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Abstract: The sensor selection problem is addressed for unreliable sensor networks. The Bayesian
Fisher information (BFI) matrix, mutual information (MI) and their relationship are investigated
under Gaussian mixture noise conditions. To overcome the flaw that the sensor selection methods
based on either BFI matrix or MI could not provide coincident results, the multiple objective optimal
(MOP) -based sensor selection approach is developed via minimizing the number of selected sensors
while maximizing corresponding BFI matrix and MI. The variable weight decision making (VWDM)
and technique for order of preference by similarity to ideal solution (TOPSIS) approaches are then
proposed to find the candidate that can better trade off the cost and two performance metrics.
Comparison results demonstrated that the proposed method can find a more informative sensor
group, and ultimately, its overall localization performance outperforms the sensor selection methods
based on BFI or MI.

Keywords: source localization; sensor selection; angle of arrival; multiple objective optimization;
sensor networks

1. Introduction

Advances in sensor technology have made it possible to use a large number of sensors in
various applications, such as environmental monitoring, battlefield surveillance, target localization
and tracking [1,2], etc. Sensor selection is critical for saving energy to prolong the lifetime of sensor
networks. A good sensor selection strategy needs to select most informative sensors to achieve a
good balance between the localization accuracy and cost. In this paper, the sensor selection problem
for angle of arrival (AOA)-based source localization is addressed, as AOA localization technology
has been applied to many areas such as radar, sonar, wireless communications and indoor acoustic
localization, to name but a few.

The sensor selection problem has been attracting much attention in the last decades [3–13].
Entropy and its variant mutual information (MI) are two popular performance metrics to design sensor
selection methods. MI is a standard information quantity from the information theoretic point of a
view. The MI between the predicted sensor observation and the current target location distribution was
proposed to evaluate the expected information gain about the target location attributable to a sensor
in [5,6]. The simple entropy-based heuristic for sensor selection is introduced in [7]. This method is
computationally simpler than MI [5], but it works well only when the measurement noise is small.
The maximum entropy fuzzy clustering was introduced to sensor selection for target tracking [8].

The Cramer-Rao lower bound (CRLB) (Bayesian CRLB if the priori distribution is known) provides
a theoretical performance limit for an unbiased or asymptotically unbiased estimator, it thus is another
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attractive metric to develop various sensor selection methods. For single target tracking, a subset of
sensors was selected in a bearing-only sensor network to minimize the posteriori CRLB [9]. For time
difference of arrival (TDOA)-based localization, the sensor selection method in non-line of sight (NLOS)
condition was investigated in [10]. The global sensor selection method for AOA based localization
was proposed via minimizing the trace of CRLB [11]. In [12,13], sensor selection methods for linear
dynamical systems were proposed under correlated measurement noise condition and sensor selection
approaches for non-linear measurement models were developed in [14,15].

All of the sensor selection works mentioned above are derived from either CRLB or MI. It has
been demonstrated that they exhibit a good consistency when the estimation error of each individual
sensor follows a Gaussian distribution. However, sensor failures, data loss, NLOS propagation or
unexpected interference may impose uncertainty on sensor networks which result in the presence of
unreliable measurements [16,17].

In the last decades, much attention has been devoted to using non-Gaussian noise model to
model the sensor networks with uncertain observations. The Gaussian mixture noise has been
applied to model the ambient noise in various applications (see e.g., [18,19] and the references therein).
As illustrated in [20], the selection results based on MI and CRLB are different. MI is more easily
influenced by uncertain probability of one sensor as its observation has insufficient information about
the target; CRLB-based methods tend to select sensors which are close to the source even some of them
having large uncertainties for received signal strength (RSS)-based target localization and tracking.
In this work, we will investigate the selection results for AOA-based source localization.

This paper focuses on the sensor selection problem for AOA-based source localization in unreliable
sensor networks. To select more informative sensors, we propose to incorporate both MI and Bayesian
Fisher information (BFI) matrix, which is the inverse of Bayesian CRLB, into the selection scheme.
In addition, as the number of selected sensors is usually unknown for practical applications, the best
way is to select sensors that can trade off the localization performance and the cost. For this purpose,
the number of selected sensors is also formulated as one objective to optimize. Thus, we have three
objective functions to optimize: minimizing the number of selected sensors, maximizing the BFI and
MI of the selected sensors. Obviously, the first one is conflict with the other two. The multi-objective
evolutionary algorithm based on decomposition (MOEA/D) [21] is used to find the optimal solutions
that can trade off these conflicting objective functions. Then, the decision-making method, variable
weight decision making (VWDM) [22,23] and technique for order of preference by similarity to ideal
solution (TOPSIS) [24,25], is proposed to find the final solution.

The rest of the paper is organized as follows. The measurement model is described in Section 2.
The relationship between Fisher information (FI) and MI are derived in Section 3. The sensor selection
method based on MOEA/D is proposed in Section 4. Section 5 provides simulation results and the
conclusion are summarized in Section 6.

