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Abstract: For multi-user millimeter wave (mmWave) massive multiple-input multiple-output (MIMO)
systems, the precise acquisition of channel state information (CSI) is a huge challenge. With the
increase of the number of antennas at the base station (BS), the traditional channel estimation
techniques encounter the problems of pilot training overhead and computational complexity
increasing dramatically. In this paper, we develop a step-length optimization-based joint iterative
scheme for multi-user mmWave massive MIMO systems to improve channel estimation performance.
The proposed estimation algorithm provides the BS with full knowledge of all channel parameters
involved in up- and down-links. Compared with existing algorithms, the proposed algorithm has
higher channel estimation accuracy with low complexity. Moreover, the proposed scheme performs
well even with a small number of training sequences and a large number of users. Simulation results
are shown to demonstrate the performance of the proposed channel estimation algorithm.

Keywords: multi-user; mmWave; massive MIMO; channel estimation; low complexity

1. Introduction

Millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) has been generally
recognized as a strong potential key technique for enhancing quality in the future wireless
communication field [1]. The demand for higher speed data transmission, shorter delays, better
user experience, and denser networks is increasing with the rapid development of wireless services
such as virtual reality, multimedia, and the Internet of Things [2]. The mmWave band has huge
unexploited spectrum resources, which can overcome the spectrum congestion of standard wireless
frequency bands and achieve an orders of magnitude increase in spectral efficiency to meet these
requirements [3,4]. The work in [5] expounded that the mmWave band can greatly speed up the data
transmission rate. Additionally, massive MIMO refers to adding a number of antennas at the base
station (BS), which can overcome the effects of fading, average out the dominant path-loss, and make
up for the short wavelength of mmWave [6–8], and the isolation between radiating elements is a
very important issue [9,10]. The combination of mmWave and massive MIMO can be used to meet
increasing demand in data traffic [11,12].

Many studies have been devoted to the research of mmWave massive MIMO multi-user systems
in recent years. Compared with conventional point-to-point MIMO, multi-user MIMO with simplified
resource allocation has greater advantages [13,14]. The work [15] developed blind multi-user detection
based on the model of [16], which can approach the lower bound of performance under certain
conditions. The work in [17] summarized the benefits, challenges, and potential solutions of mmWave
massive MIMO in cellular networks.
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In order to achieve the theoretical performance gain and potential benefits of mmWave massive
MIMO systems, accurate channel state information (CSI) is essential, which is also regarded as
one of the main difficulties in mmWave communication [18,19]. However, due to the difference
in channel characteristics compared to traditional sub-6 GHz, the smaller number of RF chains,
and overwhelming overhead in downlink training and uplink channel feedback, accurate acquisition of
CSI is challenging [20–22]. Various novel channel estimation approaches have been recently proposed
for mmWave massive MIMO [23–27]. In particular, under the assumption of the BS antennas being
highly correlated, the work in [23] proposed an antenna grouping method to reduce feedback overhead.
By utilizing the correlation among users, the work in [24] provided a joint CSI acquisition proposal
based on a low-rank matrix. To reduce errors caused by discretization and solve the line spectral
estimation problem, the work in [25] designed an iterative reweighted approach for joint dictionary
parameter training and sparse signal recovery, but it had the limitation that only two parameters could
be estimated. The work in [26] extended the suggestion in [25] to two dimensions and represented a
super-resolution channel estimation scheme based on iterative reweighting in a point-to-point scenario.
It is regrettable that such a solution in [26] had the problem of slow estimation. Considering the
problem of channel estimation for mmWave MIMO systems under a transmitter impairment model,
a new algorithm based on Bayesian compressive sensing (BCS) was introduced in [27]. However,
the assumption of BCS was relatively harsh, and the accuracy of estimation was limited.

To obtain CSI more accurately and faster in multi-user mmWave massive MIMO, we develop
a step-length optimization-based joint iterative channel estimation scheme in this paper. Our main
contributions are outlined as follows:

1. For multi-user mmWave massive MIMO systems, we propose a novel joint estimation scheme,
which can accurately estimate the azimuth angles of departure or arrival (AoDs/AoAs) and joint gain
at the BS. Specifically, the proposed algorithm does not need to estimate the channel on the user side,
and all channel parameters can be estimated at the BS, which is different from the traditional channel
estimation scheme.

2. We combine the advantages of the Newton method and gradient descent method and derive
an iterative step-length optimization approach to reduce computational complexity. It is confirmed
that the proposed scheme has low complexity without losing the accuracy of channel estimation.

3. Compared with the traditional singular-value decomposition (SVD) algorithm and BCS
algorithm under different situations, the simulation results show that the proposed algorithm achieves
better channel estimation performance with fewer training data blocks.

