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Abstract: The direction of arrival (DOA) estimation problem as an essential problem in the radar
system is important in radar applications. In this paper, considering a multiple-input and multiple-out
(MIMO) radar system, the DOA estimation problem is investigated in the scenario with fast-moving
targets. The system model is first formulated, and then by exploiting both the target sparsity
in the spatial domain and the temporal correlation of the moving targets, a sparse Bayesian
learning (SBL)-based DOA estimation method combined with the Kalman filter (KF) is proposed.
Moreover, the performances of traditional sparse-based methods are limited by the off-grid issue, and
Taylor-expansion off-grid methods also have high computational complexity and limited performance.
The proposed method breaks through the off-grid limit by transforming the problem in the spatial
domain to that in the time domain using the movement feature. Simulation results show that
the proposed method outperforms the existing methods in the DOA estimation problem for the
fast-moving targets.
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1. Introduction

Multiple-input and multiple-out (MIMO) radar systems [1–3] transmit orthogonal waveforms,
and the corresponding matched filters are used in the receiver to distinguish the orthogonal waveforms.
Then, the virtual aperture is provided in the MIMO radar system and improves the radar performance
in the target detection, estimation, and tracking [4,5]. The MIMO radar systems usually have two
types: the colocated MIMO radar with the distance between antennas being comparable with the
wavelength [6,7], and the distributed MIMO radar having larger distance between antennas [8–10].
Compared with the distributed MIMO radar, the colocated MIMO radar has better characteristics in
terms of system synchronization and waveform diversity [11]. Therefore, in this paper, the colocated
MIMO radar is used to estimate the direction of arrival (DOA).

In the DOA estimation problem, many methods have been proposed for decades [12,13].
For only one target, interferometer methods using different phases among antennas achieve excellent
performances for DOA estimation. Notably, the interferometer methods have lower computational
complexity and can be realized in the field-programmable gate array (FPGA) easily [14,15]. However,
the interferometer methods can only estimate one target [16]. In the scenario with more than
one target, early methods are based on the discrete Fourier transform (DFT) [17,18], where the
DOA estimation problem is similar to the frequency estimation from the samples in the time
domain. However, the resolution of the DFT-based methods is limited by Rayleigh criteria, and
the targets in the same beam cannot be distinguished. To break through the Rayleigh criteria, the
super-resolution methods have been proposed. The most famous methods are the ones based on
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the subspace theory. For example,the multiple signal classification (MUSIC) method is based on
the noise subspace [19,20] using the eigenvalue decomposition [21]; Root-MUSIC [22] avoids the
peak searching to find the DOA; the estimation of signal parameters via the rotational invariant
techniques (ESPRIT) method uses the rotational invariant feature to estimate the DOA from the signal
subspace [23–25]. In the subspace-based methods, the subspaces are estimated from the received
signals with multiple snapshots. For the MUSIC method, more than 3000 snapshots are used to
estimate the covariance matrix, so with the pulse repetition interval (PRI) being 1 ms, more than 3 s are
needed to estimate the DOA. For a fast-moving target, the target will move more than 1000 m in 3 s.
Therefore, the subspace-based methods are not suitable for the DOA estimation in the scenario with
fast-moving targets.

To improve the DOA estimation performance with fewer samples, the compressed sensing
(CS)-based methods have been proposed [26,27], where the target sparsity in the spatial domain is
exploited and transforms the problem of the DOA estimation to that of sparse reconstruction [28–30].
In the sparse reconstruction methods, the orthogonal matching pursuits (OMP) [31], stagewise OMP
(StOMP), etc., are widely used. To further improve the performance, a sparse Bayesian learning
(SBL)-based method has been proposed in [27,32]. However, the SBL-based methods usually have
high computational complexity. In the sparse reconstruction method, a dictionary matrix is formulated
by discretizing the spatial domain into grids, which will introduce an off-grid error and limit the
improvement of the DOA estimation. Hence, the off-grid methods have been proposed by a one-order
Taylor expansion, such as in [3,33]. Moreover, an atomic norm-based method is also given in [34,35],
where a semidefinite programming (SDP)-based method is formulated to solve the atomic norm
minimization problem.

