximate GeAr [15] performs an n-bit addition using multiple sub-adders of smaller size. The most significant r-bits of the sub-adders are considered as resultant bits and used in the result, while the remaining p-bits, the pervious bits, are used to estimate the carry propagation to upper bits. Different parameters (n,r,p) can be configured as different approximate cases. Therefore, the analytical models are fast but hard extensions from local component to the whole architecture directly.

From the above analysis, analytical modeling is faster than Mentor Carlo simulation, and more suitable for early design of approximate accelerator. To break the limits of the traditional analytical modeling only for components, the probabilistic approach is a good alternative [46]. Several probabilistic methods for error estimation in approximate adders or precise scaling have been presented recently [47,48,49]. The error impacts of approximate adders are evaluated by a compiler-driven error propagation and analysis approach in [47]. Error propagation rules are defined according to the different instruction types, and then Depth-First Search algorithm is used to merge the probability mass functions of all nodes through traversing the application’s data flow graph. Precision scaling is characterized by a Bayesian probabilistic approach to predict the relation between component-level functional approximation and application-level accuracy [48]. Each node is a three-state variable of precise, approximate, and unacceptable to represent the precise scaling well. The Bayesian based prediction of [48] is further extended to evaluate any application accuracy and support design exploration well in [49]. High accuracy and low computational time make this Bayesian probabilistic modeling attractive for assessing approximate techniques. However, the mixture of multiple approximate techniques can exploit the fine-grain quality-power tradeoffs, but has not been considered completely.

As a supplementary work to the existing probabilistic approaches, this paper proposes HEAP, a Holistic Error assessment framework to characterize multiple Approximate techniques with Probabilistic graphical models (PGM) for application-specified accelerator design. We firstly construct a unified Bayesian network via static application behavior analysis, and then can use mechanistic modeling or simulation driven empirical modeling for PGM node parameters learning of conditional probabilities tables (CPT). Finally, the probability of output quality at different levels can be calculated through exact inference fast and accurately. The main contributions of our work are:

	(1)

	
Unified assessment of multiple approximate techniques via PGM. We map error analysis of multiple approximations into a general PGM issue and propose a configurable framework HEAP for assessing various approximate techniques via PGM representation, learning, and inference. The heterogeneous Bayesian representation includes two types of nodes, which can configure approximations and track error propagation, respectively. Node learning is accomplished by mechanistic modeling or simulation driven empirical modeling to fill the CPTs of all nodes. Exact inference can maintain the high accuracy and fast speed of error assessment for multiple approximate techniques.

	(2)

	
Design exploration of approximate accelerators through flexible tradeoffs. Using the fast and accurate HEAP approach, the best combination of approximate techniques can be selected to maximize the power saving or performance improvement with guaranteed output quality. The configurability of proposed HEAP makes approximate techniques selection easy and efficient.

	(3)

	
Comprehensive verification by a case study of 3 × 3 Gaussian kernel. The comprehensive results demonstrate that the proposed HEAP achieves 4.18% accuracy loss and 3.34 × 105 speedup on average over Mentor Carlo simulation (1,000,000 samples) and good flexibility in exploiting fine-grain quality-power tradeoffs of multiple approximate techniques. A combined approximate configuration of approximate adder, criticality-aware data cache, and dual-voltage approximate communication performs the maximum power saving under guaranteed output quality.

The structure of this paper is as follows. Firstly, introduction and related work are described in Section 1 and Section 2, respectively. Next, Section 3 details the proposed framework HEAP, including unified PGM structure construction via static application behavior analysis, node learning for CPTs to characterize approximate techniques, and exact inference to calculate the probability of output quality at three levels. Then, the experiment configuration and results are presented in Section 4. Finally, the conclusion is drawn in Section 5.

2. Related work

In this section, we introduce the related works on a variety of approximate techniques in Section 2.1 and error estimation methods for approximate techniques in Section 2.2, respectively.

2.1. Approximate Techniques

To exploit the inherent error tolerance of applications, various approximate computing approaches are proposed via relaxing the reliability actively for higher performance and lower power consumption. According to the approximate sites, these approximate techniques can be classified into three categories:

	(1)

	
Approximate computing. Approximate computing can be achieved by software or hardware. The high-level approximate software can be exploited in a more flexible way, such as approximate aware high-level synthesis [3], neural acceleration for general approximate programs [4], optimization of approximate kernels [5], and floating point [6]. Unlike these approximate software solutions, approximate hardware techniques usually exploit the fine-grain approximation at architecture-level or circuit-level. Recent approximate architectures include SAGE [7], DES [8], SNNAP [9], Neutralizer [10], Brainiac [11], precimonious [12], neural acceleration for GPU [13], and accelerators for machine learning [14]. Approximate circuits focus on the often-used functional units such as approximate adders or approximate multipliers [15,16,17].

	(2)

	
Approximate storage. All layers of the memory hierarchy are covered, including cache, memory, and storage. The approximate caches aim at optimizing the access performance and reducing the cache miss overhead as well as some new types of devices, such as RFVP [18], load value approximation [19], Texture Cache [20], a tunable cache [21], STAxCache [22], Dynamic Energy-Quality [23], and Scratchpad Memory optimize [24]. Approximate memory structures are also proposed by dividing the data into the critical and uncritical regions. The uncritical data region can be set at a lower refresh rate for energy saving, or the potential of Multi-Level Cell is considered, such as Flikker [25] and DrMP [26]. Approximate storage is often for larger capacity for high-density image storage [27,28,29,30].

	(3)

	
Approximate communication. Approximate Communication techniques are required to reduce communication bottlenecks in large scale parallel systems. The recent survey of approximate communication points that most of the existing techniques related to approximate computing and storage can help to reduce the communication pressure indirectly. The compression, value approximation, and relaxed synchronization are the popular techniques for approximate communication. The actual approximate communication architectures for parallel system have come out lately. The approximate bus [31] and network on chip architectures [32,33,34,35,36] are proposed for higher network throughput using the critical feature of data type information or dual scaling voltage.

All these carefully designed approximate approaches need fast and accurate error evaluation to verify their effectiveness on exchanging acceptable output quality loss for power or performance benefits.

2.2. Error Estimation Methods

Before designing application-specified approximate accelerators, approximate area recognition is needed to determine the latent approximate locations. After finishing approximate accelerator design, approximate evaluation is required to confirm the guaranteed output quality. The central task of the two aspects is fast and accurate error assessment of various approximate techniques. The error estimation methods for approximate diagram are often classified into two branches:

	(1)

	
Mentor Carlo simulation. Mentor Carlo simulation can be further classified into three categories for evaluating approximate techniques: Random, representative, and equivalent. The random way is easy to implement, but low efficiency [1], while the selective representations are usually based on application characterization such as ARC proposed by Chippa [2]. The equivalence based Relyzer [37] uses the static analysis of flow control and dynamic analysis of data flow to capture the similarity degree of different instructions for fewer simulations with fault injection and higher efficiency. On the base of the existing Relyzer, Approxilyzer [38] and gem5-approxilyzer [39] were proposed via exploiting the one bit upset affecting the application-level output quality. However, the optimized Mentor Carlo simulation is still time consuming due to unavoidable simulations.

	(2)

	
Analytical modeling. All levels in a design stack can use analytical modeling for fast error assessment. High-level program analysis approaches are presented for specific program or code. These methods almost are based on the grammar and semantics analysis, so that they can provide higher efficiency [6]. Low-level approximate circuits are modeled based on a lookup table technique, which characterizes the statistical properties of approximate hardware and uses a regression-based technique for composing statistics to formulate output quality [40,50]. An analytical error analysis approach for approximate adders can predict, evaluate, and compare the accuracy of various approximate adders and multipliers [41,51]. These existing works mostly focus on low-level error estimation or high-level program analysis.

To both keep the fast speed of analytical modeling and achieve the complete error estimation from various approximate techniques to quality of application output, probabilistic methods have been presented to address the error estimation for approximate computing diagram from a new perspective [46,47,48,49]. Preliminary information is provided on a cross-layer framework built on top of a Bayesian model designed to perform component-based reliability analysis of complex systems [46]. A compiler-driven error analysis methodology defines the computing rules of error propagation for different kinds of instruction operations and evaluates the behavior of errors generated from approximate adders in the design of approximate accelerators [47]. Another probabilistic approach predicts the relation between component-level functional approximation and application-level accuracy by precision scaling in a Bayesian network [48,49]. These probabilistic approaches inspired us to design a PGM based configurable framework, HEAP, for fast and accurate error assessment of multiple approximate techniques.