The rest of this paper is arranged as follows. Section 2 introduces the considered multi-user
mmWave massive MIMO model. Section 3 formulates the proposed joint iterative channel estimation
algorithm, which accounts for the preprocessing, the choice of descent direction in the iteration,
the optimization of the step-length, and the method for separating the downlink channel. Some
simulation results are provided to illustrate the performance of estimation in Section 4, and Section 5
concludes this paper.

Notation: In this paper, vectors and matrices are denoted by boldface lowercase and uppercase
symbols, respectively; AT , AH , A−1, and A† correspond to the transpose, conjugate transpose, inverse,
and Moore–Penrose pseudo-inverse of the matrix A; vec (A) is the vector stacked by the columns
of the matrix A; ⊗ is the Kronecker product; diag(x) denotes the diagonal matrix with the vector x
on its diagonal; rank(A) is the rank of A; ‖A‖F, ‖h‖0, and ‖h‖2 represent the Frobenius norm of A,
the `0-norm, and Euclidean norm of the vector h, respectively; IN is the N× N identity matrix; the sets
of real and complex numbers are represented by R and C, respectively.

2. System Model

We considered a common mmWave massive MIMO system with hybrid precoding as illustrated
in Figure 1, where the number of antennas at the BS is NBS; but, only NRF RF chains with NBS > NRF to
support K user equipment (UE), and each UE has a single receive antenna [18,28]. In the communication
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process, it is assumed that there is only one transmission path via NS data streams between BS and
each UE.
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Figure 1. Block diagram of the multi-user mmWave massive MIMO system.

Let mT = 1, · · · , MT and mR = 1, · · · , MR be the time slot of the transmitter and receiver,
respectively. The BS pilots SmT ,mR ∈ CNs×L represent the signal transmitted in the (mT , mR)

th time slot,
where L is the number of different pilot sequences, and its design meets the orthogonality condition
SmT ,mR · SH

mT ,mR
= INS×NS [29,30]. Then, the signal yk ∈ C1×L received by the kth user can be given by:

yk = hk
DFT,mT SmT ,mR + nMS

mT ,mR
(1)

where FT,mT = [FRF]T,mT
[FBB]T,mT

∈ CNBS×NS is the transmitted hybrid precoding matrix in the
mT

th time slot, FBB ∈ CNRF×NS is the baseband beamformer followed by the RF beamformer FRF ∈
CNBS×NRF , nMS

mT ,mR
∈ C1×L is the received independent and identically distributed additive white

Gaussian noise elements having zero mean and the variance σ2
k , and hk

D ∈ C1×NBS is the downlink
channel vector, and by defining θk , d sin δT,k/λ as the normalized spatial angle [31], it can be
expressed as:

hk
D = αkaH (θk) (2)

where αk, d, and λ denote the propagation gain of the kth downlink path and the antenna spacing at
the BS and carrier wavelength, respectively. d = 1

2 λ is widely adopted here [32]. δT,k ∈ [0, 2π] is the
AoD of the kth path. a (θk) ∈ CNBS×1 is the steering vector at the transmitter of the kth path. In this
work, we considered the typical uniform linear arrays (ULAs) [33]; a (θk) is given by:

a (θk) =
[
1, ej2πθk , · · · , ej2π(NBS−1)θk

]T
. (3)

Denote φk , d sin δR,k/λ where δR,k is the AoA of the kth path. φk is the normalized spatial angle
the same as θk. The uplink channel vector hk

U ∈ CNBS×1 can be expressed as:

hk
U = βkb (φk) (4)
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where βk is the propagation gain of the kth uplink path and b (φk) ∈ CNBS×1 is the steering vector at
the receiver of the kth path. For typical ULAs, b (φk) is given by:

b (φk) =
[
1, ej2πφk , · · · , ej2π(NBS−1)φk

]T
. (5)

To reduce the overhead of downlink channel training and uplink channel feedback, we propose a
joint estimation scheme, that is the user does not process the received signal and directly feeds it back
to the BS [24]. For all K users, the comprehensive signal XBS

mT ,mR
∈ CNS×L received by the BS is:

XBS
mT ,mR

= WH
R,mR

K

∑
k=1

hk
Uyk

= WH
R,mR

K

∑
k=1

βkb (φk) αkaH (θk) FT,mT SmT ,mR + NBS
mT ,mR

(6)

where K � NBS is the number of complex paths, WR,mR = [WRF]R,mR
[WBB]R,mR

∈ CNBS×NS is the
received hybrid combining matrix in the mR

th time slot, WRF and WBB are baseband combiners,
and NBS

mT ,mR
∈ CNS×L is the noise received by the BS after combining. By defining rk = αkβk

and synthesizing all K users, we can further obtain:

XBS
mT ,mR

= WH
R,mR

B (φφφ) diag (r)AH (θθθ) FT,mT SmT ,mR + NBS
mT ,mR

(7)

where φφφ = [φ1, φ2, · · · , φk]
T ∈ CK×1, θθθ = [θ1, θ2, · · · , θk]