In this paper, the DOA estimation problem is investigated in the colocated MIMO radar system,
and the fast-moving targets are considered. The system model with moving targets is first formulated.
Then, To exploit the target sparsity in the spatial domain, an SBL-based method is proposed to
estimate the DOA. Since the performance of the SBL-based method is limited by the off-grid problem,
we combine the SBL with the Kalman filter and propose an SBL Kalman filter (SBLKF) method, where
the temporal correlation of DOA is exploited for the moving targets. Furthermore, simulation results
are also given for the proposed method and compared with the existing methods.

The remainder of this paper is organized as follows. The MIMO radar system model for moving
targets is formulated in Section 2. A DOA estimation method, combined with the SBL and KF for
the fast-moving targets, is proposed in Section 3. Simulation results are given in Section 4. Section 5
concludes the paper.

2. MIMO Radar System Model for Moving Targets

2.1. Signal Model in MIMO Radar

Considering the colocated MIMO radar system, M antennas are adopted to transmit the
orthogonal waveforms, and N antennas are for receiving, as shown in Figure 1. In the m-th
(m = 0, 1, . . . , M− 1) transmitting antenna, the transmitted waveforms are denoted as sm(t) with the
PRI being Tp. Since the orthogonal waveforms are transmitted, we have

∫ T

0
sm1(t)s

∗
m2
(t)dt =

{
0, m1 6= m2

1, m1 = m2
, (1)

where T is the pulse duration, and ∗ denotes the conjugate. Therefore, in the n-th (n = 0, 1, . . . , N− 1)
receiving antenna, we use M matched filters corresponding to the transmitted waveforms to distinguish
the orthogonal waveforms, where the filter banks are the same among antennas. For the m-th mathed
filter, we have hm(t) = s∗m(T − t).
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Figure 1. The multiple-input and multiple-out (MIMO) radar with fast-moving targets.

With K far-field targets having the same distance between the radar system and the targets,
we consider the DOA estimation problem for these targets. With the scattering coefficient of the k-th
(k = 0, 1, . . . , K− 1) target during the p-th pulse being α

[p]
k and the DOA being θ

[p]
k , the received signal

in the n-th antenna can be expressed as

r[p]n (t) =ej2π nd
λ sin θ

[p]
k

K−1

∑
k=0

α
[p]
k

M−1

∑
m=0

ej2π md
λ sin θ

[p]
k sm(t− τ) + w[p]

n (t), (2)

where λ denotes the wavelength, d is the distance between the adjacent antennas, τ is the delay from
the transmitter to the receiver, and wn(t) is the additive white Gaussian noise (AWGN). In the n-th
receiving antenna, the signal rn(t) passes the m-th matched filter, and sampled at t = T + τ as

y[p]n,m =
K−1

∑
k=0

α
[p]
k ej2π

(m+n)d
λ sin θ

[p]
k + w[p]

n,m. (3)

Upon collecting all the sampled signals into a vector, we have

y[p] =
[
y[p],T

0 , y[p],T
1 , . . . , y[p],T

N−1

]T
, (4)

where (·)T denotes the transpose operation, and the signal y[p] contains the signals from all the
receiving antennas (y[p]

n , p = 0, 1, . . . , P− 1), and for the n-th antenna, we define the signal y[p]
n as

y[p]
n ,

[
y[p]n,0, y[p]n,1, . . . , y[p]n,M−1

]T
. (5)

The noise vector w[p] has the same form, so the received signal can be rewritten as

y[p] =
K−1

∑
k=0

α
[p]
k b(θ[p]k )⊗ a(θ[p]k ) + w[p], (6)

where w[p] denotes AWGN with the variance being σ2
w, and we define the steering vectors of transmitter

and receiver respectively as
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a(θ) ,
[
1, ej2π d

λ sin θ , . . . , ej2π
(M−1)d

λ sin θ
]T

, (7)

b(θ) ,
[
1, ej2π d

λ sin θ , . . . , ej2π
(N−1)d

λ sin θ
]T

. (8)

The steering vectors are obtained from the structure of the MIMO radar system [7,36]. As shown
in Figure 1, the distance between the adjacent antennas is d, and the DOA for the k-th target during the
p-th pulse is denoted as θ

[p]
k . Therefore, the delay between the adjacent antennas can be obtained via

d sin θ
[p]
k /c, where c is the speed of electromagnetic wave, so the phase change is 2π d

λ sin θ
[p]
k ; and (3)

can be obtained from the phase change. Then, collect all the phase change into a vector, and the
corresponding steering vectors in (7) and (8) can be obtained.