Compared with these probabilistic approaches, the proposed HEAP provides a holistic framework for multiple approximate techniques, which can be instanced as one configuration for approximate adders [47] or precision scaling [48,49]. Additionally, the case study of 3 × 3 Gaussian kernel and various results can prove the effectiveness of mapping error assessment problem into a general PGM issue. HEAP can also integrate some dynamic simulation information instead of purely mechanistic modeling to further reduce estimation accuracy loss by 1.61%, which is up to 98–99% accuracy as is provided in [49]. Moreover, HEAP can assist approximate accelerator design well through selecting the mixture of multiple approximate techniques in a configurable way easily and efficiently. Therefore, to the best of our knowledge, the proposed HEAP is the first to tackle the error assessment of multiple approximate techniques with a joint PGM framework as Section 3 describes, and proves fast and accurate error estimation for assisting cost-effective approximate accelerators design as Section 4 shows.

3. Proposed framework HEAP

In this section, we detail HEAP the error assessment framework of multiple approximate techniques for application-specified accelerators. First, the general PGM concept is briefly introduced in Section 3.1. Next, the proposed HEAP framework overview is described in Section 3.2. Then, HEAP three components design is detailed in Section 3.3.

3.1. General PGM Concept

Generally, a complete PGM framework is composed of three parts: Representation, learning, and inference [52].

Representation. This is the fundamental and critical factor for a PGM framework and includes directed graphical models (Bayesian networks in Figure 1a) and undirected graphical models (Markov Random Fields in Figure 1b). In general, a PGM defines a family of probability distributions that can be represented in terms of a graph. Nodes in graph correspond to random variables X1, X2, …, Xn; the graph structure translates into statistical dependencies (among such variables) that drive the computation of joint, conditional, and marginal probabilities of interest. For example, in Figure 1a, the joint probability or Bayesian factorization is described by the conditional probabilities in Equation (1) as follows:

 P (X 1 , X 2 , X 3 , X 4 , X 5) = P (X 1) P (X 2 | X 1) P (X 3 | X 1) P (X 5 | X 2) P (X 4 | X 2 , X 3)

(1)

Learning phase. The learning graphic model from data is another important concept for the factorization of the distribution. Learning structure and learning parameters are the two most basic learning tasks as follows:

	
Structure learning. As Figure 1a shows, the deterministic Bayesian graph determines the structure in PGM. Without the structure, the joint probability cannot be expressed by the reduced conditional probabilities for the unknown dependencies. Therefore, it is very critical to get the structure accurately for correct factorization.

	
Parameter learning. The parameters denote the required CPT for the joint probabilities’ calculation. Here, we assume the conditional probability will follow the Bernoulli distribution for the approximation induced bits upset. E.g., the node X4 in Figure 1 has three parents. It depends on X1, X2, X3, which means the unknown parameters determine the probability of each case.

Inference phase. Based on the available structure and node information, using a given algorithm (e.g., variable elimination and conditioning) for exact inference, we can determine the required marginal probabilities. For example, the marginal probability can be expressed as: P(X4 = X5 = 0 |X1 = 1) = P(X1, X2, X3, X4, X5). Then, the probability can be determined from the conditional probabilities based on node parameters via the aforementioned efficient inference algorithms.

3.2. HEAP Overview

The proposed HEAP can solve the error assessment of multiple approximate techniques via PGM in a joint way. We choose to work within the PGM framework, because this offers unique advantages: (1) Efficiency potential because of PGM low complexity for the high dimensional dependencies converted into small factorization; (2) modularity for easily integrating existing evaluation methods of a single approximate techniques into the PGM modules; (3) perfect match due to the application-specified data flow graph fulfilling the conditional independences.

Based on the above general PGM concept, we map the error propagation due to multiple approximate techniques into the PGM problem as follows, which includes the instanced three main components based on PGM flow shows: (1) Mapping the problem into the fundamental PGM representation; (2) structure and node parameters learning to support the inference; (3) exact inference to guarantee the estimation accuracy.

As Figure 2 shows, the workflow of HEAP is also composed of three steps. The given input data flow graph (DFG) of specified application is firstly converted to a heterogeneous Bayesian network by mapping rules. It is noted that, if the data flow graph is not given directly, open source tool Low Level Virtual Machine (LLVM) can compile the application C/C++ source code and provide DFG through intermediate representation (IR) [53]. Based on an available DFG, a Bayesian network is constructed through the simple mapping rules. Keep the variable nodes with three states {P = precise, A = approximate, U = unacceptable}, which uses the same handling policy in [48,49]. For example, X1+ denotes the left sum of a and shift temporary. It has three possible states {P, A, U}. To configure the multiple approximate sources, the two states {P = precise, A = approximate} nodes are inserted. For example, X*1+ becomes a new parent of X1+ as a new two states node. More details about the representation are depicted in Section 3.3.1.

Then, according to the network dependences between nodes and available multiple approximate techniques, the CPTs are filled with modeling results from approximate library and approximate configuration in Section 3.3.2.

Finally, variable elimination (VE) algorithm [54] uses the Bayesian network and nodes’ CPT information to achieve the error distributions via calculating the marginal probability in Section 3.3.3. For example, the probability of precise output is 100%, while it is only 96% under approximate adder configuration, even lower in the mixed approximate configurations. Additionally, the power saving or performance improvement can be further considered to select the appropriate approximate configuration from possible options.

3.3. HEAP Components

Next, we introduce the details of HEAP’s three components respectively, including Bayesian network representation, node parameters learning, and exact reference.

3.3.1. Mapping Problem into Bayesian Network Representation

This paper is unlike our previous work [55] using PGM to solve the soft error estimation via basic Bernoulli distribution, where each node occurs one bit upset or not. Here, we should further consider the bit upset causes acceptable approximate or not for the control of output quality. Therefore, node states should be extended to {P = precise, A = approximate, U = unacceptable}. The often-used metric error distance (ED) determines the node status P, A, or U in Equation (2). The threshold can be set on demand, if the error distance between actual value X and approximate value X ˜ is 0, the state is P. ED is less than the threshold, and the node state is identified as A. Otherwise, it is U.

 State (X ˜) { P i f E D = | X − X ˜ | = 0 A i f E D = | X − X ˜ | < E D t h r e s h h o l d U i f E D = | X − X ˜ | ≥ E D t h r e s h h o l d

(2)

On the other hand, multiple approximate configurations from different components or different levels are also characterized by inserting the corresponding nodes into the unified Bayesian network. These kinds of nodes are different from input, intermediate, or output variables, which have three states {P, A, U} to pass the error propagation until final output. These approximate technique nodes X * follow typical Bernoulli distribution and have two states {P = precise, A = approximate}. As Equation (3) depicts, if the node value is assigned to A, the approximate technique is activated. Otherwise, P deactivates the approximate technique.

 State (X * ˜) { P i f X * = 1 A i f X * = 0

(3)

In addition, approximate calculation differs from approximate communication and approximate storage. The former is influenced by both operator and operands, while the latter has no functional operation and often changes the value of stored or transmitted variable directly. Consequently, the approximate calculation, like addition, should append a three-state node for storing the computing intermediate result. To keep consistent with the realistic scenario, we assume that the approximate communication and storage are usually configud for input variables.

From the above analysis and description, we can summarize the following three mapping rules to convert an application specified DFG to a Bayesian network as Figure 3 shows. It is noted that Figure 3b only shows the mapping result of the dotted region in Figure 3a for good readability.

	(1)

	
Each input in DFG is converted to one X-type node with {P, A, U} three states to track the error propagation, e.g., the node Xvar_a relates to the input variable a;

	(2)

	
Each operator in DFG becomes one corresponding variable node X1+ with three states {P, A, U} of calculation result and one approximate configuration node X*1+ with two states {P, A}. Similarly, {X1<<, X*1<<}, {X1>>, X*1>>} are the corresponding nodes pair of shift left and shift right operators. The number 1 represents the count of this same kind of operation for locating itself in a Bayesian network. Keep the edges between inputs and operator variables like Xvar_a->X1+. The new edge in bold from the operator configuration node to the operator variable node is also added, e.g., X*1+->X1+;

	(3)

	
Insert the non-calculation type approximation node and build the directed edges to each input, e.g., X*s/t_v-> Xvar_a. Varying input and constants are usually handled separately for their different storage ways, e.g., X*s/t_c-> Xcon_1.

Once we get the Bayesian graph and node information like CPT as Figure 3 shows, the joint probability is expressed as Equation (4).