2. System Model

In this section, we review the recursive Bayesian estimation for target localization. The recursive
Bayesian estimation is using expected posterior distribution to predict what the posterior distribution
would look like if a simulated measurement of a new sensor is incorporated.

In the recursive Bayesian estimation for target localization and tracking [4], both the target
location and the sensor observations are modeled as stochastic processes, and the posterior target
location distribution conditioned on sensor observations is computed recursively from additional
sensor observations step by step. Let x denote the target location random variable and its realization
value, respectively. Let zj denote the sensor observation. The posterior target location distribution is
incrementally updated by one sensor observation at a time. When the recursive Bayesian estimation is
applied to the target location, we can get that [4]:

f (x|z1, . . . , z j) = C f (z j
∣∣∣x, z1, . . . , z j−1) f (x|z1, . . . , z j−1) (1)
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where C is normalization constant. When z1,..., zj are conditionally independent with one another
conditioned on x, the above equation is simplified to:

f (x|z1, . . . , z j) = C f (z j
∣∣∣x) f (x|z1, . . . , z j−1) (2)

For the AOA sensors, the observation is the estimated angle of each sensor which can be given by:

zi = θi(x) + ηi (3)

where θi(x) = tan−1
( y−yi

x−xi

)
represents the true angle, tan−1() stands for the 4-quadrant arctangent.

x = [x, y]T is the target position, si = [xi, yi]
T, i = 1, 2, . . . , N, denotes the position of N sensors collecting

angle measurements. ηi denotes the angle estimation error.
As mentioned above, the adverse environment may bring uncertainty to sensor networks.

We follow [14,16] to model the uncertain scenario in which the probability density of function (PDF) of
angle estimation error ηi is:

f (ηi) = pN(0, σ2) + (1− p)N(µo, σ2
0) (4)

where p is the reliable probability.
∣∣∣µ0

∣∣∣ >> 0 and σ2
0>>σ

2.

3. Sensor Selection Criteria

3.1. BFI for Gaussian Mixture Noise

There are several different measures of the estimation error of the posterior target location
distribution. One estimation error measure is the Bayesian CRLB of the target location which is the
inverse of BFI.

In this section, the BFI is derived under Gaussian mixture noise. Let
^
x be an unbiased estimate of

x, BFI satisfies the well-known inequality:

E
{[

^
x− x

][
^
x− x

]T
}
≥ J−1 (5)

where J is the BFI. It has been shown in [13] that, the BFI matrix consists of two parts: the information
matrix obtained from the sensor measurements and the priori information matrix. Furthermore, under
the assumption that the sensor measurements are conditionally independent on the given target
information, the BFI matrix can be written as [13]:

J =
N∑

i=1

∫
Js

i (x) f (x)dx + Jprior

=
N∑

i=1
Ji + Jprior

(6)

where Jprior is the FI matrix of the priori information about target which typically comes from previous
measurements or from other available measurements. Let f (x) denotes the prior PDF of the target
position distribution, Jprior can be expressed as:

Jprior = −E

 ∂∂x

(
∂ ln f (x)
∂x

)T
 (7)

Let Ji denote the standard FI of sensor si, it can be formulated as:

Ji =

∫
Js

i (x) f (x)dx (8)
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where:

Js
i (x) =

∫
1

f (zi|x)

(
∂ f (zi|x)
∂x

)(
∂ f (zi|x)
∂x

)T

dzi (9)

∂ f ( zi|x)
∂x

=

 p
√

2πσ

zi − θi(x)
σ2 exp

− (zi − θi(x))
2

2σ2

+ 1− p
√

2πσ0

zi − µ0 − θi(x)

σ2
0

exp

− (zi − µ0 − θi(x))
2

2σ2
0


∂θi(x)

∂x
(10)

For AOA sensors, we have:

∂θi(x)
∂x

=
[
−

sinθi(x)
ri

cosθi(x)
ri

]T
(11)

where ri is the distance between si and x. Let p1 = p, p2 = 1 − p, µ1 = 0, µ2 = µ0, σ1 = σ, σ2
2 = σ2

0.
Substituting Equations (10) and (11) into Equation (9), we can get:

Js
i (x) =


sin2 θi

r2
i

−
sinθi cosθi

r2
i

−
sinθi cosθi

r2
i

cos2 θi
r2
i


∫
ρ(zi)dzi (12)

ρ(zi) =

{
2∑

l=1

pl
√

2πσl

zi−µl−θi(x)
σ2

l
exp

(
−

(zi−µl−θi(x))
2

2σ2
l

)}2

2∑
l=1

pl
√

2πσl
exp

(
−

(zi−µl−θi(x))
2

2σ2
l

) (13)