2.2. Target Movement Model

For the movement targets, the DOA can be measured by a movement state. For the k-th target,
the state during the p-th pulse is described by a vector as

s[p]k ,

[
θ
[p]
k

θ̇
[p]
k

]
, (9)

where θ̇
[p]
k denotes the acceleration of DOA θ

[p]
k . Then, with the AWGN in DOA being nk,1 and that in

the acceleration of DOA being nk,2, the target movement is shown as

θ
[p]
k = θ

[p−1]
k + Tpθ̇

[p−1]
k + nk,1 (10)

θ̇
[p]
k = θ̇

[p−1]
k + nk,2, (11)

which can be rewritten as the following vector form

s[p]k = Fs[p−1]
k + nk, (12)

where we define F ,

[
1, Tp

0, 1

]
and nk ,

[
nk,1
nk,2

]
.

Note that the movement model is for the DOA instead of the range. Since the movement of a
target in range can be easily transformed into the movement of DOA, we directly describe the target
movement as a DOA model.

3. DOA Estimation Method

3.1. Sparse Bayesian Learning-Based DOA Estimation

To estimate the DOA during the p-th pulse, the target sparsity in the spatial domain can be
exploited to improve the estimation performance. First, the sparse system model will be formulated.
A dictionary containing all possible steering vectors for target DOAs can be expressed as

D =
[
d0, d1, . . . , dQ−1

]
, (13)

where Q denotes the number of columns in the dictionary matrix D. The spatial is descretized into Q
angles, and formulates a vector

φ =
[
φ0, φ1, . . . , φQ−1

]T
. (14)
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Hence, the q-th column in the dictionary matrix D is

dq , b(φq)⊗ a(φq), (15)

where φq is the q-th discrete DOA.
Then, the system model in (6) can be rewritten as the following sparse model

y[p] = Dx[p] + w[p], (16)

where the vector x[p] is a sparse vector denoting the scattering coefficients, and the positions of non-zero
entries indicate the corresponding DOAs. For example, if the q-th discrete angle φq is equal to the DOA

θ
[p]
k , i.e., θ

[p]
k = φq, we have x[p]q = α

[p]
k .

To reconstruct the sparse vector x[p] in (16), a SBL-based method is proposed in this paper, and we
first show the probability density function (PDF) of AWGN (w[p]) as

f (w[p]|σ2
w) =

(
1

πσ2
w

)MN
e
− ‖w

[p]‖2

σ2
w , (17)

where the noise variance σ2
w is usually unknown, and we define the precision of noise variance as

β = σ−2
w . Then, β follows a Gamma distribution as

f (β; β1, β2) = Γ−1(β1)β
β1
2 ββ1−1e−β2β, (18)

where β1 and β2 are the hyperparameters, and the Gamma function is defined as

Γ(β1) =
∫ ∞

0
e−xxβ1−1dx. (19)

To simplify the analysis, as the Gamma distribution is a conjugate prior of the Gaussian distribution,
we assume that the target scattering coefficients x[p] follow the following Gaussian distribution:

f (x[p]|Σ) = 1
πQ det(Σ)

e−x[p],HΣ−1x[p] , (20)

where the covariance matrix Σ is a diagonal matrix Σ , diag{σ2
x,0, σ2

x,1, . . . , σ2
x,Q−1}. Similarity,

the variances of the entries in the sparse vector x can also described by a Gamma distribution

f (γ; g, h) =
Q−1

∏
q=0

Γ−1(g)hgγ
g−1
q e−hγq (21)

where we define γq = σ−2
x,q . g and h are the hyperparameters of γ ,

[
γ0, γ1, . . . , γQ−1

]T
.