 P (X s / t _ v * , X s / t _ c * , X 1 ≪ * , X 1 + * , X 1 ≪ , X 1 + , X v a r _ a , X v a r _ b , X c o n _ 1) = P (X s / t _ v *) P (X s / t _ c *) P (X 1 ≪ *) P (X 1 + *) P (X v a r _ a | X s / t _ v *) P (X v a r _ b | X s / t _ v *) P (X c o n _ 1 | X s / t _ c *) P (X 1 ≪ | X v a r _ b , X c o n _ 1 , X 1 ≪ *) P (X 1 + | X v a r _ a , X 1 < < , X 1 + *)

(4)

Based on the joint probability in the above Equation (4), inference can obtain different marginal probabilities for multiple approximate configurations. For example, the marginal probability of output node X1+ with unacceptable results P(X1+ = U |X*s/t_v = X*s/t_c = X*1<< = P, X*1+ = A) provides the error propagation under approximate addition configuration in accelerator. Similarly, the marginal probability of output node X1+ with unacceptable results P(X1+ = U |X*s/t_c = X*1<< = P, X*s/t_v = X*1+ = A) under the mixed configuration of approximate addition and approximate input in accelerator. The approximate input may be achieved by approximate communication or storage, or even other equivalent approximate techniques.

3.3.2. Structure and Node Parameters Learning

This section provides the two learning tasks: Structure learning and node parameters learning for the following inference. (1) Structure learning. As Figure 3 shows, we use the simple mapping rules to construct the Bayesian network structure from a determined DFG. Therefore, the application specified DFG is converted into an exact Bayesian representation for further inference. (2) Node parameters learning.

Firstly, the X*-type root nodes are used to configure the possible approximation as described in Section 3.3.1. This kind of node’s CPT has only two cases, as Figure 3b shows. Precise shift operation is achieved by setting the CPT of node X*1<< to P(X*1<< = P) = 1, P(X*1<< = A) = 0. If activate approximate addition, P(X*1+ = P) = 0, P(X*1+ = A) = 1.

The rest X-type nodes’ CPTs are more complex because of dependences from their parents. Particularly, the mixture of multiple approximate techniques further increases the difficulties of CPT calculation for X-type nodes. We classify the calculations into six categories according to the number of imprecise parents and parent type as follows:

(1) All precise (zero imprecise nodes).

If all parent nodes are precise, this part of CPT is determined easily. The current node must be precise; therefore, the corresponding probability is 1, while the approximate and unacceptable probabilities are both zero as Figure 3b shows.

(2) Approximate operator.

Considering the variety of multiple approximate techniques, we can model each given approximate technique through Probability Mass Function (PMF) in greater detail. PMF denotes the probability P of a discrete random variable X, to be equal to a determined value x. This is expressed as pX(x) = P(X = x). This mechanistic modeling can be finished by fast theoretical analysis (or use simulation profiling to build empirical modeling, it is more accurate but time consuming. More related information is discussed in Section 4.3 and the future work of Section 5). For example, PMF of an 8-bit GeAr adder [15] in Figure 4 can give the corresponding CPT if two operands are precise. These models of approximate techniques are stored in an approximate library for reuse.

When the EDthreshhold is set to 4, the partial information of X1+ can be determined by the first-order approximate impact in Equation (5). Similarly, the complete CPTs of nodes Xvar_a, Xvar_b, Xcon_1 can be available.

 { P (X 1 + = P | X 1 ≪ = P , X v a r _ a = P , X 1 + * = A) = 0.95 P (X 1 + = A | X 1 ≪ = P , X v a r _ a = P , X 1 + * = A) = 0.00 P (X 1 + = U | X 1 ≪ = P , X v a r _ a = P , X 1 + * = A) = 0.05

(5)

(3) One imprecise operand.

This calculation is based on operator analysis. log2(EDthreshhold) determines the acceptable lowest bits upset in X-type node. For example, EDthreshold is set to 4. One bits uet in the lowest 2 bits can be marked as A, otherwise, it is P. Due to the addition operator in X1+, the same ED is transmitted from one source operand Xvar_a to the destination operand X1+. The corresponding CPT information can be determined in Equation (6). However, it is noted that the CPT information should be changed with the varying operator. For example, if a shift operator, the bits upset from imprecise operand may be masked and result in a different CPT. Similarly, the unacceptable operand case can be handled.

 { P (X 1 + = P | X 1 ≪ = P , X v a r _ a = A , X 1 + * = P) = 0 P (X 1 + = A | X 1 ≪ = P , X v a r _ a = A , X 1 + * = P) = 1 P (X 1 + = U | X 1 ≪ = P , X v a r _ a = A , X 1 + * = P) = 0

(6)

(4) Two imprecise operands.

If multiple approximate operands are together, we can finish the CPT calculation through exhaustion of all possible cases. The process occurs only once, but can be reused many times in the same kind of operator nodes via an approximate library. For exampl EDthreshholdis set to 4, and Table 1 lists all eighteen cases for X1+ with approximate X1<< as well as approximate Xvar_a. We can find out three P’s, six U’s, and twelve A’s. Therefore, the CPT information can be determined. This process also considers the error masking of two concurrent approximations into a precise result in Table 1. For example, one operand X1<< has positive 1 of ED, while the other Xvar_a has the same negative value -1. The addition makes the offset of two approximate operands with each other. Similarly, one approximate plus one unacceptable operand or two unacceptable operands could be handled in an extended way. The difference lies in CPTs of the two cases, which are influenced by bit width. Without loss of generality, we give a mechanistic model for an arbitrary bit width n in in Table 2 and Table 3, respectively.

(5) Approximate operator + one imprecise operand.

The mixture of category (2) and (3) makes this (5). If there is one approximate operand, the CPT information is determined by its PMF and one approximate operator in Equation (7).

 { P (X 1 + = P | X 1 ≪ = P , X v a r _ a = A , X 1 + * = A) = 0.00 P (X 1 + = A | X 1 ≪ = P , X v a r _ a = A , X 1 + * = A) = 0.95 P (X 1 + = U | X 1 ≪ = P , X v a r _ a = A , X 1 + * = A) = 0.05

(7)

When there is an unacceptable operand, the CPT information is determined by a higher priority of status U, and equal to one unacceptable operand in Equation (8).

 { P (X 1 + = P | X 1 ≪ = P , X v a r _ a = U , X 1 + * = A) = 0 P (X 1 + = A | X 1 ≪ = P , X v a r _ a = U , X 1 + * = A) = 0 P (X 1 + = U | X 1 ≪ = P , X v a r _ a = U , X 1 + * = A) = 1

(8)

(6) Approximate operator + two imprecise operands.

The mixture of category (2) and (4) makes this (6). If there are two approximate operands, the CPT information is determined by weighted computing in Table 4. Similarly, the rest of the cases can be solved via considering the operator ED with operands ED together, as the CPTs of nodes in Figure 3b shows.

Based on the above complete calculation policy of six categories, the local error occurrence distribution of each approximate technique can be expressed by the node CPT information. If mechanistic models for some existing approximate techniques are available, they can be reused directly. If not, the simulation-based profiling can be adopted to achieve the empirical models. The mechanistic or empirical even hybrid models help to fill the approximate characteristics into CPTs for the further inference.

3.3.3. Exact VE Inference

Exact variable elimination (VE) [54] is chosen as the inference algorithm in this paper. Because VE merges and adds a series of decomposition factors one by one in the PGM graph, which can achieve accurate solutions.

The detailed algorithm description is shown in Figure 5, including four inputs: The conditional probability table of nodes, that is, the CPTs of all nodes, the observation node X, and the query node list Y, where Y0 is the observation value corresponding to Y; elimination order; the output is the edge probability P (X|Y = Y0). More descriptions and accuracy proofs of the VE algorithm can be found in the literature [54]. The complexity of VE can be measured by the number of times of numerical multiplication and numerical addition. An optimal elimination order can bring the lowest complexity, but how to find the optimal elimination order itself is still an NP problem. In this paper, the VE algorithm uses the topological order that the PGM structure depends on as the elimination order.

4. Experiments and Results Analysis

4.1. Accuracy and Speed Evaluatoin

To verify the effectiveness of proposed framework HEAP, we implement C++ language-based Mentor Carlo simulation (MC) with 1000000 samples and proposed framework HEAP using academic version of PGM library SMILE [56] for 3 × 3 Gaussian kernel, respectively. During the application execution of MC, we insert the bits upset, following the PMF of configured approximate techniques, such as approximate adder in Figure 4. Three different configurations are compared between MC and proposed HEAP in Table 5. It is noted that 1,000,000 samples of MC are divided into 10 groups with 100,000 samples to compute the error bar. The results show the error bar is very small and ranges from −0.004% to 0.002% around the mean value. The results in Figure 6 show the error distribution differences between MC and proposed HEAP.

A new metric, Accuracy Loss Sum (ALS) is defined to measure the output distribution inaccuracy of proposed HEAP over MC in Equation (9) as follows.