When ignoring prior information, it is well known that it is desirable for the nodes to be both
close to the target and to provide good angular diversity by surrounding the target [11]. By inspection
of Equation (12), it is clear that 2 × 2 BFI is positive semi-definite, and:

tr(J) =
N∑

i=1

Js
i (x) =

N∑
i=1

∫
ρ(zi)dzi

r2
i

(14)

Letting
N∑

i=1

∫
ρ(zi)dzi

r2
i

= M, there exists two eigenvalues of J represented as:

λmax =
1
2

M(1 + a),λmin =
1
2

M(1− a) (15)

det(J) =
1
4

M2(1− a2) ≤
M2

4
(16)

Equation (16) indicates that the range from source to sensors, angular diversity and bearing
scaling factor determine BFIU. Due to the upper bound in Equation (16), it is expected that the
selection approach will attempt to select nodes that both are close to the target and have a high sensing
probability. In general, when prior information is available, the prior information is skewed to favor
a certain direction; node selection methods will select sensors that reduce the error in the direction
where it is high. For simplicity, we can use the maximum likelihood estimation of x as the actual target
position to calculate the upper bound of Equation (16) to select nodes.

3.2. Mutual Information

Another estimation error measure is the Shannon entropy that measures the uncertainty of
the posterior target location distribution. From the information theoretic point of view, sensors are
tasked to observe the target in order to reduce the uncertainty about the target location distribution.
One expression to denote the contribution of a sensor is MI. The greedy sensor selection method
gradually reduces the uncertainty of the target location distribution by repeatedly selecting the currently
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unused sensors with maximal MI. Given the distribution of the target state and the likelihood function
of the sensor measurements, the MI of sensor can be written as [5]:

MI(zi, x) = H(zi) −H(zi|x) (17)

H(zi) = −
∫

f (zi) log f (zi)dzi

= −
∫
θ̂i

{∫
x f (zi|x) f (x)dx

}{
log

[∫
x f (zi|x) f (x)dx

]}
dzi

(18)

H(zi|x) = −
∫

f (x)
{∫

f (zi|x) log f (zi|x)dzi

}
dx (19)

3.3. The Relationship between Fisher Information and Mutual Information

In this section, we will demonstrate the relationship between FI and MI under Gaussian and
non-Gaussian noise similar the work in [26]. The FI with respect to θ(x) is given as [20]:

J(θ) =
∫ (

∂ ln f (z|θ)
∂θ

)2

f (z|θ)dz (20)

Here, we assume the additive noise with density q(·), we can write f (z|θ) = q(z− θ)( f (z|x) =
q(z− θ(x))). In this case, J(θ) becomes independent of θ and thus can be rewritten as:

J[q] =
∫ (

∂ ln q(η)
∂η

)2

q(η)dη (21)

This quantity is referred to as FI of a random variable with respect to a scalar translation parameter
and Equation (18) is a constant. Conceptually, the constant J[q] summarizes the total local dispersion of
a distribution. Similarly, the Shannon entropy H(z|θ)(H(z|x)) is also independent of θ(x) and identical
to the noise entropy:

H[q] =
∫

q(η) ln q(η)dη (22)

Stam’s inequality specifies the relation between FI and Shannon entropy as following: for a given
amount of FI, the Shannon entropy of a continuous random variable is minimized if and only if the
variable is Gaussian distribution. When the variance of a Gaussian random variable is 1/J[q], Stam’s
inequality implies that:

H[q] ≥
1
2

ln
(

2πe
J[q]

)
(23)

Define:

D0 = H[q] −
1
2

ln
(

2πe
J[q]

)
(24)

note that D0 > 0 for distribution with lighter tails than a Gaussian, as well as for distributions that
are asymmetric.

Because the transfer function is invertible, MI(x, z) = MI(θ, z) even though H(x) , H(θ) [26].
Thus we can write MI as:

MI(θ, z) = H(z) −
∫

f (θ)H(z|θ)dθ (25)

As H(z|θ) = H[q], thus, Equation (25) can be written as:

MI(θ, z) = H(z) −
∫

f (θ)H[q]dθ (26)



Electronics 2020, 9, 283 6 of 17

From Equations (24) and (26), we can get that:

MI(θ, z) = H(z) −
∫

f (θ)
(
D0 +

1
2

ln
(

2πe
J[q]

))
dθ (27)

Because J[q] = J(θ), Equation (27) can be rewritten as:

MI(θ, z) = H(z) −
∫

f (θ)
(
D0 +

1
2 ln

(
2πe
J(θ)

))
dθ

= H(z) −
∫

f (θ) 1
2 ln

(
2πe
J(θ)

)
dθ−

∫
f (θ)D0dθ

= [H(z) −H(θ)] + H(θ) −
∫

f (θ) 1
2 ln

(
2πe
J(θ)

)
dθ−D0

(28)

Using the formulas for a change of variables, it is straightforward to verify that:

H(θ) −

∫
f (θ)

1
2

ln
(

2πe
J(θ)

)
dθ = H(x) −

∫
f (x)

1
2

ln

 (2πe)2

det(J(x))

dx (29)

Then, Equation (28) can be rewritten as:

MI(θ, z) = MI(x, z)

= [H(z) −H(θ)] + H(x) −
∫

f (x) 1
2 ln

(
(2πe)2

det(J(x))

)
dx−D0

= IFisher + C0 −D0

(30)

where:

IFisher = H(x) −
∫

f (x)
1
2

ln

 (2πe)2

det(J(x))

dx

C0 = H(z) −H(θ). It illustrate that the degree to which MI is well approximated by FI (IFisher)
depends on the values of C0 and D0. Both terms are nonnegative and quantify two very different aspects
of the noise: C0 = H(θ+ η) −H(θ) is monotonic in the magnitude of the noise. While D0 represents
the nongaussianity of the noise. From Equation (30), we can obtain the following conclusions:

• If the noise is Gaussian, D0 = 0. And C0 ≥ 0 as the additive noise would increase the entropy,
thus MI(x, z) ≥ IFisher. That is, if and only if the noise is Gaussian, IFisher is guaranteed to denote a
lower bound on MI.

• As Stam’s inequality tells us that D0 ≥ 0, we can get that MI(x, z) ≤ IFisher + C0. Specially, in
the case of vanishing noise, C0 → 0 , and it follows that MI(x, z) ≤ IFisher. Thus, IFisher generally
represents an upper bound on MI in the small noise regime.

• Only when the noise entropy goes to zero and the noise converges to a Gaussian at the same time,
i.e., C0 → 0 , D0 → 0 , MI(x, z) = IFisher.

4. The Proposed Sensor Selection Method

Considering the problem mentioned above, we would like to take all performance evaluation
metrics into account. In addition, the number of selected sensors is unknown in practice, which
requires one to consider the localization performance and the cost for different applications. In this
paper, we want to optimize multiple conflicting objectives at the same time: minimizing the number of
selected sensors and maximizing the BFI matrix and MI of these sensors. In order to formulate the
problem into a multiple objective optimal (MOP) framework, the first objective function is transformed
into a maximization problem of the gap between the number of sensors to be selected and the number
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of sensors. Let α = [α1,α2, . . . ,αN]
T
∈ {0, 1}N be the binary selection vector. The MOP scheme can be

formulated as:
max
α

F(α) =
{
f1(α), f2(α), f3(α)

}
s.t. α ∈ {0, 1}N

(31)

where:

f1(α) =

N −
N∑

i=1

αi

/N (32)

f2(α) =

N∑
i=1

αiMIi

N∑
i=1

MIi

(33)

f3(α) =
det

(
N∑

i=1
αiJi + Jprior

)
det

(
N∑

i=1
Ji + Jprior

) (34)

where Equations (33) and (34) represent the normalized MI and BFI of selected sensors. As the sensor
selection policy Equation (31) consists of three conflicting objective functions, any single solution
cannot optimize them at the same time. However, MOP methods are proposed to find a set of solutions
that can trade off the objectives.

Many multi-objective methods have been proposed in last decades, such as non-dominated sorting
genetic algorithm (NSGA-II) [27], MOEA/D [21]. The MOEA/D method has lower computational
complexity than NSGA-II, and it outperforms or performs similar to NSGA-II. In this paper, we will use
MOEA/D to solve the optimization problem of Equation (31). The generalized MOP can be formulated
as [21,27]:

max
α

F(α) =
{
f1(α), . . . , fk(α)

}
s.t. α ∈ Ω

(35)

where Ω is the decision space. Assume α1 and α2 are two solutions of Equation (35), F(α1) dominates
F(α2) if and only if fi(α1) ≥ fi(α2), ∀i ∈ {1, 2, 3} , and there exists one index j such that f j(α

1) >
f j(α

2). If there is no α ∈ {0, 1}N such that F(α) dominates F(α∗), α∗ is called a Pareto-optimal point
and F(α∗) is a Pareto-optimal objective vector. That is to say, any improvement in one objective
at a Pareto-optimal point must lead to deterioration in at least one other objective. The set of all
Pareto-optimal points is called the Pareto set and the set of all Pareto-optimal objective vectors is the
Pareto front (PF) [21–25].