Therefore, the DOA estimation problem with the unknown noise variance can be described by a
problem to maximize the posterior probability, which is expressed as

{x̂[p], β̂, γ̂} = arg max f (x[p], β, γ|y[p]). (22)

Then, for the sparse vector x[p], the estimated mean and variance can be obtained by the
following theorem.
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Theorem 1. With the received signal in (16) and the Gaussian distribution assumption in (20), the mean and
variance of x[p] are, respectively,

µ[p] = βΣxDHy[p], (23)

Σx =
(

βDHD + diag{γ}
)−1

. (24)

Proof. To estimate the mean and variance of the sparse vector, we first formulate the joint distribution
f (y[p], x[p], β, γ) as

f (y[p], x[p], β, γ) = f (y[p]|x[p], β, γ) f (x[p]|γ) f (β) f (γ). (25)

Then, with the joint distribution f (y[p], x[p], β, γ), the posterior for x[p] is obtained as

f (x[p]|y[p], β, γ) =
f (x[p], y[p], β, γ)

f (y[p], β, γ)
(26)

=
f (y[p]|x[p], β, γ) f (x[p]|γ)

f (y[p]|β, γ)

∝ f (y[p]|x[p], β, γ) f (x[p]|γ),

where f (y[p]|x[p], β, γ) can be obtained as

f (y[p]|x[p], β, γ) =

(
β

π

)MN
e−β‖y[p]−Dx[p]‖2

, (27)

and f (x[p]|γ) is obtained as

f (x[p]|γ) =
∏Q−1

q=0 γq

πQ e−x[p],H diag{γ}x[p] . (28)

Substitute (27) and (28) into (26), and we can find that the sparse vector x[p] follows the Gaussian
distribution. The mean and variance can be obtained as

µ[p] = βΣxDHy[p], (29)

Σx =
(

βDHD + diag{γ}
)−1

. (30)

From Theorem 1, we find how to estimate the mean and variance of the sparse vector x, but the
unknown parameters including β and γ are still unknown. The expectation-maximum (EM)-based
method is used to estimate these unknown parameters, and can be obtained by the following theorem

Theorem 2. The unknown parameters β and γ in Theorem 1 can be obtained by the EM-based method as

β̂ =
MN + β1 − 1

Tr{DHDΣx}+ ‖y[p] − Dµ[p]‖2
2 + β2

, (31)

γ̂q =
g

h + Σx,q,q + ‖µq‖2 . (32)
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Proof. The likelihood function for the unknown parameters β and γ can be expressed as

L(β, γ) = E{ln f (y[p], β, γ, x[p])}

= E{ln f (y[p]|β, γ, x[p]) f (x[p]|γ) f (β) f (γ)}. (33)

Therefore, for the noise precision β, we can simplify the likelihood function by ignoring terms
independent thereof in (33) as

L(β) = E{ln f (y[p]|β, γ, x[p]) + ln f (β)}. (34)

Then, the noise precision can be estimated by maximizing the likelihood function L(β). Set
∂L(β)

β = 0, and the estimated noise precision is

β̂ =
MN + β1 − 1

Tr{DHDΣx}+ ‖y[p] − Dµ[p]‖2
2 + β2

. (35)

Similarity, for the precision γ, we have the following likelihood function

L(γ) = E{ln f (y[p]|β, γ, x[p]) f (x[p]|γ) f (γ)}. (36)

By setting ∂L(γ)
γ = 0, we can estimate the q-th entry in γ as

γ̂q =
1− γ

[p−1]
q R{Σx,q,q}
g + ‖µq‖2 . (37)

The details for the sparse reconstruction using the SBL-based method are shown in Algorithm 1.
Using the proposed method, the DOA can be estimated. Moreover, the movements of targets can be
exploited to improve the estimation performance further.

3.2. The KF-Combined SBL Estimation Method

For the far-field targets, the movement of targets are stationary, and cannot change significantly.
Thus, the KF can be used to improve further the DOA estimation performance when combined with
the SBL-based estimation method, the movement model in (12), and the estimated DOA θ̂k obtained
by Algorithm 1.

During the p-th pulse, the estimated target state is denoted as

û[p] ,
[
ŝ[p],T0 , ŝ[p],T1 , . . . , ŝ[p],TK−1

]T
, (38)

where the estimated state ŝ[p]k−1 for the k-th target has the DOA and acceleration information. Then, the
transition matrix for all the targets can be expressed as

T , IK ⊗ F. (39)
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Algorithm 1 The SBL-based DOA estimation method.

1: Input: the received signal y[p] during the p-th pulse, the dictionary matrix D, the hyperparameters

β1, β2, g, and h.
2: Initialization: set the values of hyperparameters as 10−4, and the number of iterations is Niter = 100.