T ∈ CK×1, r = [r1, r2, · · · , rk]
T ∈ CK×1,

the steering matrix B (φφφ) ∈ CNBS×K and A (θθθ) ∈ CNBS×K are given by:

B (φφφ) = [b (φ1) , b (φ2) , · · · , b (φk)] (8)

A (θθθ) = [a (θ1) , a (θ2) , · · · , a (θk)] . (9)

We further process the signal XBS
mT ,mR

in (7) to make it multiply right by SH
mT ,mR

; we have:

XmT ,mR = XBS
mT ,mR

SH
mT ,mR

= WH
R,mR

B (φφφ) diag (r)AH (θθθ) FT,mT + NmT ,mR . (10)

Next, we start to collect and arrange the signal XmT ,mR in (10). By collecting the pilots in the MT time
slots of the transmitter, we can get:

XmR =
[
X1,mR , X2,mR , · · · , XMT ,mR

]
= WH

R,mR
B (φφφ) diag (r)AH (θθθ) FT + NmR

(11)

where FT =
[
FT,1, · · · , FT,MT

]
∈ CNBS×NS MT , NmR =

[
N1,mR , · · · , NMT ,mR

]
∈ CNS×NS MT . By dealing

with the signal XmR in the MR time slots of the receiver, we have after arranging:

X =
[
X1, X1, · · · , XMR

]T

= WRB (φφφ) diag (r)AH (θθθ) FT + N
(12)

where WR ∈ CNS MR×NBS and N ∈ CNS MR×NS MT are expressed as:

WR =


WH

R,1
...

WH
R,MR

 , N =

 N1
...

NMR

 . (13)
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Now, the signal received by the BS in (10) is written in a more compact form as:

X = WRB (φφφ) diag (r)AH (θθθ) FT + N (14)

where X ∈ CNS MR×NS MT ; the combined channel matrix H ∈ CNBS×NBS can be written as:

H = B (φφφ) diag (r)AH (θθθ) . (15)

3. Joint Iterative Channel Estimation Scheme

In this section, we firstly transform the above channel estimation problem into a new algorithm
form. Then, we adopt the SVD preconditioning proposal to reduce the computational complexity.
To improve algorithm performance, we give an angle estimation optimization scheme by optimizing
the step-length and using a combination of the gradient descent algorithm and Newton method.
Finally, we propose a scheme for successfully separating the downlink channel from the combined
channel matrix.

3.1. Algorithm Formulation

The estimation of the combined channel matrix H in (15) is equivalent to the estimation of
combined path gain r and the two normalized spatial angles θθθ and φφφ for all paths. Due to the
sparseness of the combined channel matrix H in the angle domain [34], such a problem can be easily
expressed as:

min
r, θθθ, φφφ

‖r‖0

s.t. ‖X−WRHFT‖F 6 γ
(16)

where ‖r‖0 is the number of non-zero components of r, which also represents the number of estimated
paths K, and γ is the error tolerance parameter related to noise.

Considering the low computational efficiency of finding the optimal solution in (16), we propose
to replace the `0-norm with the use of the logarithmic sum function [25,35]:

min
r, θθθ, φφφ

P (r) =
K

∑
k=1

log(|rk|2 + ξ)

s.t. ‖X−WRHFT‖F 6 γ

(17)

where rk is the kth element of the gain r and ξ > 0 is a positive parameter to ensure that the definition
of the log-sum function is valid. By adding a data fitting parameter µ > 0, the difficulty in (17) can be
formulated as an unconstrained optimization problem, which yields the following optimization:

min
r, θθθ, φφφ

L (r, θθθ, φφφ) = P (r) + µ ‖X−WRHFT‖2
F . (18)

Due to the need to ensure the monotonically decreasing characteristic, we introduce a suitable iterative
function instead of the log-sum function [26,36]:

min
r, θθθ, φφφ

Z(t) (r, θθθ, φφφ) = µ−1rHG(t)r + ‖X−WRHFT‖2
F (19)

where t is the number of iterations and G(t) is a diagonal matrix, which is defined as:

G(t) , diag [ϕ1, ϕ2, · · · , ϕk] (20)

where ϕk =
1∣∣∣r̃(t)k

∣∣∣+ξ
, r̃(t)k is the path gain estimate of the kth user at the tth iteration. The minimization

of the log-sum function L (r, θθθ, φφφ) in (18) is equivalent to the minimization of the surrogate function
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Z(t) (r, θθθ, φφφ) in (19), which is proven as follows. To get better estimates r̃(t+1), θ̃̃θ̃θ
(t+1), φ̃̃φ̃φ

(t+1) in the tth

iteration and ensure the convergence of the function, the following inequality can be shown:

Z(t)
(

r̃(t+1),
(

θ̃̃θ̃θ
(t+1), φ̃̃φ̃φ

(t+1)
)∣∣∣ r̃(t)

)
6 Z(t)

(
r̃(t),

(
θ̃̃θ̃θ
(t), φ̃̃φ̃φ

(t)
)∣∣∣ r̃(t)

)
. (21)

Then, we can get:

L
(

r̃(t+1), θ̃̃θ̃θ
(t+1), φ̃̃φ̃φ

(t+1)
)
− µZ(t)

(
r̃(t+1),

(
θ̃̃θ̃θ
(t+1), φ̃̃φ̃φ

(t+1)
)∣∣∣ r̃(t+1)

)
=

K

∑
k=1

[
log
(∣∣∣r̃(t+1)

k

∣∣∣2 + ξ

)
−
∣∣∣r̃(t+1)

k

∣∣∣2 ϕk

]
. (22)

Since the maximum value is reached at r̃(t+1) = r̃(t), we have:

K

∑
k=1

[
log
(∣∣∣r̃(t+1)

k

∣∣∣2 + ξ

)
−
∣∣∣r̃(t+1)

k

∣∣∣2 ϕk

]
6

K

∑
k=1

[
log
(∣∣∣r̃(t+1)

k

∣∣∣2 + ξ

)
−
∣∣∣r̃(t)k

∣∣∣2 ϕk

]
. (23)

Combining (21) and (22), we can finally get:

L
(

r̃(t+1), θ̃̃θ̃θ
(t+1), φ̃̃φ̃φ

(t+1)
)
6 L

(
r̃(t), θ̃̃θ̃θ

(t), φ̃̃φ̃φ
(t)
)

(24)

which explains the correctness of the above assumption.
By optimizing the path gain r in (19) through the derivative method [26], we can obtain the

optimal point of r and the corresponding optimal value of Z(t), that is,

r(t)pe (θθθ, φφφ) = (µ−1G(t) +
NS MT

∑
i=1

QH
i Qi)

−1(
NS MT

∑
i=1

QH
i xi) (25)

Z(t)
pe (θθθ, φφφ) =

Ns MT

∑
i=1

xH
i xi − (

Ns MT

∑
i=1

QH
i xi)

H(µ−1G(t) +
Ns MT

∑
i=1

QH
i Qi)

−1(
Ns MT

∑
i=1

QH
i xi) (26)

where xi is the column vector of the signal X received by the BS, Qi = WRB(φφφ)diag(AH(θθθ)fT),
and fT is the column vector of the hybrid precoding matrix FT . After that, we only need to consider
the optimization of the normalized spatial angles θθθ and φφφ in (26), which will be discussed in the
next subsection.

3.2. Initial Angle Preprocessing

To optimize the spatial angle, we propose a preconditioning algorithm based on SVD [37,38] to
select the initial value of the spatial angle effectively. Compared with using all NMSNBS angle domain
grids as the initial candidate value, the proposed algorithm can rapidly find the angle domain grids
closest to the true orientation angle, which can significantly reduce the computational complexity of
the subsequent algorithm. Specifically, we apply SVD to the matrix X in (14) and get X = UΣVH ,
where U and V are unitary matrices that satisfy UHU = INS MR×NS MR and VHV = INS MT×NS MT ,

respectively, Σ = diag
(

κ1, κ2, · · · , κmin(NS MR ,NS MT)

)
∈ RNS MR×NS MT is a diagonal matrix whose value

on the diagonal is the singular value of X, and κ1 > κ2 > · · · > κmin(NS MR ,NS MT)
> 0. The signal is

expressed in a more compact form as:

X = (WRB (φφφ)) diag (r)
(

FH
T A (θθθ)

)H
+ N. (27)
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Suppose l = 1, 2, · · · , K the larger the K singular value and their homologous singular vectors are
roughly determined by K paths, we can infer:

ul =
WRb (φl)

‖WRb (φl)‖2
, vl =

FH
T a (θl)∥∥FH

T a (θl)
∥∥

2
(28)

where ul and vl are the lth column of U and V, respectively; the singular value can be written as:

κl = |rl | ‖WRb (φl)‖2

∥∥∥FH
T a (θl)

∥∥∥
2
. (29)

Then, the spatial angles are normalized by (θl , φl) ∈
{

(i−1)
NBS

, i = 1, 2, · · · , NBS

}
and assumed to

lie in the quantized points; we have:

ul ≈ WRERb (φl) , vl ≈ FH
T ETa (θl) (30)

where ER ∈ CNBS×NBS and ET ∈ CNBS×NBS are the discrete Fourier transform matrices; we can further
obtain the coarse estimates of angle, which can be formulated as:

φ
(1)
l =

arg maxNBS
q=1 dR (q)− 1

NBS

θ
(1)
l =

arg maxNBS
q=1 dT (q)− 1

NBS

(31)

where:
dR = (WRER)

HWRERb (φl)

dT =
(

FH
T ET

)H
FH

T ETa (θl) .
(32)

At this point, we get the initial candidates for the spatial angle. Furthermore, due to the uncertainty
of the number of paths of the estimated channel at the beginning, we set Linit > K, l = 1, 2, · · · , Linit to
ensure the accuracy of our estimated path, and some incorrect paths will be cut off in the proposed
algorithm. The iterative search scheme of angles is explained in the next subsection.