MOEA/D decomposes the MOP problem into scalar optimization subproblems. It solves
these subproblems in a collaborative way. Any decomposition approach developed in the area
of mathematical programming can be incorporated into the framework of MOEA/D. In this paper, the
scalar optimization subproblems based on classical Tchebycheff approach is given by [21]:

minimize gte(x|λ, z∗) = max
1≤i≤m

{
λi

∣∣∣ fi(x) − z∗i
∣∣∣}

s.t. x ∈ Ω
(36)

where λ = [λ1, . . . ,λm]
T is a weight vector, and

m∑
i=1

λi = 1, z∗ = [z∗1, . . . , z∗m]
T is the reference point, i.e.,

z∗i = max
{

fi(x)
∣∣∣x ∈ Ω

}
for each i = 1, . . . , m. For each Pareto optimal point x∗ there exists a weight

vector λ such that x∗ is the optimal solution of Equation (31) and each optimal solution of Equation (36)
is a Pareto optimal solution of Equation (31). Therefore, one is able to obtain different Pareto optimal
solutions by altering the weight vector. The details about MOEA/D can be found in [21].
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4.1. Performance Metrics for MOEA/D

The hypervolume indicator (IH) [21,25] is used in our study to illustrate the efficiency of the
MOEA/D in sensor selection problem. Let y∗ = (y∗1, . . . , y∗m) be a point in the objective space which
is dominated by any Pareto optimal vectors. Let P be the obtained approximation to the PF in the
objective space. Then, the IH value of P (with regard to y∗) is the volume of the region which is
dominated by P and dominates y∗. The higher the hypervolume, the better the approximation. In our
experiments, y∗ = ( f min

1 , f min
2 , f min

3 ) for the three objective ones, where f min
i indicates the minimum

value of the ith objective in the obtained non-dominated set.

4.2. Select Solution from the Pareto-Optimal Solution

It is necessary to emphasize that the final aim of sensor selection is to obtain a single optimal
solution. Since the optimization result of a MOP algorithm is a set of non-dominated solutions, the
proper solution should be selected based on specific applications. There are many methods that one
can employ in selecting a single solution from Pareto-optimal front. For the sensor selection problem
proposed above, we need to evaluate three attributes to select the better candidate.

Let w = (w1, w2, . . . , wm) and x = (x1, x2, . . . , xm) be a constant weight vector and state value
vector, a common decision making function is use A =

∑
w jx j to evaluate the alternatives. However,

the constant weight vector is not work well in some cases. For example, if all factors are equality
important, i.e., w = (w1, w2) = (1/3, 1/3, 1/3), Hence, the weighted average synthesis expression is
A = 1/3x1 + 1/3x2 + 1/3x3, Let x1 = (0.6, 0.2, 0.7), x2 = (0.6, 0.8, 0.1), x3 = (0.6, 0.5, 0.4). Then we
would expect A(x1)� A(x3),A(x2)� A(x3), however, known by the decision making function, we can
find that A(x1) = A(x2) = A(x3). This result contradicts with the expectation. Thus, the decision
making based on constant weight vector has its limitations. To overcome this problem, Wang [22]
proposed the variance weight method. Since then, a lot of work has been done for the variable
weight decision making [23]. It emphasizes the weights should change with the state values of factors.
According to the change trend of weight, the variable weight decision making mechanism can be
divided punishment mechanism, incentive mechanism and mixed mechanism. The basic definition of
variable weight theory is summarized as follows [22,23]:

Definition 1. A mapping w = (w1, w2, . . . , wm) from [0, 1]n → [0, 1]n , and w j : [0, 1]n → [0, 1] ,
(x1, x2, . . . , xm) 7→ w j(x1, x2, . . . , xm) is a variable weight vector with penalty for j = 1, 2, . . . , n, if w
satisfies the following properties [22]:

(1)
m∑

j=1
w j(x1, x2, . . . , xm) = 1.

(2) the function w j(x1, x2, . . . , xm) is continuous with respect to every variable xj.
(3) the function w j(x1, x2, . . . , xm) is monotonically decreasing (for punishment mechanism) or increasing

(for incentive mechanism) with respect to the variable xj.

Definition 2. A mapping S = (S1, S2, . . . , Sm) from [0, 1]n → [0, 1]n , and S j : [0, 1]n → [0, 1] ,
(x1, x2, . . . , xm) 7→ S j(x1, x2, . . . , xm) is a state variable weight vector with penalty for j = 1, 2, . . . , m,
if S satisfies the following properties [22,23]:

(1) the function S j(x1, x2, . . . , xm) is continuous with respect to every variable xj.
(2) for punishment mechanism xi ≥ x j ⇒ Si(xi, x2, . . . , xm) ≤ S j(xi, x2, . . . , xm) ; for incentive mechanism

xi ≥ x j ⇒ Si(xi, x2, . . . , xm) ≥ S j(xi, x2, . . . , xm)

(3) The mapping w: [0, 1]n → [0, 1]n given by

w(w1, w2, . . . , wm) =
w · S(x1, x2, . . . , xm)

m∑
j=1

w jS j(x1, x2, . . . , xm)

(37)
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is a variable weight vector, where w = (w1, w2, . . . , wm) is a constant weight vector, and
w · S(x1, x2, . . . , xm) = (w1S1(x1, x2, . . . , xm), . . . , wmSm(x1, x2, . . . , xm)).