3: for iter = 1 to Niter do

4: Estimate the mean and variance as

µ[p] = βΣxDHy[p], (40)

Σx =
(

βDHD + diag{γ}
)−1

. (41)

5: Estimate the precision of noise variance as

β̂ =
MN + β1 − 1

Tr{DHDΣx}+ ‖y[p] − Dµ[p]‖2
2 + β2

. (42)

6: Estimate the q-th precision of sparse vector as

γ̂q =
1− γ

[p−1]
q R{Σx,q,q}
g + ‖µq‖2 . (43)

7: end for
8: Estimate the DOA by peak-searching the spatial spectrum using the mean µ[p] and variance Σx.
9: Output: the estimated DOA θ̂k.

The predicted target state using the KF method can be obtained as

ũ[p+1] = Tû[p], (44)

and the estimated state during the (p + 1)-th pulse is

û[p+1] = ũ[p+1] + G[p+1](θ̂
[p+1] − θ̃

[p+1]
), (45)

where θ̂
[p+1] is the estimated DOA using the SBL-based method in Algorithm 1, and θ̃

[p+1] is the DOA
obtained from the predicted target state ũ[p+1]. The matrix G[p+1] is obtained as

G[p+1] = H̃ [p+1]PH(PH̃ [p+1]PH + Rm)−1, (46)

where Rm is the noise covariance in the measurement, H̃ [p+1]
= T Ĥ [p+1]TH + Rw, Rw is the noise

covariance of state movement, and Ĥ [p+1]
= H̃ [p+1] −G[p+1]PH̃ [p+1]. The matrix P is a measurement

matrix, and is expressed as

P =


1 0 0 0 0 . . . 0 0
0 0 1 0 0 . . . 0 0
0 0 0 0 1 . . . 0 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1 0

 ∈ R
K×2K. (47)
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Then, with the KF theory, the details for the sparse DOA estimation method are shown in
Algorithm 2. In Figure 2, the flow chart of the proposed method is shown, and two main steps,
including the SBL-based sparse reconstruction and the KF-based prediction, are combined in the
proposed method. Hence, better DOA estimation performance can be achieved, especially for the
fast-moving targets.

Algorithm 2 The KF-based sparse DOA estimation method.

1: Input: the estimated DOA θ̂
[p+1]
k (k = 0, 1, . . . , K− 1) using Algorithm 1 during the (p + 1)-th pulse.

2: During the (p + 1)-th pulse:
3: Predict the DOA from the p-th pulse as

ũ[p+1] = Tû[p]. (48)

4: Predict the estimate covariance as

H̃ [p+1]
= T Ĥ [p]TH + Rw. (49)

5: Update the KF gain as

G[p+1] = H̃ [p+1]PH(PH̃ [p+1]PH + Rm)−1. (50)

6: Update the estimated DOA as

û[p+1] = ũ[p+1] + G[p+1](θ̂
[p+1] − Pũ[p+1]). (51)

7: Update the estimate covariance as

Ĥ [p+1]
= H̃ [p+1] −G[p+1]PH̃ [p+1]. (52)

8: Output: the estimated DOA as Pû[p+1].

Additionally, the proposed method can also deal with the off-grid problem caused by the
discretized grids in the sparse reconstruction method. In the SBL-based reconstruction step, the on-grid
DOAs are estimated. To further improve the estimation performance, the KF-based method is combined
to predict the DOAs, so the off-grid errors can be reduced. For example, when the ground-truth DOA is
30.2◦, the traditional SBL method cannot breakthrough the resolution of grid size. The estimated DOA
using the SBL method can be 30◦ or 31◦ with the grid size being 1◦. However, when the proposed
method is used, the resolution can be less than 1◦ when the KF is combined with the SBL method.
Therefore, the proposed method can solve the off-grid problem.
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Initialize the algorithm

Yes

NoIs the iteration 
number greater than

Niter  

No
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Stop the algorithm

Estimate the mean and
variance of sparse vector
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estimate covariance
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both noise and sparse

vector

Update the KF gain, DOA,
and estimate covariance

Figure 2. The flow chart of the proposed method.