3.3. Step-Length Optimization

In the previous section, it can be seen that the objective function Z(t) (r, θθθ, φφφ) in (19) is the weighted
sum of two parts, where µ is the regularization parameter [39] that affects the tradeoff to some extent.
In the proposed algorithm, µ is simplified as:

µ = min
[(

ω(t)
)−1

e, µmax

]
(33)

where e is a constant scale factor, and the squared residual at the tth iteration ω(t) is expressed as:

ω(t) =
∥∥∥X−WRB

(
φφφ(t)

)
diag

(
r(t)pe

)
AH

(
θθθ(t)
)

FT

∥∥∥2

F
. (34)

The main task is to search for new estimates θθθ(t+1) and φφφ(t+1) from the neighborhood of θθθ(t) and
φφφ(t) at the tth iteration, so that the objective function Z(t) becomes smaller and eventually stabilizes.
Considering the characteristics of the fast convergence speed of the Newton descent method and
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the high accuracy of the steepest descent method, we try to suggest combining the two for better
performance; this searching can be accomplished by:

φφφ(t+1) = φφφ(t) − ρ(t) · d(t)

θθθ(t+1) = θθθ(t) − ρ(t) · d(t)
(35)

where ρ(t) is the step-length at the tth iteration and d(t) is the corresponding descent direction.
To balance the high computational complexity of the Newton iterative algorithm, we consider using
the Newton direction as the descending direction to achieve fast convergence in the first iteration,
that is denote d(t) = d(t)

N when t = 1; the expression d(t)
N is:

d(t)
N = ∇2Z(t)

pe (θθθ
(t), φφφ(t))−1∇Z(t)

pe (θθθ
(t), φφφ(t)). (36)

After that, we choose the gradient direction to achieve high accuracy and set d(t) = d(t)
G ; the expression

d(t)
G is:

d(t)
G = ∇Z(t)

pe (θθθ
(t), φφφ(t)) (37)

it can be seen that the search direction involves the gradient calculation of the iterative function Zpe.
Taking the normalized angle φk as an example, the calculation method is explained as follows.

Define J =
NS MT

∑
i=1

QH
i xi, D = µ−1G +

Ns MT
∑

i=1
QH

i Qi, then Zpe can be expressed as:

Zpe =
Ns MT

∑
i=1

xH
i xi − JHD−1J. (38)

Take the partial derivative with respect to φk, we can obtain:

∂Zpe

∂φk
= −∂JH

∂φk
D−1J− JH ∂D−1

∂φk
J− JHD−1 ∂J

∂φk
(39)

and ∂D−1

∂φk
= −D−1 ∂D

∂φk
D−1; we have:

∂Zpe

∂φk
= −∂JH

∂φk
D−1J + JHD−1 ∂D

∂φk
D−1J− JHD−1 ∂J

∂φk
(40)

where:
∂J

∂φk
=

NS MT

∑
i=1

∂QH
i

∂φk
xi (41)

∂D
∂φk

=
NS MT

∑
i=1

(
∂QH

i
∂φk

Qi + QH
i

∂Qi
∂φk

)
(42)

∂Qi
∂φk

=
∂WRB (φ) diag

(
AH (θ) fT

)
∂φk

=

[
0 · · · 0 WR

∂b (φk)

∂φk
aH (θk) fT 0 · · · 0

]
. (43)
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Since there is only a certain transposition relationship between the gradient and the partial derivative,
we have the gradient of Zpe, and we can further obtain the second derivative:

∂2Zpe

∂φ2
k

=− ∂2JH

∂φ2
k

D−1J + 2
(

∂JH

∂φk
D−1 ∂D

∂φk
D−1J

)
− 2

(
∂JH

∂φk
D−1 ∂J

∂φk

)
− 2

(
JHD−1 ∂D

∂φk
D−1 ∂D

∂φk
D−1J

)
+ JHD−1 ∂2D

∂φ2
k

D−1J

+ 2
(

JHD−1 ∂D
∂φk

D−1 ∂J
∂φk

)
− JHD−1 ∂2J

∂φ2
k

(44)

where:
∂2J
∂φ2

k
=

NS MT

∑
i=1

∂2QH
i

∂φ2
k

xi (45)