 A L S = ∑ i = { P , A , U } a b s (P (S t a t e (o u t p u t s) = i) H E A P − P (S t a t e (o u t p u t s) = i) M C)

(9)

The ALS values for three approximate configurations are calculated based on Figure 6 and listed in Table 5. We can figure out that the inaccuracy ranges from 1.53% to 6.38%, and on average 4.18%. Among of three approximate configurations, approx_adder has the least accuracy loss, down to 1.53%, while approx_s/t gets the most accuracy loss 6.38%. In HEAP design, Bayesian network and variable elimination inference are both exact, while the nodes’ CPTs are filled with modeling information in Section 3.3. For these experiments, left or right shifters adopt conservative mechanistic modeling. This handling policy makes undetermined cases in an unacceptable status. The errors in input variables like a,b,c with approx_s/t_var configuration will propagate to the output through six shifters, while approx_adder configuration only go through one shifter in the structure of Figure 3a. Therefore, it is reasonable that the error paths with more nodes related to imprecise shifters modeling will cause higher accuracy loss. Lower accuracy loss can be achieved by more accurate empirical modeling and will be discussed in Section 4.3. Additionally, the mixed configuration has a medium accuracy loss 4.64% less than a single configuration of approx_s/t_var. This obviously results from the more accurate approx_adder modeling.

The estimation speed comparison between proposed HEAP and MC is shown in Figure 7. 1,000,000 samples in MC consumes thousands of seconds, while the proposed HEAP makes good uses of the high-speed advantage of PGM framework and consumes about 5 milliseconds. Therefore, HEAP has 334043.6× speedup on average over MC.

In all, the proposed HEAP provides fast and accurate error assessment, achieving 4.18% accuracy loss and five orders of magnitudes speedup over MC. Moreover, this configuration approx_s/t_var of approximate input variables in HEAP can be considered equivalent to precise scaling in [48,49]. The estimation accuracy loss and computational time in millisecond of HEAP mostly keeps the same magnitude with the works in [48,49]. The tiny accuracy difference mainly results from the calculation policy of CPTs, our mechanistic modeling versus empirical modeling. This will be further discussed in Section 4.3.

4.2. Approximate Techniques Selection Using HEAP

Once we confirm the accuracy of proposed framework HEAP, we can use it to do more analysis so that the good approximate accelerator design can be achieved via balancing output quality and power saving (or performance improvement) well.

Firstly, we can evaluate each single approximate technique and identify whether it is suitable for the application-specified fast accelerator. Figure 8 gives the error distributions of approximate storage or communication, approximate left or right shifter, and one approximate adder. We can figure out that approximate storage (or communication) and adder are good choices for approximate accelerator, while shifters bring higher probability of unacceptable output.

Secondly, we explore the approximation degree selection of a single approximate technique. Figure 9 shows the increasing number of approximate GeAr adder effects on the application specified accelerator. The X-axis represents the number of approximate adders, while Y-axis represents the probability of acceptable output. The maximum configuration has three approximate adders to guarantee a 90% acceptable output. This configuration can be considered the error propagation of varying adder number and keep high fidelity, with [47] from the estimation accuracy over Mentor Carlo simulations.

Finally, we explore the combinations of multiple different approximate techniques. Figure 10 show the error distribution results of different mixed approximate configurations in Table 6. All these configurations can satisfy a 90% acceptable output. To select the best mixture, we can consider the relevant power saving or performance improvement.

Here, we assume that the full power breakdown includes 19% memory access, 12% communication, and 69% computing [57]. This percent is the weight value, denoted as Wi. approx_s/t_var is configured by approximate data cache [18], and can save power up to 63%, while approx_s/t_con is approximate communication with about 50% power saving [35]. The power saving percent is denoted as Pi. Bitwise operation like shift left or shift right is simpler and consumes lower power than addition. Therefore, we divide the computing power into 80% addition and 20% shift. Each approximate component is assumed to reduce power by 60% [58]. The number of configuring approximate components also influences the power saving through Pj. The best mixture of multiple approximate techniques is composed of two approximate adders, approx_s/t_var and approx_s/t_con. It can provide a 91.8% acceptable output in Figure 10, with up to 26% power saving through ∑Wi Pi in Table 6. These results demonstrate that the mixed configuration can exploit fine-grain tradeoff between output quality degradation and power saving.

4.3. Discussion About HEAP Optimization

To improve the estimation accuracy, there is no doubt that the more accurate CPT is required. Simulation based empirical modeling can be used instead of mechanistic modeling. However, it is noted that the simulation-based modeling consumes more design time and developer efforts. Therefore, we recommend the hybrid modeling to fill the CPTs, where most information is determined by mechanistic modeling, and little critical information like one or two approximate operands case can be handled by simulation profiling. Taking an 8-bit left shifter for example, an empirical modeling policy is used for two cases: One approximate operand and two approximate operands. The rest keep the mechanistic modeling. This hybrid modeling reduces average ALS of three configurations in Table 5 down to 1.61%. This result is considerably consistent with 98–99% accuracy of Bayesian modeling in [49]. The appropriate tradeoffs can be compromised between modeling efforts and effectiveness to support various approximate techniques.

HEAP has good configurability. Section 4.2 has demonstrated the easy configuration of different approximate techniques, approximate degree, and a mixture of multiple approximate techniques using X*-type nodes. Additionally, the X*-type nodes can be modified, inserted, removed, or even merged in a free-style. For example, the two approximate adders have different PMFs so that their related CPT will be update and make a new error distribution. If all of the adders adopt a unified configuration, all of the nodes can be merged into only one. Similarly, other operations can be finished to guarantee the good configurability. This characteristic of heterogeneous Bayesian network in HEAP can support arbitrary combination of multiple approximate techniques as Figure 10 and Table 6 gives, where a single approximate technique is also one particular instance and can also be evaluated very well, as Figure 8 and Figure 9 shows.

Therefore, the proposed HEAP provides a fast and accurate error assessment approach to designing cost-effective approximate accelerators.

5. Conclusions

In this paper, we proposed a fast and accurate error assessment framework HEAP for approximate accelerator design that can estimate the probability of multiple approximate technique impacts on output quality at different levels (precise, approximate, and unacceptable) in a configurable manner using probabilistic graphical models. HEAP consists of a heterogeneous Bayesian network representation, which has two different types of nodes, X*-type and X-type, to configure approximate options and track corresponding error propagation, respectively. This is followed by approximate library driven node parameters learning, which characterizes the uniform probability mass function of available approximate techniques through mechanistic models or empirical models. Based on the ready Bayesian network and node parameters of conditional probability tables, the exact variable elimination inference can calculate the marginal probability of output quality at three levels of precise, approximate, and unacceptable under given approximate configurations quickly and accurately. Compared with Mentor Carlo simulation, the proposed HEAP framework can achieve just 4.18% accuracy loss and 3.34 × 105 speedup for 3 × 3 Gaussian kernel. The good configurability of HEAP also makes itself able to estimate different approximate techniques and even their diverse combinations. Therefore, the proposed HEAP can provide flexible quality-power tradeoffs through estimating multiple approximate techniques quickly and select the best approximate configuration for maximum power saving with acceptable output quality.

In the future, HEAP will be extended to support more popular approximate techniques and exploit fine-grain tradeoff among the variety of combinations efficiently in two directions: (1) Insert mechanistic and empirical models of more approximate solutions into our existing approximate library of HEAP for good variety. This work needs the probability mass function of available approximate options, which should cover as many of the approximate techniques as possible, approximate hardware architecture or approximate software approach, low-level approximate adder circuits, or high-level approximate Cache hierarchy; (2) adopt heuristic algorithm or evolution optimization to search the best solution from more approximate options smartly and quickly. The large Bayesian network size causes a huge solution space to configure the approximate techniques for best tradeoffs. These efficient search algorithms are required instead of exhaustive method. The enhanced HEAP will not only help designers to decide the appropriate quality-power (or performance) tradeoffs faster and more accurately, but also further shortens the time-to-market of an approximate accelerator very well.

Author Contributions

Conceptualization, J.J.; project administration, writing, and editing. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by the National Natural Science Foundation of China grant No. 61502298, No. 61603245 and No.71702100.

Conflicts of Interest

The author declares no conflict of interest.