3.3. Computational Complexity

The computational complexity can be estimated from the two main steps of the proposed
method. In the SBL-based reconstruction step, we can find that the computational complexities
in the mean and variance are O(Q2MN) + O(QMN) and O(Q3), respectively. The computation
complexity for the precision estimation is O(Q3) +O(MNQ) +O(Q). Additionally, in the KF-based
step, the computational complexity is O(K3).

Since the number of antennas is much lower than that of discretized grids in the practically MIMO
radar system, i.e., MN � Q, and the number of targets is also much lower than that of Q, i.e., K � Q,
we can find that the computational complexity of the proposed method is O(Q3).

4. Simulation Results

In this section, the simulation results are given to show the performance of the proposed method
in the DOA estimation. The proposed method was carried out in a PC with Intel i7 processor and 16
GB RAM. The proposed method is also available online (https://drive.google.com/drive/folders/
1eHSYMnwEGy2kf_2NXZSmdbuK4lyIrSEt?usp=sharing).The simulation parameters are shown in
Table 1. The targets have movements with constant speed, and the DOA is described as

θ
[p]
k = θ

[p−1]
k + Tp∆θ, (53)

where we can choose the speed ∆θ as 10−3.

https://drive.google.com/drive/folders/1eHSYMnwEGy2kf_2NXZSmdbuK4lyIrSEt?usp=sharing
https://drive.google.com/drive/folders/1eHSYMnwEGy2kf_2NXZSmdbuK4lyIrSEt?usp=sharing
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Table 1. Simulation parameters.

Parameter Value

The signal-to-noise ratio (SNR) of received signals 15 dB
The number of transmitting antennas M 4

The number of receiving antennas N 5
The number of targets K 2

The space between antennas d 0.5 wavelength
The spatial angles [−60◦, 60◦]

Ground-truth DOA −20◦, 30◦

The grid size 1◦

PRI Tp 1 ms

During the 100-th pulse, the ground-truth DOAs are 0◦ and 50◦, as shown in Figure 3, and we use
3 methods to estimate the DOA:

• SBL method: The method is proposed in [3,27,32,33], where the SBL theory is exploit to
reconstruct the sparse vector. The better estimation performance can be achieved, but with
higher computational complexity.

• OMP method: The method is widely used in the sparse reconstruction theory, and has lower
computational complexity. However, this method cannot have better estimation performance in
the scenario with a coherent dictionary matrix.

• Proposed method: This is the method proposed in this paper, where both the SBL and KF are
combined. Hence, the off-grid problem can be solved, and better DOA estimation performance
can be achieved.

-60 -40 -20 0 20 40 60

Spatial angle (deg)

0

0.2

0.4

0.6

0.8

S
p
at

ia
l 

sp
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u
m

SBL method

Ground-truth DOA

Proposed method

OMP method

-1 0 1
0

0.2

0.4

0.6

45 50 55
0

0.2

0.4

0.6

Figure 3. The estimated spatial spectrum using different methods.

As shown in Figure 3, all three methods can find the two targets. The root mean square error
(RMSE) in degrees is used to measure the DOA estimation performance, and is defined as

RMSE =

√√√√ 1
KP

P−1

∑
p=0

K−1

∑
k=0

θ̂
[p]
k − θ

[p]
k . (54)

We found that the RMSEs of the SBL method, the OMP method, and the proposed method were
0.82558, 0.85187, and 0.29818. Hence, the best estimation performance was achieved by the proposed
method. Additionally, we found that compared with the grid size 1◦, the RMSE in degrees (0.29818) of
the proposed method is much less than the gird size, so the off-grid problem is solved.
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For the DOA estimation with a moving target, Figures 4 and 5 show the estimation results for
the first and second targets, respectively. We use three methods to track the target movement, and the
proposed method can more precisely track the moving DOA, compared with SBL and OMP methods.
The corresponding RMSEs of DOA estimation with a moving target are shown in Figure 6, where the
proposed method has relatively lower RMSE with the increasing index of movement. However, for the
SBL and OMP methods, the performance cannot be improved using the historical information of the
estimated DOA. Therefore, with more estimation information, the DOA estimation performance can
be further improved using the proposed method.