∂2D
∂φ2

k
=

NS MT

∑
i=1

(
∂2QH

i
∂φ2

k
Qi + 2

∂QH
i

∂φk

∂Qi
∂φk

+ QH
i

∂2Qi

∂φ2
k

)
(46)

∂2Qi

∂φ2
k

=

[
0 · · · 0 WR

∂2b (φk)

∂φ2
k

aH (θk) fT 0 · · · 0
]

. (47)

Next, we think about whether we can optimize the iteration step-length in (35) to improve the
speed of iteration. Considering that if the optimal step-length of θθθ and φφφ is directly solved, the algorithm
complexity is very high, and the channel is only related to the path gain r and the spatial angles θθθ and
φφφ, so when the gain has been optimized, we choose to use the optimal step-length of the channel to
approximate the optimal step-length of the angles. The optimization method is as follows.

Denote x = vec (X), Ω = FT
T ⊗WR, and given the spatial angles θθθ(t) and φφφ(t) at the tth iteration,

we have:
h(t) = vec

(
B
(

φφφ(t)
)

diag
(

r(t)pe

)
AH

(
θθθ(t)
))

. (48)

Then, the cost function transformed from (34) is:

O(t) = vec
(

ω(t)
)
=
∥∥∥x−Ωh(t)

∥∥∥2
. (49)

Therefore, such an optimization can be reformulated as:

ρ(t) = arg min
ρ(t)

O
(

h(t) + ρ(t)d(t)
)

(50)

The key to this problem is how to get the suitable ρ(t); define λ
(

ρ(t)
)
= O

(
h(t) + ρ(t)d(t)

)
, and take

the derivative with respect to λ
(

ρ(t)
)

; we can get:

∂λ
(

ρ(t)
)

∂ρ(t)
= ∇O

(
h(t) + ρ(t)d(t)

)H
d(t) (51)

where:

∇O
(

h(t) + ρ(t)d(t)
)

= ∇
∥∥∥x−Ω

(
h(t) + ρ(t)d(t)

)∥∥∥2

= ∇
[
x−Ω

(
h(t) + ρ(t)d(t)

)]H [
x−Ω

(
h(t) + ρ(t)d(t)

)]
= ΩH

[
Ω
(

h(t) + ρ(t)d(t)
)
− x
]

.

(52)
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Similarly, we have:
∇O

(
h(t)

)
= ΩH

(
Ωh(t) − x

)
(53)

(52) can be simplified as:

∇O
(

h(t) + ρ(t)d(t)
)

= ΩHΩ
(

h(t) + ρ(t)d(t)
)
−ΩHx

= ΩHΩ
(

h(t) + ρ(t)d(t)
)
+∇O

(
h(t)

)
−ΩHΩh(t)

= ρ(t)ΩHΩd(t) +∇O
(

h(t)
)

.

(54)

Now, we can obtain:
∂λ
(

ρ(t)
)

∂ρ(t)
= ∇O

(
h(t)

)H
d(t) + ρ(t)d(t)H

ΩHΩd(t). (55)

Considering the complexity of the algorithm, the descent direction here is the gradient direction. Set
∂λ(ρ(t))

∂ρ(t)
= 0; we can finally get:

ρ(t) = −
∇O

(
h(t)

)H
∇O

(
h(t)

)
∇O

(
h(t)

)H
ΩHΩ∇O

(
h(t)

) . (56)

From this, we get the approximate optimal step-length for the angle update. During the iterative
searching, the spatial angle and path gain estimates can converge quickly, until the latest estimates
are almost the same as the previous ones. The proposed channel estimation scheme is shown in
Algorithm 1. We can achieve the purpose of accurate and fast channel estimation, which will be
verified in subsequent simulations.

Since the Newton direction is used only once, the computational complexity of each iteration
mainly lies in the calculation of the gradient direction and the optimization of the step-length.
The complexity to compute the gradient direction is O(N2

s MR MT (NBS + K)K2), and the complexity
of the step calculation is O(K2NBS). As a result, we can conclude that the proposed algorithm has the
complexity O(N2

s MR MT (NBS + K)K2 + K2NBS).
In the above algorithm, we successfully estimated the space angle θθθ, φφφ and the combined gain r,

where rk = αkβk. Next, the solution to the problem of how to separate the downlink gain αk from the
combined gain is revealed.