References

	

Li, X.; Yeung, D. Application-level correctness and its impact on fault tolerance. In Proceedings of the 2007 IEEE 13th International Symposium on High Performance Computer Architecture, Scottsdale, AZ, USA, 10–14 February 2007; pp. 181–192. [Google Scholar]

	

Chippa, V.K.; Chakradhar, S.T.; Roy, K.; Raghunathan, A. Analysis and characterization of inherent application resilience for approximate computing. In Proceedings of the 50th Annual Design Automation Conference, New York, NY, USA, 2–6 June 2013; p. 113. [Google Scholar]

	

Li, C.; Luo, W.; Sapatnekar, S.S. Joint precision optimization and high level synthesis for approximate computing. In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference, Piscataway, NJ, USA, 8–12 June 2015; pp. 1–6. [Google Scholar]

	

Esmaeilzadeh, H.; Sampson, A.; Ceze, L.; Burger, D. Neural acceleration for general-purpose approximate programs. IEEE Micro 2013, 33, 16–27. [Google Scholar] [CrossRef]

	

Misailovic, S.; Carbin, M.; Achour, S.; Qi, Z.; Rinard, M.C. Chisel: Reliability-and accuracy-aware optimization of approximate computational kernels. ACM SIGPLAN Not. 2014, 49, 309–328. [Google Scholar] [CrossRef]

	

Sampson, A.; Dietl, W.; Fortuna, E.; Gnanapragasam, D.; Ceze, L.H.; Grossman, D. EnerJ: Approximate data types for safe and general low-power computation. ACM SIGPLAN Not. 2011, 46, 164–174. [Google Scholar] [CrossRef]

	

Samadi, M.; Lee, J.; Jamshidi, D.A.; Hormati, A.H.; Mahlke, S.A. Sage: Self-tuning approximation for graphics engines. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, Davis, CA, USA, 7–11 December 2013; pp. 13–24. [Google Scholar]

	

Chippa, V.; Raghunathan, A.; Roy, K.; Chakradhar, S. Dynamic effort scaling: Managing the quality-efficiency tradeoff. In Proceedings of the 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC), New York, NY, USA, 5–9 June 2011; pp. 603–608. [Google Scholar]

	

Moreau, T.; Wyse, M.; Nelson, J.; Esmaeilzadeh, H.; Ceze, L.; Oskin, M. SNNAP: Approximate computing on programmable socs via neural acceleration. In Proceedings of the 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA), Burlingame, CA, USA, 7–11 February 2015; pp. 603–614. [Google Scholar]

	

Grigorian, B.; Reinman, G. Accelerating divergent applications on simd architectures using neural networks. ACM Trans. Arch. Code Optim. 2015, 12, 2. [Google Scholar] [CrossRef]

	

Grigorian, B.; Farahpour, N.; Reinman, G. BRAINIAC: Bringing reliable accuracy into neurally-implemented approximate computing. In Proceedings of the 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA), Burlingame, CA, USA, 7–11 February 2015; pp. 615–626. [Google Scholar]

	

Rubio-González, C.; Nguyen, C.; Nguyen, H.D.; Demmel, J.; Kahan, W.; Sen, K.; Bailey, D.H.; Iancu, C.; Hough, D. Precimonious: Tuning assistant for floating-point precision. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (SC’13), Denver, CO, USA, 17–22 November 2013; pp. 1–12. [Google Scholar]

	

Yazdanbakhsh, A.; Park, J.; Sharma, H.; Lotfi-Kamran, P.; Esmaeilzadeh, H. Neural acceleration for gpu throughput processors. In Proceedings of the 48th International Symposium on Microarchitecture, Waikiki, Hawaii, USA, 5–9 December 2015; pp. 482–493. [Google Scholar]

	

Du, Z.; Palem, K.; Lingamneni, A.; Temam, O.; Chen, Y.; Wu, C. Leveraging the error resilience of machine-learning applications for designing highly energy efficient accelerators. In Proceedings of the 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), Singapore, 20–23 January 2014; pp. 201–206. [Google Scholar]

	

Shafique, M.; Ahmad, W.; Hafiz, R.; Henkel, J. A low latency generic accuracy configurable adder. In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 8–12 June 2015; pp. 1–6. [Google Scholar]

	

Hanif, M.A.; Hafiz, R.; Hasan, O.; Shafique, M. QuAd: Design and analysis of quality-area optimal low-latency approximate adders. In Proceedings of the 54th Annual Design Automation Conference 2017, Austin, TX, USA, 18–22 June 2017; pp. 1–6. [Google Scholar]

	

Rehman, S.; Prabakaran, B.S.; El-Harouni, W.; Shafique, M.; Henkel, J. Heterogeneous approximate multipliers: Architectures and design methodologies. In Approximate Circuits; Springer: Berlin, Germany, 2019; pp. 45–66. [Google Scholar]

	

Yazdanbakhsh, A.; Pekhimenko, G.; Thwaites, B.; Esmaeilzadeh, H.; Mutlu, O.; Mowry, T.C. RFVP: Rollback-free value prediction with safe-to-approximate loads. ACM Trans. Arch. Code Optim. 2016, 12, 62. [Google Scholar] [CrossRef]

	

Miguel, J.S.; Badr, M.; Jerger, N.E. Load value approximation. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture, IEEE Computer Society, Cambridge, UK, 13–17 December 2014; pp. 127–139. [Google Scholar]

	

Sutherland, M.; San Miguel, J.; Jerger, N.E. Texture cache approximation on GPUs. In Proceedings of the Workshop on Approximate Computing Across the Stack. In conjunction with HiPEAC, Amsterdam, The Netherlands, 19–21 January 2015. [Google Scholar]

	

Själander, M.; Nilsson, N.S.; Kaxiras, S. A tunable cache for approximate computing. In Proceedings of the 2014 IEEE/ACM International Symposium on Nanoscale Architectures, Paris, France, 8–10 July 2014; pp. 88–89. [Google Scholar]

	

Ranjan, A.; Venkataramani, S.; Pajouhi, Z. STAxCache: An approximate, energy efficient STT-MRAM cache. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 356–361. [Google Scholar]

	

Frustaci, F.; Blaauw, D.; Sylvester, D.; Alioto, M. Approximate SRAMs with dynamic energy-quality management. IEEE Trans. Very Large Scale Integ. Syst. 2016, 24, 2128–2141. [Google Scholar] [CrossRef]

	

Gilani, S.Z.; Kim, N.S.; Schulte, M. Scratchpad memory optimizations for digital signal processing applications. In Proceedings of the 2011 Design, Automation & Test in Europe, Grenoble, France, 14–18 March 2011; pp. 1–6. [Google Scholar]

	

Liu, S.; Pattabiraman, K.; Moscibroda, T.; Zorn, B.G. Flikker: Saving DRAM refresh-power through data partitioning. In Proceedings of the Architectural Support for Programming Languages and Operating Systems (ASPLOS), Lausanne, Switzerland, 16–20 March 2011. [Google Scholar]

	

Zhang, X.; Zhang, Y.; Childers, B.R.; Yang, J. DrMP: Mixed precision-aware dram for high performance approximate and precise computing. In Proceedings of the 2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT), Portland, OR, USA, 9–13 September 2017; pp. 53–63. [Google Scholar]

	

Guo, Q.; Strauss, K.; Ceze, L.H.; Malvar, H.S. High-density image storage using approximate memory cells. ACM SIGPLAN Not. 2016, 51, 413–426. [Google Scholar] [CrossRef]

	

Malvar, H.S. Fast progressive image coding without wavelets. In Proceedings of the DCC 2000, Data Compression Conference, Snowbird, UT, USA, 28–30 March 2000; pp. 243–252. [Google Scholar]

	

Wallace, G.K. The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 1992, 38, xviii–xxxiv. [Google Scholar] [CrossRef]

	

Dufaux, F.; Sullivan, G.J.; Ebrahimi, T. The JPEG XR image coding standard [Standards in a Nutshell]. IEEE Signal Process. Mag. 2009, 26, 195–204. [Google Scholar] [CrossRef]

	

Stevens, J.R.; Ranjan, A.; Raghunathan, A. AxBA: An approximate bus architecture framework. In Proceedings of the 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 5–8 November 2018; pp. 1–8. [Google Scholar]

	

Boyapati, R.; Huang, J.; Majumder, P.; Yum, K.H.; Kim, E.J. Approx-noc: A data approximation framework for network-on-chip architectures. ACM SIGARCH Comput. Arch. News 2017, 45, 666–677. [Google Scholar] [CrossRef]

	

Ahmed, A.B.; Fujiki, D.; Matsutani, H.; Koibuchi, M.; Amano, H. AxNoC: Low-power approximate network-on-chips using critical-path isolation. In Proceedings of the Twelfth IEEE/ACM International Symposium on Networks-on-Chip, Turin, Italy, 4–5 October 2018; p. 6. [Google Scholar]

	

Raparti, V.Y.; Pasricha, S. DAPPER: Data aware approximate NoC for GPGPU architecture. In Proceedings of the Twelfth IEEE/ACM International Symposium on Networks-On-Chip, Turin, Italy, 4–5 October 2018; p. 7. [Google Scholar]

	