Since the results of MOP are a set of Pareto solutions, several candidates which have the same
value of the first state will be found. Thus the first step of finding the final solution is to select a sate
vector from several candidates with the same first state value. The procedure can be summarized as
follows [22,23]:

Step 1: Let the constant weight vector w = (w1, w2, . . . , wm), (m = 3 for sensor selection problem).
Without any prior knowledge, one can assume w = (w1, w2, w3) = (1/3, 1/3, 1/3).

Step 2: Construct the expression of state variable weight vector S. Analysis the meaning of three
objective function, we can find that the better combination of selected sensors should have higher MI
and BFI. We prefer to select the solution with large objective function values, but neglect the one with
very small attribute value. Thus, weights need to make corresponding adjustments to the attribute
values of indicators, punish the index weights with low attribute values, and encourage the index
weights with high attribute values. The state variable weight vector can be expressed as:

S j(xi) =

 e−α(xi j−x j)
2
, xi j ≤ x j

eα(xi j−x j)
2
, xi j > x j

(38)

where α ≥ 0 denotes penalty factor, the bigger α is, the bigger the punishment range is. According
to [23], α can be determined by:

A =
1
m

m∑
j=1

w j/[w j + (1−w j)e−α] (39)

A ∈ [0, 1) is the adjust level, usually, A is usually set to be 0.5. x j is the mean of j-th attribute,
which denotes all the factors less than x j will be punished.

Step 3: Calculate the state variable weight matrix for all candidates:

wi(w1, w2, . . . , wm) =
w · Si(x1, x2, . . . , xm)

m∑
j=1

w jSi, j(x1, x2, . . . , xm)

(40)

4.3. TOPSIS

In this paper, the TOPSIS will be used to select the final solution. According to this technique,
the chosen optimal solution should have the smallest Euclidean distance from the ideal solution and
also the largest Euclidean distance from the negative-ideal solution. The ideal solution is a combination
of the best value of each objective. In contrast, negative-ideal solution is a combination of the worst
value of each objective.

Before introduce the method, common symbols are defined as follows: fi j is the ith value of the
j-th objective in the objective matrix, Fi j is the normalized value of fi j, vi j is the weighted value of Fi j
and wi j is the weight obtained from Equation (40). Assume M solutions have been found by MOP.
The TOPSIS algorithm can be described as below [24,25]:

Step 1. Construct normalized objective matrix with M rows and three columns by:

Fi j =
fi j√
m∑

i=1
f 2
i j

(41)
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Step 2. Construct weighted normalized objective matrix by multiplying each column with its
weight w j:

vi j = Fi jwi j (42)

Step 3. Calculate the Euclidean distance between each solution and the ideal and negative-ideal
solution:

Di+ =

√√√√ 3∑
j=1

(
vi j −max(v j)

)
, i = 1, . . . , M (43)

Di− =

√√√√ 3∑
j=1

(
vi j −min(v j)

)
, i = 1, . . . , M (44)

Step 4. Calculate the closeness of each optimal solution:

Ci =
Di−

Di− + Di+
, i = 1, . . . , M (45)

The optimal solution having the largest Ci is the final solution.

5. Simulations

In this section, we will use simulation results to illustrate the effectiveness of the proposed sensor
selection method. N sensors are deployed in the interested area to estimate source location. Consider
that 25 sensors with known reliable probability are uniformly deployed in the 100 × 100 m2 detection
area as shown in Figure 1. In the current work, we assume that the sensing probabilities of the
sensors are already known to the fusion center. In the literature [28], the estimation of the detection
probabilities are studied. Also, as indicated in [29], the sensing probabilities can be derived from
historical data. Since these probabilities are context and scenario dependent, we do not study their
estimation specifically in this paper and leave it as a future research topic. Generally, if the sensors
around the source have higher reliable probabilities compared to other sensors, it is highly likely that
the algorithm will select those sensors owing to both larger estimated accuracy of angles and shorter
distances between source and sensors. Our interest is in considering more challenging cases to test the
performance of our algorithm. Similar with [20], we assume that the sensors around the source have
relatively low reliable probabilities as shown in the Figure 1. We set σ2 = 1◦, σ2

0 = 30◦. The source
randomly appears in the area. The priori state of the target follows a uniform distribution limited in a
square area with length H.

As shown in [21], MOEA/D method runs much faster than NSGA-II under same conditions.
In this section, we use the Hypervolume Indicator (IH) to observe the convergence and distribution of
PF. In MOEA/D, T is set to be 25. The population size N in both MOEA/D and NSGA-II is set to be
500. Both algorithms run 30 times independently, and each run stops after 500 generations. For both
methods, the genetic operators are the one point crossover operator and the standard mutation operator,
the crossover probability 1 while mutation operator probability is 1/N, respectively.