Specifically, we adopt the unit symbol pilot sk = 1 sent by the UEs to the BS via the uplink channel,
and the signal Y ∈ CNS MR×1 received by the BS is written as:

Y = WR
[
h1

Us1 + h2
Us2 + · · ·+ hk

Usk
]

= WR [β1b (φ1) + β2b (φ2) + · · ·+ βkb (φk)]

= T[β1, β2, · · · , βk]
T

(57)

where T = WR [b (φ1) , b (φ2) , · · · , b (φk)] ∈ CNS MR×K; when rank(T) > K, we have βββ = T†Y, where
βββ = [β1, β2, · · · , βk]

T , we obtain uplink gain βk, and the downlink gain αk can be separated by
utilizing αk =

rk
βk

. Since WR can be easily designed as a matrix whose columns are full rank, the above
conditions can be achieved.
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Algorithm 1 The optimized iterative algorithm.
Input: Received signals with noise X, orthogonal pilot signals SmT ,mR , coding matrix WR and FT ,
the number of detection paths Linit, threshold Γ and ε.
Output: Estimated angles and gains of all paths.
First stage
• Perform [U, Σ, V] = SVD (X);
• Compute dR = (WRER)

HWRERb (φl), dT =
(
FH

T ET
)HFH

T ETa (θl);

• Initialize φ
(1)
l =

arg max
NBS
q=1 dR(q)−1
NBS

, θ
(1)
l =

arg max
NBS
q=1 dT(q)−1
NBS

;

• Estimate gain r(1)pe by (25), and trim path if r(1)pe < Γ.
Second stage
1. Repeat

2. Update µ = min
[(

ω(t)
)−1

e, µmax

]
;

3. Build the function Z(t)
pe (θθθ, φφφ) by (26);

4. If t = 1, then
5. d(t) = d(t)

N , d(t)
N = ∇2Z(t)

pe (θθθ
(t), φφφ(t))−1∇Z(t)

pe (θθθ
(t), φφφ(t));

6. Else
7. d(t) = d(t)

G , d(t)
G = ∇Z(t)

pe (θθθ
(t), φφφ(t));

8. End if
9. Step optimization calculation:
9.1 x = vec (X), h(t) = vec

(
H(t)

)
;

9.2 Compute ∇O
(

h(t)
)
= ΩH

(
Ωh(t) − x

)
;

9.3 Compute ρ(t) = − ∇O(h(t))
H∇O(h(t))

∇O(h(t))
H

ΩHΩ∇O(h(t))
.

10. θθθ(t+1) = θθθ(t) − ρ(t) · d(t), φφφ(t+1) = φφφ(t) − ρ(t) · d(t);
11. Estimate the path gain r(t+1)

pe , and streamline path if r(t+1)
pe < Γ;

12. Until K(t) = K(t+1), and
∥∥∥r(t+1) − r(t)

∥∥∥
2
< ε.

4. Simulation Results

In this section, we demonstrate the simulation comparisons under different parameter scenarios,
which can prove the effectiveness of the proposed step-length optimization-based joint iterative scheme.
In particular, simulation results are provided to verify that the proposed algorithm can outperform
the previous methods in certain aspects, as in [26,27]. Some default parameters are set to d = 0.5,
NS = 4, and L = 24. Moreover, the number of antennas, UEs, and time slots is set to NBS = 64,
K = 3, and MR = MT = 12, respectively, which may change in the form of variables in subsequent
simulations, and we set the variable MP to represent the time slot for better presentation. As in [2,40],
the signal-to-noise ratio (SNR) is defined as σ2

s /σ2
n , where σ2

s is the signal power. I denotes the number
of Monte Carlo runs, and the normalized mean squared error (NMSE) is defined as:

NMSE =
1
I

(
I

∑
i=1

∥∥Ĥi −Hi
∥∥2

F

‖Hi‖2
F

)
(58)

Figure 2 shows the convergence performance of the optimized scheme compared with the
conventional super-resolution (SR) algorithm, which is reflected by the relationship between NMSE
and the number of iterations for three SNR values. It is obvious that the proposed scheme can
achieve convergence with a small number of iterations for each SNR value. For instance, the proposed
algorithm completes convergence in about 20 iterations at an SNR of 20 dB, which also fully proves
the acceleration brought by optimization.
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Figure 2. NMSE versus the number of iterations. SR, super-resolution.

Figure 3 compares the NMSE performance against the SNR. We assume the system design
parameters NBS = 32 and MR = MT = MP, as shown in Figure 3, and the accuracy of the proposed
solution is similar to that of the SR algorithm in different time slots, which proves that the proposed
optimization does not sacrifice performance indicators. We can see that there is a certain proportional
relationship between the time slot and the training pilot, so the NMSE performance becomes better
as the number of time slots increases. In addition, the NMSE of the proposed and SR schemes is also
shown in Table 1 for further comparison. It is clearly observed that accurate channel estimation can
be achieved.

0 5 10 15 20 25 30

SNR (dB)

10-7

10-6

10-5

10-4

10-3

10-2

N
M

S
E

Conventional SR  M
P

=6

Proposed              M
P

=6

Conventional SR  M
P

=8

Proposed              M
P

=8

Conventional SR  M
P

=10

Proposed              M
P

=10

Conventional SR  M
P

=12

Proposed              M
P

=12

Figure 3. NMSE performance comparison of the proposed and SR algorithms.
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Table 1. NMSE of the proposed scheme and SR algorithms in different time slots.