Ascia, G.; Catania, V.; Monteleone, S.; Palesi, M.; Patti, D.; Jose, J. Approximate wireless networks-on-chip. In Proceedings of the 2018 Conference on Design of Circuits and Integrated Systems (DCIS), Lyon, France, 14–16 November 2018; pp. 1–6. [Google Scholar]

	

Tatas, K. High-performance 3D NoC bufferless router with approximate priority comparison. In Proceedings of the 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 7–9 May 2018; pp. 1–4. [Google Scholar]

	

Hari, S.K.S.; Adve, S.V.; Naeimi, H.; Ramachandran, P. Relyzer: Exploiting application-level fault equivalence to analyze application resiliency to transient faults. ACM SIGPLAN Not. 2012, 47, 123–134. [Google Scholar] [CrossRef]

	

Venkatagiri, R.; Mahmoud, A.; Hari, S.K.S.; Adve, S.V. Approxilyzer: Towards a systematic framework for instruction-level approximate computing and its application to hardware resiliency. In Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture, Taipei, Taiwan, 15–19 October 2016; p. 42. [Google Scholar]

	

Venkatagiri, R.; Ahmed, K.; Mahmoud, A.; Misailovic, S.; Marinov, D.; Fletcher, C.W.; Adve, S.V. Gem5-approxilyzer: An open-source tool for application-level soft error analysis. In Proceedings of the 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Portland, OR, USA, 24–27 June 2019; pp. 214–221. [Google Scholar]

	

Chan, W.T.J.; Kahng, A.B.; Kang, S.; Kumar, R.; Sartori, J. Statistical analysis and modeling for error composition in approximate computation circuits. In Proceedings of the 2013 IEEE 31st International Conference on Computer Design (ICCD), Asheville, NC, USA, 6–9 October 2013; pp. 47–53. [Google Scholar]

	

Mazahir, S.; Ayub, M.K.; Hasan, O.; Shafique, M. Probabilistic error analysis of approximate adders and multipliers. In Approximate Circuits; Springer: Berlin, Germany, 2019; pp. 99–120. [Google Scholar]

	

Yang, L.; Murmann, B. SRAM voltage scaling for energy-efficient convolutional neural networks. In Proceedings of the 2017 18th International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 14–15 March 2017; pp. 7–12. [Google Scholar]

	

Ganapathy, S.; Teman, A.; Giterman, R.; Burg, A.; Karakonstantis, G. Approximate computing with unreliable dynamic memories. In Proceedings of the 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS), Grenoble, France, 7–10 June 2015; pp. 1–4. [Google Scholar]

	

Sampson, A.; Nelson, J.; Strauss, K.; Ceze, L.H. Approximate storage in solid-state memories. ACM Trans. Comput. Syst. 2014, 32, 1–23. [Google Scholar] [CrossRef]

	

Fang, Y.; Li, H.; Li, X. SoftPCM: Enhancing energy efficiency and lifetime of phase change memory in video applications via approximate write. In Proceedings of the 2012 IEEE 21st Asian Test Symposium, Niigata, Japan, 19–22 November 2012; pp. 131–136. [Google Scholar]

	

Vallero, A.; Savino, A.; Politano, G.; Chatzidimitriou, A.; Tselonis, S.; Kaliorakis, M.; Gizopoulos, D.; Riera, M.; Canal, R.; Gonzalez, A.; et al. Early component-based system reliability analysis for approximate computing systems. In Proceedings of the 2nd Workshop on Approximate Computing (WAPCO), Accra, Ghana, 29 April 2016; pp. 1–4. [Google Scholar]

	

Castro-Godínez, J.; Esser, S.; Shafique, M.; Pagani, S.; Henkel, J. Compiler-driven error analysis for designing approximate accelerators. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 1027–1032. [Google Scholar]

	

Traiola, M.; Savino, A.; Barbareschi, M.; Carlo, S.D.; Bosio, A. Predicting the impact of functional approximation: From component-to application-level. In Proceedings of the 2018 IEEE 24th International Symposium on On-Line Testing and Robust System Design (IOLTS), Platja d’Aro, Spain, 2–4 July 2018; pp. 61–64. [Google Scholar]

	

Traiola, M.; Savino, A.; Di Carlo, S. Probabilistic estimation of the application-level impact of precision scaling in approximate computing applications. Microelectron. Reliab. 2019, 102, 113309. [Google Scholar] [CrossRef]

	

Lee, S.; Lee, D.; Han, K.; Shriver, E.; John, L.K.; Gerstlauer, A. Statistical quality modeling of approximate hardware. In Proceedings of the 17th International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 15–16 March 2016. [Google Scholar]

	

Qureshi, A.; Hasan, O. Formal probabilistic analysis of low latency approximate adders. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 38, 177–189. [Google Scholar] [CrossRef]

	

Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: Cambridge, CA, USA, 2009. [Google Scholar]

	

Lattner, C.; Adve, V. LLVM: A compilation framework for lifelong program analysis & transformation. In Proceedings of the International Symposium on Code Generation and Optimization, 2004, CGO 2004, San Jose, CA, USA, 20–24 March 2004; pp. 75–86. [Google Scholar]

	

Cozman, F.G. Generalizing variable elimination in Bayesian networks. In Proceedings of the Workshop on Probabilistic Reasoning in Artificial Intelligence, Editora Tec Art São Paulo, Brazil, 20 November 2000; pp. 27–32. [Google Scholar]

	

Jiao, J.; Juan, D.C.; Marculescu, D.; Fu, Y. Exploiting component dependency for accurate and efficient soft error analysis via probabilistic graphical models. Microelectron. Reliab. 2015, 55, 251–263. [Google Scholar] [CrossRef]

	

SMILE: Structural Modeling, Inference, and Learning Engine. Available online: https://www.bayesfusion.com/smile/ (accessed on 28 November 2019).

	

Howard, J.; Dighe, S.; Vangal, S.R.; Ruhl, G.; Borkar, N.; Jain, S.; Erraguntla, V.; Konow, N.; Riepen, M.; Gries, M.; et al. A 48-core IA-32 processor in 45 nm CMOS using on-die message-passing and DVFS for performance and power scaling. IEEE J. Solid State Circuits 2010, 46, 173–183. [Google Scholar] [CrossRef]

	

Gupta, V.; Mohapatra, D.; Park, S.P.; Raghunathan, A.; Roy, A. IMPACT: Imprecise adders for low-power approximate computing. In Proceedings of the IEEE/ACM International Symposium on Low Power Electronics and Design, Fukuoka, Japan, 1–3 August 2011; pp. 409–414. [Google Scholar]

[image: Electronics 09 00373 g001 550]

Figure 1. Two PGM network types. (a) Bayesian network; (b) Markov Random Fields.

Figure 1. Two PGM network types. (a) Bayesian network; (b) Markov Random Fields.

[image: Electronics 09 00373 g001]

[image: Electronics 09 00373 g002 550]

Figure 2. HEAP workflow overview.

Figure 2. HEAP workflow overview.

[image: Electronics 09 00373 g002]

[image: Electronics 09 00373 g003 550]

Figure 3. Error estimation of approximate techniques issue mapped into PGM based framework in HEAP. (a) DFG to represent a 3 × 3 Gaussian kernel. Variable input a,b,c,d,e,f,g,h,i should be loaded from data storage while 1,2,4 are constant as a part of instruction. Shift left (<<), shift right (>>), and addition (+) are operators. The directed edge gives the bearing of data flow; (b) HEAP Bayesian network representation. Purple nodes come from DFG completely, while additional pink nodes are for approximate communication or storage, and turquoise nodes are inserted for approximate calculation. The bold lines are new, while the normal line inherits from DFG.

Figure 3. Error estimation of approximate techniques issue mapped into PGM based framework in HEAP. (a) DFG to represent a 3 × 3 Gaussian kernel. Variable input a,b,c,d,e,f,g,h,i should be loaded from data storage while 1,2,4 are constant as a part of instruction. Shift left (<<), shift right (>>), and addition (+) are operators. The directed edge gives the bearing of data flow; (b) HEAP Bayesian network representation. Purple nodes come from DFG completely, while additional pink nodes are for approximate communication or storage, and turquoise nodes are inserted for approximate calculation. The bold lines are new, while the normal line inherits from DFG.

[image: Electronics 09 00373 g003]

[image: Electronics 09 00373 g004 550]

Figure 4. 8-bit approximate adder GeAr Probability Mass Function.

Figure 4. 8-bit approximate adder GeAr Probability Mass Function.

[image: Electronics 09 00373 g004]

[image: Electronics 09 00373 g005 550]

Figure 5. Variable elimination (VE) algorithm persudo code.

Figure 5. Variable elimination (VE) algorithm persudo code.