The evolution of the average IH values with number of generations is plotted in Figure 2. It is
evident that MOEA/D outperforms NSGA-II in both convergence speed and the quality of their final
solution set.
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We compare the sensor selection results of different methods when nine sensors are selected.
The convex optimization method proposed in [14] and the greedy heuristic approach developed in [5]
are applied to select sensors. Figure 3 plots the selection results for two different source locations.
It can be seen that the sensors selected by convex optimization method are closer to the target location
even when they have low reliable probabilities, while the MI-based method always select sensors with
large reliable probabilities. This is consistent with the result in [20] which is observed for RSS based
target localization. The proposed method, however, can select sensors with relatively high reliable
probabilities but not very far away from the source location.
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To illustrate the advantage combing two metrics (BFI and MI), we will use MOEA/D to solve
three objective optimal problem (MOP3) and two objective optimal problem (MOP2), respectively.
The MOP2 can be formulated as:

max
α

F(α) =
{
f1(α), f2(α)

}
s.t. α ∈ {0, 1}N

(46)

max
α

F(α) =
{
f1(α), f3(α)

}
s.t. α ∈ {0, 1}N

(47)

From now on, we label Equations (31), (46) and (47) as MOP3-BFI, MOP2-BFI and MOP2-MI,
respectively. And MOP3-BFIU denotes the multiple objective problems when using BFIU to replace
BFI in Equation (31). The sequential importance resampling (SIR) particle filter [30,31] is then used to
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achieve source localization. The initial Ns = 1000 particles are drawn from f (x0). The root mean square
error (RMSE) of 1000 Monte Carlo runs is used to measure errors between the true source location and
the estimations.

Figure 4 plots the RMSEs of the four compared methods as the number of selected sensors
is increased. We can observe that MOP3-based sensor selection methods can improve localization
performance compared to MOP2-based methods. That is to say, the proposed method using both BFI
and MI as objectives has advantages over only one of them used. In addition, we can also observe
that RMSE is decreased obviously with the number of sensors increasing in Figure 4a, while this
phenomenon is not shown in Figure 4b. As we can see from Figure 4b, RMSE is decreased first, and
then it goes up with the number of selected sensor increasing. This mainly because the second source
is close to the edge of sensor networks, sensors with large distance and low reliable probabilities will
have negative effect on localization accuracy.
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As discussed in Section 2, σ0 represents the interference which influences on the localization
performance directly. Figure 5 plots the RMSE when nine sensors are selected as σ0 changes. We can
see that the proposed method can improve the localization performance when a fixed number of
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As stated in Section 4.2, the constant weight of different objectives will determine the select result
directly. In this section, we will illustrate that how the constant weight influences the selection results.
We set the weight of the first objective function be the same for MOP3 and MOP2 based methods.
For MOP3, the left two objective functions have the same weight.

As shown in Figure 6, the larger w1 is, the fewer sensors are selected. This is because large w1
means that the cost is more important than performance. Thus, the performance is sacrificed for saving
cost. We can further observe that MOP3 based methods usually select more sensors than MOP2 based
methods under the same weight. As a result, the localization error of MOP3 is lower than MOP2.
Furthermore, MOP3-BFIU performs better than MOP3-BFI in localization accuracy.
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For different source locations shown in Figure 7, Figure 8 plots the number of selected sensors
and corresponding RMSE. We can observe that MOP3-BFI selects more sensors than MOP3-BFIU but
having similar localization performance. For MOP2-BFI and MOP2-MI, it is hard to say which is one
better to use as performance metrics to select sensors.
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6. Conclusions

In this paper, we propose a novel sensor selection scheme for AOA-based source localization in
unreliable sensor networks. The relationship between FI and MI is investigated; it reveals that they
have a good consistence only for Gaussian noise. By transforming multiple performance metrics into
scale-equivariant functions, the MOEA/D method is proposed to find a set of Pareto optimal solutions.
Then, VWDM and TOPSIS are proposed to select the final selection result. The simulation results show
that the MOP3-based method can select more informative sensors which can provide better localization
accuracy than MOP2-based methods; and different numbers of sensors can be selected by allocating
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13. Liu, S.; Chepuri, S.P.; Fardad, M.; Maşazade, E.; Leus, G.; Varshney, P.K. Sensor Selection for Estimation with
Correlated Measurement Noise. IEEE Trans. Signal Process. 2016, 64, 3509–3522. [CrossRef]

14. Chepuri, S.P.; Leus, G. Sparsity-promoting sensor selection for non-linear measurement models. IEEE Trans.
Signal Process 2015, 63, 684–698. [CrossRef]

15. Wang, Z.; Shen, X.; Wang, P.; Zhu, Y. The Cramér–Rao Bounds and Sensor Selection for Nonlinear Systems
with Uncertain Observations. Sensors 2018, 18, 1103. [CrossRef] [PubMed]

16. Yan, Q.; Chen, J.; Ottoy, G.; De Strycker, L. Robust AOA based acoustic source localization method with
unreliable measurements. Signal Process. 2018, 152, 13–21. [CrossRef]

17. Yan, Q.; Chen, J.; Strycker, L.D. An Outlier Detection Method Based on Mahalanobis Distance for Source
Localization. Sensors 2018, 18, 2186. [CrossRef] [PubMed]

18. Kozick, R.J.; Blum, R.S.; Sadler, B.M. Signal processing in non-Gaussian noise using mixture distributions
and the EM algorithm. In Proceedings of the Conference Record of the Thirty-First Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5 November 1997.