(SNR)
(dB) 0 5 10 15 20 25 30

SR,
MP = 6 4.4983e-3 1.2481e-3 3.4718e-4 1.0425e-4 3.3272e-5 1.1428e-5 5.9694e-6

Proposed,
MP = 6 4.2355e-3 1.1838e-3 3.2268e-4 1.0394e-4 3.5274e-5 1.1674e-5 5.7921e-6

SR,
MP = 8 2.0730e-3 6.0159e-4 1.9159e-4 5.9361e-5 1.8088e-5 5.8977e-6 2.0542e-6

Proposed,
MP = 8 2.1037e-3 6.0318e-4 1.8060e-4 5.7340e-5 1.7180e-5 5.5994e-6 2.1856e-6

SR,
MP = 10 1.3365e-3 3.9811e-4 1.2478e-4 4.1041e-5 1.2613e-5 4.1339e-6 1.3255e-6

Proposed,
MP = 10 1.3688e-3 3.7503e-4 1.2548e-4 3.9852e-5 1.2220e-5 3.9532e-6 1.3329e-6

SR,
MP = 12 8.0790e-4 2.4650e-4 8.0040e-5 2.7415e-5 8.0607e-6 2.6785e-6 8.4921e-7

Proposed,
MP = 12 8.1252e-4 2.2682e-4 7.9436e-5 2.5461e-5 8.3286e-6 2.5191e-6 7.7909e-7

Figure 4 depicts the iteration time of the proposed algorithm on the basis of the hypothetical
scenario in Figure 3, which can more intuitively reflect that the speed of the proposed scheme is
significantly improved and the computational complexity is reduced. For example, when the SNR is
20 and the time slot is 10, the time taken by the proposed algorithm is 2.0534 s and the SR is 5.0885 s;
it can be fully seen that our method achieves fast estimation. We can also see that as the SNR and time
slot increase, the time consumed increase, and that is because the accuracy is also improved.

SNR (dB)

 Time  
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120
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5
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8

15 20 625 30

Conventional SR
Proposed

Figure 4. Comparison of the proposed and SR algorithms in terms of processing time.

Figure 5 displays the NMSE performance comparison with BCS in the case of different numbers
of UEs. Since it optimizes all the spatialization angles simultaneously and eliminates some false
paths, the proposed scheme can obtain better NMSE performance, and the processing time of the BCS
method is significantly higher than the proposed scheme under the same conditions. In addition, we
can see that when the number of users increases, the channel estimation accuracy of the proposed
algorithm decreases; but the decrease is small, and the proposed algorithm can still effectively estimate
the channel.
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Figure 5. NMSE performance comparison of the proposed and BCS algorithms.

Figure 6 compares the angular mean squared error (RMSE) performance under various UEs and
antennas. The RMSE is given by:

RMSE =
1
K

K

∑
k=1

√√√√1
I

I

∑
i=1

[(
θ̂k,i − θk

)2
+
(
φ̂k,i − φk

)2
]

(59)

As SNR increases, we observe that the RMSE of SVD remains constant, and its computational
complexity is lower; but our algorithm yields the best performance. This is because the SNR is
related to the entire angle domain grids, and our SVD method finds the best matching grid to get
coarse estimates. Similarly to Figure 5, the RMSE performance of channel estimation will decrease
with the increase of users, and in contrast, the number of antennas is directly proportional to the
estimated accuracy.
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Figure 6. Cont.
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Figure 6. RMSE performance comparison of the proposed and SVD algorithms: (a) RMSE versus the
number of UEs; (b) RMSE versus the number of antennas.

Figure 7 shows the performance of the gain mean squared error (GMSE) of the proposed algorithm

in different time slots, and GMSE is expressed as GMSE = 1
K

K
∑

k=1

√
1
I

I
∑

i=1

(
α̂k,j − αk

)2
. Obviously,

the recovery of the channel can gradually improve with the increase of time slots and SNR.
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Figure 7. GMSE performance of the proposed algorithm with different time slots.

5. Conclusions

In this paper, we proposed a joint iterative channel estimation scheme based on step-length
optimization for multi-user mmWave massive MIMO systems. The proposed scheme first combined
the advantages of Newton method and gradient descent method, and then gave a step-length
optimization approach. Compared with the conventional SR algorithm, the proposed method greatly
reduced the computational complexity without losing estimation accuracy, and the proposed algorithm
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yielded smaller channel estimation error compared to existing BCS and SVD methods. In addition,
the proposed method could effectively estimate the channel even with a certain number of UEs.
The perspective of this work considered an extension to the mmWave time-varying channel for joint
channel parameters estimation, which included AoDs/AoAs, path gains, and Doppler shifts.
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