[image: Electronics 09 00373 g005]

[image: Electronics 09 00373 g006 550]

Figure 6. Estimation accuracy comparison between HEAP and MC.

Figure 6. Estimation accuracy comparison between HEAP and MC.

[image: Electronics 09 00373 g006]

[image: Electronics 09 00373 g007 550]

Figure 7. Estimation speed comparison between HEAP and MC.

Figure 7. Estimation speed comparison between HEAP and MC.

[image: Electronics 09 00373 g007]

[image: Electronics 09 00373 g008 550]

Figure 8. Different approximate techniques comparison.

Figure 8. Different approximate techniques comparison.

[image: Electronics 09 00373 g008]

[image: Electronics 09 00373 g009 550]

Figure 9. Different approximate degrees of a single approximate technique comparison.

Figure 9. Different approximate degrees of a single approximate technique comparison.

[image: Electronics 09 00373 g009]

[image: Electronics 09 00373 g010 550]

Figure 10. Different combinations of multiple approximate techniques comparison.

Figure 10. Different combinations of multiple approximate techniques comparison.

[image: Electronics 09 00373 g010]

[image: Table]

Table 1. Conditional probabilities table (CPT) calculation under twopproximate operands with addition.

Table 1. Conditional probabilities table (CPT) calculation under twopproximate operands with addition.

	
ED(X1<<)

	
ED(Xvar_a)

	
ED(X1+)

	
State of X1+

	
1

	
1

	
0

	
P

	
2

	
A

	
1

	
2

	
1

	
A

	
3

	
A

	
1

	
3

	
2

	
A

	
4

	
U

	
2

	
1

	
1

	
A

	
3

	
A

	
2

	
2

	
0

	
P

	
4

	
U

	
2

	
3

	
1

	
A

	
5

	
U

	
3

	
1

	
2

	
A

	
4

	
U

	
3

	
2

	
1

	
A

	
5

	
U

	
3

	
3

	
0

	
P

	
6

	
U

	
P: 1.5/9 = 1/6   A: 4.5/9 = 1/2   U:3/9 = 1/3

[image: Table]

Table 2. CPT calculation under one approximate operand plus one unacceptable operand.

Table 2. CPT calculation under one approximate operand plus one unacceptable operand.

	
ED(X1<<), ED(Xvar_a)

	
Bit Width

	
ED(X1+)

	
State of X1+

	
n

	
8

	
ED(X1<<) = 1 ED(Xvar_a) = 4 OR

ED(Xvar_a) = 1 ED(X1<<) = 4

	
(EDthreashold − 3) × 2

	
2

	
3

	
A

	
5

	
U

	
ED(X1<<) = 2 ED(Xvar_a) = 4,5 OR

ED(Xvar_a) = 2 ED(X1<<) = 4,5

	
(EDthreashold − 2) × 2

	
4

	
1

	
A

	
ED(X1<<) = 3 ED(Xvar_a) = 4,5,6 OR

ED(Xvar_a) = 3 ED(X1<<) = 4,5,6

	
(EDthreashold − 1) × 2

	
6

	
2

	
A

	
Others

	
(2n − EDthreashold + 12) × (EDthreashold − 1)

	
744

	
>3

	
U

	
Total

	
(2n − EDthreashold)(EDthreashold − 1)

	
756

	

	
{P,A,U}

	
P: 0    A: 11/756 = 0.0145    U:745/756 = 0.9855

[image: Table]

Table 3. CPT calculation under two unacceptable operands with addition.

Table 3. CPT calculation under two unacceptable operands with addition.

	
ED(X1<<),

ED(Xvar_a)

	
Bit Width

	
ED(X1+)

	
State of X1+

	
n

	
8

	
(2n-EDthreashold)

ED(X1<<) = ED(Xvar_a)

	
2n − EDthreashold

	
252

	
0

	
P

	
2*ED(Xvar_a)

	
U

	
ED(X1<<)− ED(Xvar_a) = 1 OR

ED(X1<<) − ED(Xvar_a) = −1

	
2n − 1-EDthreashold

	
251

	
1

	
A

	
ED(X1<<) − ED(Xvar_a) = 2 OR

ED(X1<<) − ED(Xvar_a) = −2

	
2n − 2-EDthreashold

	
250

	
2

	
A

	
ED(X1<<) − ED(Xvar_a) = 2 OR

ED(X1<<) − ED(Xvar_a) = −2

	
2n − 3-EDthreashold

	
249

	
3

	
A

	
Others

	
(2n − EDthreashold) (2n − EDthreashold − 4) + 6

	
62502

	
>3

	
U

	
Total

	
(2n − EDthreashold) × 2

	
63504

	

	
{P,A,U}

	
P: 126/63504 = 0.002   A: 750/63504 = 0.0012   U: 62628/63504 = 0.986

[image: Table]

Table 4. CPT calculation under two approximate operands with addition.

Table 4. CPT calculation under two approximate operands with addition.

	
ED(X1<<)

	
ED(Xvar_a)

	
ED(X*1+)

	
ED(X1+)

	
State of X1+

	
(0, EDthreashold)

	
(0, EDthreashold)

	
0(95%)

	
=0

	
P(0.95/6)

	
< = EDthreashold

	
A(0.95/2)

	
> = EDthreashold

	
U(0.95/3)

	
(0, EDthreashold)

	
(0, EDthreashold)

	
>3(0.05)

	
> = EDthreashold

	
U(0.05)

	
P:0.95/6 = 0.16    A:0.95/2 = 0.48    U:0.95/3 + 0.05 = 0.36

[image: Table]

Table 5. Approximate configurations for estimation accuracy and speed comparison.

Table 5. Approximate configurations for estimation accuracy and speed comparison.

	Approximate Configurations
	Approximate Techniques
	ALS

	approx_adder
	Approximate addition for intermediate operation (GeAr adder)
	1.53%

	approx_s/t_var
	Approximate communication or storage for Input variables
	6.38%

	approx_adder+s/t_var
	Mixture of the above two techniques
	4.64%

	Average
	
	4.18%

[image: Table]

Table 6. Multiple approximate techniques selection via comparing power.

Table 6. Multiple approximate techniques selection via comparing power.

	
Type

	
Approx_s/t_con

	
Approx_s/t_var

	
Approx_adder

Total Number = 8

	
Approx_sl

Total Number = 5 + 1

	
Power Saving

∑Wi Pi

	
Wi

	
Pi

	
Wi

	
Pi

	
Wi

	
Pi

	
Wi

	
Pi

	
12%

	
50%

	
19%

	
63%

	
69% × 80%

	
60% × Pj

	
69% × 20%

	
60% × Pj

	
I

	
√

	
√

	
√(number = 1,Pj = 1/8)

	

	
22%

	
II

	

	
√

	

	
√(number = 1,Pj = 1/6)

	
13%

	
III

	

	
√

	
√(number = 2,Pj = 2/8)

	

	
20%

	
IV

	
√

	
√

	

	
√(number = 1,Pj = 1/6)

	
19%

	
V

	

	

	
√(number = 3,Pj = 3/8)

	

	
12%

	
VI

	
√

	
√

	
√(number = 2,Pj = 2/8)

	

	
26%

	
VII

	

	

	
√(number = 1,Pj = 1/8)

	
√(number = 1,Pj = 1/6)

	
10%

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file8.jpg
Procedure VE(, X.1.,1,.p)

Tnputs: T is the list of conditional probabilities (CPTs of all iodcs) n a Bayesian network;
X denotes a st of query variables; ¥ i alstof observed variables;
¥, represents the corresponding lstof observed values;

p is an dlimination ordering for variables outside YUY
Output: PCXIY=0.

EE

Set the observed variables in all factors to their corresponding observed valics
While . is not empty
Remove the first variable 2 from p,
Call sum-out(T"2),
Endwhile
Set he the multiplication of allthe factors on T
//his a function of variables in X.
Retumn j(x)/ ¥, hx) -/ Renormalization

media/file13.png
estimation time (seconds)

10000

1000

100

10

0.1

0.01

0.001

s/t_var

a

d+s/t_var

m HEAP
mMC

media/file12.jpg
10000

1000

01

‘estimation time (seconds)

oo1

0001

1t

mHEAD
mvc

media/file18.jpg
au

uA

' u m w v Vi vt
varying combinations of multiple apprixmmie technigeus

media/file9.png
Procedure VE(T", X,Y,Y,, p)

Inputs: 1" is the list of conditional probabilities (CPTs of all nodes) in a Bayesian network;
X denotes a list of query variables; Y is a list of observed variables;
Y, represents the corresponding list of observed values;
p is an elimination ordering for variables outside XUJY.

Output: P(X|Y=Yo).

Set the observed variables in all factors to their corresponding observed values.
While p isnotempty
Remove the first variable Z from p,
Call sum-out(I, z).
Endwhile
Set h= the multiplication of all the factorson I'.

