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Abstract: The design of a reconfigurable three-dimensional (3-D) slot antenna for 4G and sub-6G
smartphone application is presented in this paper. The antenna is located at the bottom of the
smartphone and integrated with a metallic casing. Positive-Intrinsic-Negative (PIN) diodes are
loaded at the dual-open slot and the folded U-shaped slot, respectively, which are used to realize four
working states. The antenna has a compact volume of 42 × 6 × 6 mm3, which can cover the long term
evolution (LTE) bands of 698–960 MHz and 1710–2690 MHz, and the sub-6G bands of 3300–3600 MHz
& 4800–5000 MHz. The design processes are presented and the structure is optimized, fabricated and
measured. The comparison to other state-of-the-art antennas shows that the proposed design has
multiband characteristics with small size.
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1. Introduction

Recently, the wireless communication network environment has become a mixture of different kinds
of heterogeneous networks. The WRC-15 (Word Radio Communication Conference 2015) identified
the frequency spectrum of 3400–3600 MHz for global mobile broadband services in November 2015 [1].
From November 2017, the frequency spectrums of 3300–3600 MHz and 4800–5000 MHz have been
identified for fifth-generation (5G) application by the ministry of industry and information technology
of the People’s Republic of China [2]. In addition, the mobile antenna is required to be operated at
698–960 MHz and 1710–2690 MHz for fourth-generation (4G) mobile communications [3]. To provide
these services for different frequencies and communication protocols, the antenna in smartphones
should cover multiple bands. On the other hand, in order to meet the consumers’ requirements,
the mobile phones are being designed to provide a low profile and a large display with a narrow frame
for entertainment. Therefore, designing a multiband/wideband mobile phone antenna with limited
space is undoubtedly a technological challenge.

A mobile phone with a metal casing (metal frame and metal back cover) has also become
popular since the metal casing not only increases mechanical strength but also enhances the esthetical
appearance. For the traditional internal antennas [4], such as the monopole, planar inverted-F antenna
(PIFA), etc., the performance of the antenna will be adversely affected by the metal casing [5,6]. In [6],
the effects of the metal frame on the performance of the antenna are analyzed, and the influences of the
metal frame are reduced by inserting multiple gaps and grounded patches. For the approach proposed
in [6], however, the multiple gaps on the metal frame may reduce the mechanical strength of the mobile
phone. In [7,8], the effects of the metal frame on the antenna are completely eliminated by using
the entire or partial frame as the radiation branch of the antenna. These proposed antennas in [7,8],
however, occupy a large clearance size of 70 × 10 mm2. In another design, an inverted-F antenna IFA
frame antenna was proposed to cover multiple bands [9]. The bandwidth of the upper band was not
wide enough to cover the sub-6G application bands of 3300–3600 MHz and 4800–5000 MHz.
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Slot antennas are widely adopted as an alternative for mobile antenna designs [10–16]. Two folded
slot antennas were introduced in [10,11] to cover dual bands. These antennas cannot apply to
the mobile phone with metal casing, and the bandwidth is not sufficient to cover the lower band.
In another T-shaped open-ended slot design for laptops with a metallic frame, two separate feed
strips were adopted to excite the T-shaped slot antenna [12]. Open-slot antennas are reported for
tablet computers [13–15] which have wide operating bands to cover 698–960 MHz, 1710–2690 MHz,
and 3400–3600 MHz. However, the larger antenna size and the lack of integration with metal casing
make it unsuitable for modern mobile phones. In other designs, the varactor diode and PIN diode
were used for reconfiguration, resulting in multiple antenna states [16–18]. This is a very promising
design, but only covers part of the high-frequency bandwidth, which limits its application in future 5G
mobile phones. In [19], a multi-band loop antenna with six resonant modes is proposed. The antenna
can cover the bands from 660 MHz to 5850 MHz. In [20], a reconfigurable loop antenna with two
parasitic grounded strips for modern smartphone devices is presented. However, the antenna can only
cover 4G bands.