In the proposed method, Algorithm 1 uses the iterations to estimate the DOA during the p-th
pulse, so we show the DOA estimations with different numbers of iterations in Figure 7. We can find
that when the number of iteration is greater than 20, the same DOA estimation performance is achieved.
Hence, in the following simulations, the number of iterations is chosen as Niter = 20. Moreover, when
SNR ≥ 15 dB, we have acceptable performance (RMSE ≤ 0.2◦) of the DOA estimation, so we choose
SNR = 15 in the following simulations.
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Figure 4. Direction of arrival (DOA) estimation for moving target 1.
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Figure 5. DOA estimation for moving target 2.
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Figure 6. The DOA estimation error with moving targets.
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Figure 7. The DOA estimation performance with different numbers of iterations.

For the sparse reconstruction method, the dictionary matrix D is formulated, so the grid size is
essential to controlling the performance of sparse reconstruction. In Figure 8, the DOA estimation
performance with different grid sizes is shown; we choose the grid sizes as 0.2◦, 0.5◦, 1◦, 1.5◦, 2◦, 2.5◦,
and 3◦. The SBL, OMP, and proposed methods are compared in the scenario with different grid sizes.
We can find that when the grid size is less than 0.5◦, the coherence between the adjacent columns in
the dictionary matrix is higher, so the sparse reconstruction performance is worse. When the grid size
is larger than 2◦, the DOA estimation performance is also worse with the additional off-grid problem.
As a trade-off between the dictionary size and the reconstruction performance, we choose the grid size
as 1◦ in the following simulations. Under this condition, the RMSE of the DOA estimation using the
proposed method is about 0.2 and much less than the grid size 1◦.

Then, the DOA estimation performances using the SBL, OMP, and proposed methods are shown in
Figure 9 with different SNRs. As shown in Figure 9, the proposed method achieves the best estimation
performance from 0 dB to 30 dB. The SBL method has better performance than the OMP method but
also has higher computational complexity. Additionally, in the scenario with worse SNR (≤ 10 dB),
the performance improvement is more significant.
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Figure 8. The DOA estimation performance with different grid sizes.
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Figure 9. The DOA estimation performance with different signal-to-noise ratios (SNRs).

The DOA estimation performance with different numbers of the transmitting and receiving
antennas is also shown in Figure 10 and Figure 11, respectively. We can find that the estimation
performance is improved with more antennas. However, with the limit of the grid size, the estimation
performance cannot be improved significantly when the number of transmitting antennas is higher
than 8 and that of receiving antennas greater than 7. Compared with the SBL and OMP methods,
the proposed method can achieve better DOA estimation performance. When the grid size is large
(i.e., greater than 2◦), we can find that the RMSE of the DOA estimation using the proposed method is
0.25◦, which is much lower than the SBL and OMP methods, as shown in Figure 8. Additionally, the
computational time with the 2◦ grid size is also half of the one with the grid size being 1◦.

Finally, the computational complexity is investigated. As shown in Table 2, we show the
computation time of the SBL, OMP, and proposed methods with different grid sizes. The proposed
method has higher computational complexity than SBL and OMP methods but is comparable with
the SBL method. For the computational time, the grid size controls the total computational time.
Additionally, the relative time is also added, where we normalized the relative time of the proposed
method as 100%. Hence, the computational complexity of the proposed method is acceptable.
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Figure 10. The DOA estimation performance with different numbers of the transmitting antennas.
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Figure 11. The DOA estimation performance with different numbers of the receiving antennas.

Table 2. Computational time.

Method Time (s) with 1◦ Grid-Size Time (s) with 2◦ Grid-Size

SBL method 0.029681 (98.81%) 0.01164 (96.74%)
OMP method 0.001556 (5.18%) 0.000359 (2.98%

Proposed method 0.030038 (100%) 0.012032 (100%)

5. Conclusions

The DOA estimation problem for the colocated MIMO radar has been investigated in this paper.
By formulating the system model, the SBL-based DOA estimation method with KF has been proposed
for the fast-moving targets. By exploiting both the target sparsity in the spatial domain and the
correlation in the time domain, better performance has been achieved by the proposed method
compared with the existing methods. Furthermore, the proposed method can also deal with the
off-grid problem caused by the discretized dictionary matrix. Simulation results have shown both the
performance improvement and the effectiveness of the proposed method. Further work will focus on
the DOA estimation for fast-moving targets with imperfect MIMO radar.
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