AN S o L

//h is a function of variables in X.
7. Return p(x)/ ZX h(X) - // Renormalization

media/file14.jpg
error distribution

02

(I

approx_adder

approx_sit_var

|

approx_s/t_con

[|
I :
A
ar

approc_st approx_se

media/file5.png
\
\ /
P(X* 1<<:P): 1
P(X* 1<<:A):0
Xvar_b
P(X* 1+:P):0
P(X* 1+:A):1 N
Xi<<

output

(a)

X node has three states {P,A,U},used to
track the error propagation;

X* node has two states{P,A}, used to
configure the approximation.

P(Xvaria:P| X * s/tJ/:P): 1
P(Xvarfa:A| X* s/tJ;:P):O
P(Xvarfa:U| X* s/tJ;:P):O

P(Xvar .=P|X* 51 v=A)=0
P(Xvaria:A| X* s/tJ/:A):O. 99
P(Xvaria:U| X* s/tJ/:A):O .01

: » 5) 6)

P(X1+:P|Xl<<:P, Xvaria:P, X* 1+:P):1 P(X1+:P|X1<<:P, Xvaria:l)a X* 1+:A):0.95 P(X1+:P|Xl<<:A; Xvaria:A; X* 1+:P):1/6 P(X1+:P|X1<<:A, Xvaria:Aa X* l*ZA):O' 16
P(X1+:A|Xl<<:P, Xvaria:P, X*1+:P):O P(X1+:A|X1<<:P, Xvaria:P; X* 1+:A):0 P(Xl+:A|X1<<:A; Xvaria:A; X* 1+:P):1/2 P(X1+:A|X1<<:A, Xvarﬁa:A; X* l*ZA):O'48
P(X1+:U|Xl<<:P, Xvaria:P, X*1+:P):O P(X1+:U|X1<<:P, Xvaria:l)a X* 1+:A):0.05 P(XI+ZU|X1<<:A; Xvaria:A; X* 1+:P):1/3 P(X1+:U|X1<<:A, Xvaria:Aa X* l+:A):O'36
P(X1.=PIX1-=A, Xy =P, X*1.=P)=0 | [P(X1.=PX1-=P, Xour =A, X*1,=A)=0 PX1=PIX1-=A, Xoar U, X*1,=P)=0 R
P(X1+:A|Xl<<:A; Xvaria:l)a X*1+:P):l :

P(X1+:U|X1<<:A, Xvarﬁa:P: X*H:P):O

P(X1+:P|X1<<:U, Xvaria:l)a X*1+:P):O
P(X1+:A|X1<<:U, Xvaria:l)a X*1+:P):O
P(X1+:U|X1<<:U, Xvarﬁa:P: X*H:P):l

P(X1+:P|X1<<:P, Xvarﬁa:A: X*H:P):O
P(X1+:A|X1<<:P, Xvaria:A: X*1+:P):l
P(X1+:U|X1<<:P, Xvarﬁa:A: X*H:P):O

P(X1+:P|Xl<<:P; Xvaria:U: X*1+:P):O
P(X1+:A|Xl<<:P; Xvaria:U: X*1+:P):O
P(X1+:U|Xl<<:P; Xvaria:U: X*1+:P):l

P(X1+:A|X1<<ZP, Xvaria:A; X* 1+:A):095
P(X1+:U|X1<<:P, Xvaria:A; X* 1+:A):005

P(X1+:P|Xl<<:P, Xvarfa:U: X* 1+:A):0
P(X1+:A|Xl<<:P, Xvarfa:U: X* 1+:A):0
P(X1+:U|Xl<<:P, Xvarfa:U: X* lJr:‘A):1

P(Xl+:P|X1<<:A; Xvaria:P; X* 1+:A):0
P(X1+:A|X1<<ZA, Xvaria:P; X* 1+:A):095
P(X1+:U|X1<<:A, Xvaria:P; X* 1+:A):005

P(X1+:P|X1<<:U, Xvaria:l)a X* 1+:A):0
P(X1+:A|X1<<:U, Xvaria:l)a X* 1+:A):0

P(X1+:U|X1<<:U, Xvarfa:P: X* 1+:A):1

P(X1+:A|X1<<:A, Xvaria:U, X* 1+:P): 0.0145 P(X1+:A|Xl<<:A; Xvaria:U: X* 1+:A): 0.014
P(X;,=UIX -=A, Xyyr o=U, X*1,=P)=0.9855 | |P(X}.=U|X;--=A, Xyor =U, X*1,=A)= 0.986

P(X1+:P|X1<<:U, Xvaria:A, X* 1+:P):0 P(Xl+:P|Xl<<:U; Xvaria:Aa X* 1+:A):0
P(X1+:A|X1<<:U, Xvaria:A, X* 1+:P): 0.0145 P(X1+:A|Xl<<:U; Xvaria:A: X* 1+:A): 0.014
P(X;:=U[X1-=U, Xy i=A, X*1.=P)= 0.9855 | | P(X;.=U[X;-=U, Xy =A, X*1.=A)=0.986

P(X1:=PX1-=U, Xoar ,=U, X*1,=P)=0.002 | |P(X;:=P|X1-=U, X.r ,=U, X*1.=A)= 0.002
P(X1+:A|X1<<:U, Xvaria:U, X* 1+:P): 0.012 P(X1+:A|Xl<<:U; Xvaria:U: X* 1+:A): 0.012

P(X1:=U|X1«=U, Xar o=U, X*1.=P)=0.986 || P(X;:=UJX;--=U, Xyyr ,.=U, X*1,=A)= 0.986

3)

4)

(b)

media/file15.png
error distribution

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2 -

approx_adder

approx_s/t_var

mu
mA

mP

approx_s/t_con

approx_sl approx_sr

media/file19.png
0.95 -

<
O
]

0.85 - aU

mA

o
oo
]

0.75 - BmP

estimation distribution

<
N
1

0.65 -

0.6

[I II I\Y \Y VI VII
varying combinations of multiple apprixmte techniqeus

media/file2.jpg

nav.xhtml

 electronics-09-00373

 		
 electronics-09-00373

media/file11.png
(a)HEAP_approx_adder (b)HEAP_approx_s/t_var

mA

mu

(d) MC_approx_adder (e)MC_approx_s/t_var

.A .A

()HEAP_approx_adder+s/t_var

mP
mA

muU

(fYMC_approx_adder+s/t_var

mA

media/file6.jpg
12

08
06
04
02

09532

00156

00156

00156

ED=32

ED=64

ED=128

media/file1.png

media/file10.jpg
(HEAP_approx_adder

@MC_approx_adder

ar

wu

ar

wy

®HEAP_approx_s_var

[r———

=y

(QHEAP_approx_adderss/t_var

=y

(OMC_approv_addersat var

wr
A

au

media/file7.png
1.2

0.8

0.6

0.4

0.2

0.9532

ED

0

0.0156

0.0156

0.0156

ED=32

ED=64

ED=128

media/file16.jpg
error distribution

09

07

‘number of approximate adders

au

uA

media/file3.png
INPUT: APPROXIMATE

INPUT: DFG CONFIG

N

Configure file
(EDthreshold and
approximate
techniques
configuration)

out

Approximate

MAPPING
RULES

library

CPT

P(X1+:PIX1<<:A, Xvarﬁa:A, X* 1+:P):1/6
MODELING g(?félil«ii, ivmfﬁ, ;:Hillz)jg
POLICY (X=UX1<=A, Xoar =A, X*1,=P)=

> P(X;,=P|X1<=A, Xyqr =U, X*;,=P)=0
P(X]+:AIX]<<:A, Xvaria:U, X*]+:P):0.0l45
P(X;,=UlX;<=A, Xyar =U, X*,=P)=0.9855

P(X1+:PIX1<<:U7 Xvarﬁa:Aa X*H:P):O
P(X1+:A|X]<<:U, Xvarﬁa:A, X*]+:P):OOI45
P(X]+:U|X]<<:U, Xvarﬁa:A, X*1+:P):O9855

P(X1+:P|X]<<:U, Xvarﬁa:U, X*]+:P):O.002
P(X11=A[X1<=U, Xyor =U, X*1,=P)=0.012
P(X1,=UX1<=U,Xyar .=U, X*1,=P)=0.986

X ve
ALGORITHM

OUTPUT-precise OUTPUT-approx_adder

mp mP

mA A

=y mu

OUTPUT-approx_storage OUTPUT-approx_adder+storage
mp mp

muU myu

OUTPUT: ERROR DISTRIBUTION

media/file17.png
error distribution

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

4 5
number of approximate adders

mP

media/file4.jpg

media/file0.jpg