There is no doubt that it is a challenging for antenna engineers to integrate antennas into a metal
casing environment and to achieve multi-band/wideband coverage. In this paper, a reconfigurable
3-D slot antenna fed by an L-shaped feed strip is proposed. The 3-D slot antenna can achieve
miniaturization and multi-band operation by folding the slot structure and introducing PIN diodes,
respectively. The proposed 3-D slot antenna shows four bands that cover 698–960 MHz, 1500–3000 MHz,
3300–3800 MHz, and 4400–5000 MHz for LTE and sub-6G operations.

2. Antenna Configuration

Figure 1a shows the proposed 3-D slot antenna mounted on a mobile phone with a size of
135 × 75 × 6 mm. The mobile phone has a metallic frame and back cover. A slot starts from one narrow
side of the frame, (see ‘A’ in Figure 1b), along ‘B’ at the back cover, folded to the upper layer ‘C’,
and short-ended at ‘D’. Three black rectangles noted as ‘d1’, ‘d2’ and ‘d3’ are PIN diodes. The 3-D slot
is fed by an L-shaped strip line, as shown in Figure 1c. The feed line is between the back cover and the
system circuit board ground. A 0.8 mm-thick print circuit board type of (FR4) substrate with a relative
permittivity of 4.4 and a loss tangent of 0.02 was used as the system circuit board which mounted on
the back metal cover. There is no gap between the system circuit board and the metal casing. At the
end of the feed line, a lumped port is used to simulate the source.

The topology of the PIN diodes (d1, d2 and d3) is shown in Figure 2. The back-to-back configuration
shown in Figure 2a was used here to overcome the problem of equal voltages on both sides of the
slot. The PIN diode is Infineon BAR64-02V. The diode is switchable between ‘OFF’ and ‘ON’ states
depending on a DC bias. Combining the data sheet of the diode and the test results, the equivalent
circuit of the diode is shown in Figure 2b. When the diode is ‘ON’, it has a forward resistance
of 2.1 Ω [21]. When the diode is ‘OFF’, we obtained the values of the corresponding components
experimentally at different frequency bands and show them in Table 1.

Table 1. Equivalent circuit parameters for the state ‘OFF’.

Frequency (MHz) R C L

800–1000 3933 Ω 148 fF 2.1 nH
1500–3000 3014 Ω 148 fF 5.5 nH
3000–4000 2079 Ω 154 fF 200 pH
4000–5000 2419 Ω 113 fF 181 pH
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Figure 1. Geometry of the structure. (a) Side view of the proposed antenna; (b) 3-D view of the 
antenna; (c) the slot and the L-shape feed strip (all in millimeters). 
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Figure 2. The description of the PIN diodes. (a) Topology of the back-to-back diodes; (b) Equivalent 
circuit model of BAR64-02VPIN diode in two states. 
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The idea of the design starts from a simple open-ended slot antenna, as shown in Figure 3a. A 
slot is etched on the edge of a metal. One end of the slot is opened and the other end is shorted. The 
slot can support a quarter of a standing wave. Details of the radiation mechanism of the slot can be 
found in [22]. For the lowest frequency (around 700 MHz) that we need, the length of the slot is 
about 107 mm, which is too long to be used for smart phones. To reduce the length, the slot is 
modified by three steps: firstly, the open-ended position is moved from the long frame side of the 
phone to the narrow frame side, as shown in Figure 3b; secondly, the slot length is extended by 
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Figure 1. Geometry of the structure. (a) Side view of the proposed antenna; (b) 3-D view of the antenna;
(c) the slot and the L-shape feed strip (all in millimeters).
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Figure 2. The description of the PIN diodes. (a) Topology of the back-to-back diodes; (b) Equivalent
circuit model of BAR64-02VPIN diode in two states.