19. Madadi, Z.; Anand, G.V.; Premkumar, A.B. Three-dimensional localization of multiple acoustic sources in
shallow ocean with non-Gaussian noise. Digit. Signal Process. 2014, 32, 85–99. [CrossRef]

20. Cao, N.; Choi, S.; Masazade, E.; Varshney, P.K. Sensor Selection for Target Tracking in Wireless Sensor
Networks With Uncertainty. IEEE Trans. Signal Process. 2016, 64, 5191–5204. [CrossRef]

21. Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans.
Evol. Comput. 2007, 11, 712–731. [CrossRef]

22. Zeng, W.; Li, D.; Wang, P. Variable Weight Decision Making and Balance Function Analysis Based on Factor
Space. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 999–1014. [CrossRef]

23. Yu, G.F.; Fei, W.; Li, D.F. A Compromise-Typed Variable Weight Decision Method for Hybrid Multiattribute
Decision Making. IEEE Trans. Fuzzy Syst. 2018, 27, 861–872. [CrossRef]

http://dx.doi.org/10.1109/MSP.2005.1458275
http://dx.doi.org/10.1109/21.87090
http://dx.doi.org/10.1109/79.985685
http://dx.doi.org/10.1109/TAC.2009.2034206
http://dx.doi.org/10.1109/LSP.2009.2022151
http://dx.doi.org/10.1049/iet-spr.2016.0306
http://dx.doi.org/10.1109/TVT.2019.2936110
http://dx.doi.org/10.1109/TAES.2006.1603409
http://dx.doi.org/10.1016/j.automatica.2016.12.025
http://dx.doi.org/10.1109/TSP.2016.2550005
http://dx.doi.org/10.1109/TSP.2014.2379662
http://dx.doi.org/10.3390/s18041103
http://www.ncbi.nlm.nih.gov/pubmed/29621158
http://dx.doi.org/10.1016/j.sigpro.2018.05.010
http://dx.doi.org/10.3390/s18072186
http://www.ncbi.nlm.nih.gov/pubmed/29986491
http://dx.doi.org/10.1016/j.dsp.2014.05.002
http://dx.doi.org/10.1109/TSP.2016.2595500
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1142/S021962201650022X
http://dx.doi.org/10.1109/TFUZZ.2018.2880705


Electronics 2020, 9, 283 17 of 17

24. Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications.
Expert Syst. Appl. 2012, 39, 13051–13069. [CrossRef]

25. Lai, Y.J.; Liu, T.Y.; Hwang, C.L. Topsis for MODM. Eur. J. Oper. Res. 1994, 76, 486–500. [CrossRef]
26. Wei, X.X.; Stocker, A.A. Mutual Information, Fisher Information, and Efficient Coding. Neural Comput. 2015,

28, 305–326. [CrossRef] [PubMed]
27. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm:

NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]
28. Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An efficient k-means

clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 880–892.
[CrossRef]

29. Oymak, O. Sample Size Determination for Estimation of Sensor Detection Probabilities based on a Test
Variable. Ph.D. Thesis, Naval Postgrad—Uate School, Monterey, CA, USA, 2007.

30. Nahi, N.E. Optimal recursive estimation with uncertain observation. IEEE Trans. Inf. Theory 1969, 15, 457–462.
[CrossRef]

31. Arulampalam, M.S.; Maskell, S.; Gordon, N.; Tim, C. A tutorial on particle filters for online nonlinear/
non-gaussian Bayesian tracking. IEEE Trans. Signal Process 2002, 50, 174–188. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eswa.2012.05.056
http://dx.doi.org/10.1016/0377-2217(94)90282-8
http://dx.doi.org/10.1162/NECO_a_00804
http://www.ncbi.nlm.nih.gov/pubmed/26654209
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dx.doi.org/10.1109/TIT.1969.1054329
http://dx.doi.org/10.1109/78.978374
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	System Model 
	Sensor Selection Criteria 
	BFI for Gaussian Mixture Noise 
	Mutual Information 
	The Relationship between Fisher Information and Mutual Information 

	The Proposed Sensor Selection Method 
	Performance Metrics for MOEA/D 
	Select Solution from the Pareto-Optimal Solution 
	TOPSIS 

	Simulations 
	Conclusions 
	References