3. Design Process

3.1. The Principle of the Design

The idea of the design starts from a simple open-ended slot antenna, as shown in Figure 3a. A slot
is etched on the edge of a metal. One end of the slot is opened and the other end is shorted. The slot
can support a quarter of a standing wave. Details of the radiation mechanism of the slot can be found
in [22]. For the lowest frequency (around 700 MHz) that we need, the length of the slot is about 107 mm,
which is too long to be used for smart phones. To reduce the length, the slot is modified by three steps:
firstly, the open-ended position is moved from the long frame side of the phone to the narrow frame
side, as shown in Figure 3b; secondly, the slot length is extended by folding the structure to upper
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layer, see Figure 3c; and thirdly, an L-shaped feed line was used to feed the slot. By tuning the location
and the length of the feed line carefully, four resonate modes can be excited.

It can be seen from Figure 4a that the slot is expected to resonate at a low frequency around
740 MHz owning to 0.25 λ slot mode (since the slot is covered by a FR4 substrate, the actual length is
shorter than the length in free space). In addition, a second resonance produced at 2.1 GHz, which is
mainly due to a fictitious short circuit near the capacitive feed strip [23,24]. Similarly, two resonances
(3.2 GHz & 5 GHz) can also be excited. However, the slot still cannot cover the bands of 824–960 MHz
and 1710–2690 MHz due to the narrow bandwidth characteristics.
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To solve the problem, three PIN diodes are integrated into the slot at proper positions to provide
more resonances. On the upper layer, the diodes d2 and d3 are used to change the total length of the
slot, which will generate two additional resonances around 820 MHz and 920 MHz. The diodes d1
on the bottom layer are used to generate the LTE band from 1710–2690 MHz. These diodes make the
antenna reconfigurable to enable multi-band operation. The states of these diodes are summarized in
Table 2. The simulated reflection coefficients of the antenna for different states are shown in Figure 5.

Table 2. States of three back-to-back diodes.

d1 d2 d3 Frequency

State 1 OFF OFF OFF
700~770 MHz

2000~3600 MHz
4800~5200 MHz

State 2 OFF OFF ON 770~870 MHz

State 3 OFF ON OFF 850~960 MHz

State 4 ON OFF OFF 1300~3000 MHz
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3.2. Key Parameters of the Antenna

The structure of the design is very simple and only few parameters need to be determined.
The lower resonate frequencies depend on the total length of the 3-D slot and the locations of diodes
d2 and d3, while the impedance between 1710–2690 MHz is mainly affected by the locations of diodes
d1 and the feed line.

To optimize the antenna performance of 1710–2690 MHz, the locations of the back-to-back diodes
d1 and the feed line, and their effects are studied. In the simulations, the switching effect of the diodes
is equivalent to the circuit shown in Figure 2b. Since the resonate frequency mainly depends on the
location of diodes d1, we can first estimate the value of p1. Choosing the center frequency at 2200 MHz,
the slot length from point ‘A’ in Figure 1b to d1 is about quarter wavelength of 2200 MHz. The length
of the slot should be shorter than this because it is printed on a FR4 board with a permittivity of 4.4.
Hence, the estimated value of p1 is around 20 mm. The S11 of the antenna working at state 4 for
different p1 and p2 are studied and the results are shown in Figure 6b,c. In Figure 6b, the parameter
p1 is fixed at 19 mm while in Figure 6c the parameter p2 is fixed at 28 mm. It can be seen that when
p1 = 19 mm and p2 = 28 mm, the antenna can match well in this frequency band.
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4. Measurement Results

The proposed reconfigurable 3-D slot antenna was fabricated and tested. Figure 7a,b show
the front and back of the prototype, respectively. The detail of the control circuit of the diodes is
shown in Figure 7c. When the positive pole of the voltage (red line) is connected to the center of the
back-to-back diodes, as shown in Figure 2a, and the negative pole (black line) is connected to ground,
the back-to-back diodes are ‘ON’. When the red line is removed, the diodes are ‘OFF’.

Figure 8 shows the simulated and measured reflection coefficient of the three working states of
the prototype. In this figure, good agreement between the simulated results and the measured data
was obtained for overall bands. The measured −6 dBi impedance bandwidth can cover 690–1000 MHz,
1500–3800 MHz and 4400–5000 MHz, which can satisfy the desired bands for WWAN/LTE and 5G
operations, respectively. The measured total efficiency and gain for different states of the proposed
antenna are shown in Figure 9. For the lower band of 800–1000 MHz, the measured efficiency is not
high enough. There are three reasons: The main reason is the small size of the antenna. The volume of
the antenna is only 42 × 6 × 6 mm3 and its electric size is only 0.11λ around 800 MHz, so the radiation
efficiency is relatively low. Secondly, the low efficiency is due to the resistor in the diode. The diode
is not an ideal conductor but has a 2.1 Ohm resistor even in the ‘ON’ state. Hence, the back-to-back
diodes have a 4.2 Ohm resistor, which will cause a big loss. Thirdly, the folded slot is printed on a
FR4 board with a loss tangent of 0.02, which will further reduce the efficiency. For the higher bands
of 1500–3000 MHz, 3100–3800 MHz and 4400–5000 MHz, the measured total efficiencies are between
40–80%. Similarly, the gain of the antenna varies from −5 dB to 5 dBi throughout the desired bands.
The measured far field gain patterns at 800, 2100, 3500, and 4900 MHz are shown in Figure 10a-d.
These patterns are not symmetrical due to the asymmetrical antenna structure.
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5. State-of-Art Comparison

In order to evaluate the performance of the proposed reconfigurable 3-D slot antenna,
its performance is compared with recently published designs. The results are summarized in
Table 3. As can be seen, the proposed antenna exhibits a smaller clearance zone on the premise of
integrating with the metal casing (metal frame and metal back cover). Also, it has more bands than
most of the designs in the literatures.



Electronics 2020, 9, 216 9 of 10

Table 3. Comparison of proposed antenna performance with recent antenna designs.

Ref. MF 1 MBC 2 Clearance
Zone (mm2) BWlow 3 (MHz)/η/Gain BWhigh 4 (MHz)/η/Gain

This work Yes Yes 42 × 6 698~1000/10~28%/−5~−1
dBi

1500~3000/40~75%/0~5 dBi
3100~3800/50~60%/2~4 dBi
4400~5000/40~50%/0~3 dBi

[7] Yes No 70 × 10 & 70 × 5 824~960/60~79%/1~2 dBi 1710~2690/54~79%/1~4 dBi

[8] Yes No 70 × 10 801~1002/>42%/0~3 dBi 1695~3000/>51%/2~5 dBi

[16] Yes Yes 68 × 11 698~960/45~90%/N.A. 1710~2690/50~95%/N.A.

[18] No No 75 × 10 820~960/40~90%/N.A. 1710~2690/40~80%/N.A.
3400~3600/40~70%/3~6 dBi

[19] Yes Yes 70 × 10 660~1100/25~65%/N.A.
1710~3020/60~90%/N.A.
3370~3900/50~90%/N.A.
5150–5850(70~90%)/N.A.

[20] Yes No 67 × 10 824~960/20~60%/−2~2 dBi 1710~2690/50~80%/2~4 dBi
1. MF = Metal Frame. 2. MBC = Metal Back Cover. 3. BWlow = Bandwidth at lower-band. 4. BWhigh = Bandwidth
at higher-band.η = efficiency. N.A. = Not Applicable.

6. Conclusions

In this paper, a novel and compact reconfigurable 3-D slot antenna with a metal casing which
can be applied to 5G smartphones is proposed and studied. Three back-to-back PIN diodes are
used to achieve four working states with the reflection coefficient less than −6 dB throughout the
698–1000 MHz and 1500–3000 MHz bands and the sub-6G bands (3100–3800 MHz & 4400–5000 MHz).
The proposed antenna has a very small ground clearance. It is a promising candidate for LTE/5G
smartphone application.
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