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Abstract: The semantic segmentation of a brain tumor is of paramount importance for its treatment
and prevention. Recently, researches have proposed various neural network-based architectures to
improve the performance of segmentation of brain tumor sub-regions. Brain tumor segmentation,
being a challenging area of research, requires improvement in its performance. This paper proposes
a 2D image segmentation method, BU-Net, to contribute to brain tumor segmentation research.
Residual extended skip (RES) and wide context (WC) are used along with the customized loss
function in the baseline U-Net architecture. The modifications contribute by finding more diverse
features, by increasing the valid receptive field. The contextual information is extracted with the
aggregating features to get better segmentation performance. The proposed BU-Net was evaluated on
the high-grade glioma (HGG) datasets of the BraTS2017 Challenge—the test datasets of the BraTS 2017
and 2018 Challenge datasets. Three major labels to segmented were tumor core (TC), whole tumor
(WT), and enhancing core (EC). To compare the performance quantitatively, the dice score was
utilized. The proposed BU-Net outperformed the existing state-of-the-art techniques. The high
performing BU-Net can have a great contribution to researchers from the field of bioinformatics
and medicine.
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1. Introduction

The brain tumor is caused by abnormal cell growth in the human brain. Currently, the incidence
of malignant brain tumor is relatively high, which has a great impact on humans and society [1].
To diagnose this disease, a brain tumor is subdivided through high-quality image processing.
The dominant malignant brain tumor is known as the histological glioma, and its sub-regions are
tumor core, enhancing core, and whole tumor [2,3]. Most of the existing brain tumor segmentation
studies focus on gliomas, the most common brain tumors in adults, and there are two types of glioma:
high-grade glioma (HGG) and low-grade glioma (LGG). HGG tumors behave malignantly as they
grow rapidly and damage brain tissues. Patients affected with HGG tumors require surgery, as they
are unable to survive for more than 2 years. The active treatment of LGG tumors can extend life
expectancy [4].

Brain tumors can be monitored and analyzed by main tools such as Magnetic Resonance Imaging
(MRI). The MRI employs four different modalities to visualize the brain: T1-weighted, T2-weighted,

Electronics 2020, 9, 2203; doi:10.3390/electronics9122203 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-0914-7132
https://orcid.org/0000-0003-0856-7207
https://orcid.org/0000-0002-1952-0001
http://www.mdpi.com/2079-9292/9/12/2203?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9122203
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 2203 2 of 12

post-contrast T1-weighted, and Flair. Different information from these modalities complements one
another for a robust brain tumor segmentation.

Since it is difficult to divide brain tumors manually, a lot of effort is being devoted to develop
a method for automatically segmenting brain tumor regions. It is crucial to separate and interpret
tumors in the medical field, and a clear understanding is essential. With advances in medical image
processing, finding tumor using machine learning has become more reliable and sophisticated than
in the past [5]. From a judgmental point of view, it is important that medical experts can trust the
algorithm’s predictions. In the field of bioinformatics [6–8] and medical imaging [9,10], deep learning
algorithms have obtained impressive results. In recent times real-life applications of soft computing
techniques in different fields have proved that deep learning can have a good impact on human
lives [11–19].

The most common deep learning-based methods in the field of medical image segmentation are
U-Net [20] and Fully Convolutional Network (FCN) [21]. Among them, U-net has proved to be the
most reliable technique in terms of performance. The U-net architecture has a U-symmetrical structure
where the left side performs encoder task and the right side of the architecture performs decoder task.
Another specification in this architecture is that the encoder concatenates the corresponding layer of
the decoder. This characteristic allows the resultant feature map to have both low-level and high-level
features. Further, the model performance is improved by integrating features from different levels
while preserving the location information.

The 3-dimensional (3D) segmentation based on MRI [22] and the 2-dimensional 2D segmentation
based on slice [23] are the main methods for brain tumor segmentation. In the case of MRI-based
3D segmentation, there are few training data with labels [3,24,25], and it is difficult to increase the
amount of data. In particular, enormous network parameters and memory issues make it hard to train
3D models.

Havaei et al. [26] proposed a specific multipath convolution neural network (CNN) to segment
the brain tumor region on the 2D sliced data of the MRI image. Besides, they used two training steps
(phases) to deal with unbalanced classes of input data. Shen et al. developed a boundary-aware FCN
to improve the segmentation performance [27]. Later, Kamnitsas et al. [22] developed a 3D network
called Deep Medic that extracts multi-scale feature maps and incorporates them locally and globally
using a two-path architecture.

On the other hand, training data for 2D segmentation are 155 times more dense (each 3D-MRI
datum contains 155 2D sliced data), so 2D segmentation has drawn attention recently [28]. In particular,
patch-based 2D models such as Pereira [23] and FCN-based (fully convolutional networks) 2D
models [21] such as U-net [20] are two representative kinds for 2D brain tumor segmentation.
The patch-based model classifies surrounding patches to determine which class each pixel belongs
to. The pipeline of the patch-based model is generally composed of three main steps: pre-processing,
classification using CNNs, and post-processing, which takes time and cannot be carried out
end-to-end [28].

In 2018 Wang et al. proposed a technique to gain long-range dependency of spatial-dimension [29].
For this purpose, the weighted sum of all responses was taken to generate a spatial feature response.
Further, in another study, the network learned long-range context with the help of location-sensitive
NL [30]. An increase in interest for network architecture such as FCN and U-net has occurred in
recent years. Among them, U-Net is the most widely used architecture due to its high performance.
In the recent reputed publication, the U-Net architecture was declared as a genetic solution algorithm
for research problems related to biomedical image data [31]. However, U-net was developed for
segmentation work for binary classes, and the output resolution is smaller than the input resolution
because it does not use convolution with padding. Therefore, U-net cannot be directly applied if
we require similar output resolution as that of input. Further, the U-Net architecture gradually
recovers the downsampling image, and low-level features from shallow layers are shared with the
deep layers. This direct information bridge generates distortion in the information, which affects
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the final prediction. However, an effective information bridge between shallow and deep layers can
enhance the local features, which may improve the brain tumor segmentation performance. W-Net is
another architecture that resembles the U-Net architecture, which uses two-stage U-Net. However,
the problem with W-Net is the high number of trainable parameters it has, which makes it difficult to
train the model.

Keeping in mind the limitations in the baseline model, in this paper we propose a network named
BU-Net. For brain image segmentation, BU-Net introduces two modules that are embedded in a U-Net
architecture. These modules are residual extended skip (RES) and wide context (WC), which were
inspired by inception net [32] and deep lab [33] respectively. The following are the contributions made
by the BU-Net,

• Both new modules in BU-Net help to get the contextual information along with aggregation in
the global features.

• Residual extended skip (RES) converts the low-level features to middle-level features.
• It is useful when scale-invariant features are used, which is important in the case of brain tumor

segmentation, as the cancer regions vary from case to case.
• The RES module increases the valid receptive field, which remains a problem in previous

techniques, as in those techniques the theoretical receptive field is always dominant.
• Two combined loss functions are used to tackle the problem associated with a huge difference in

the percentage of pixels occupied by each class.

BU-Net has exhibited promising results when compared with existing state-of-the-art brain tumor
segmentation techniques.

2. Datasets

In this section, we discuss the publicly available benchmark databases used in this study.
The proposed BU-Net model was evaluated on two benchmark datasets. These datasets are BraTS

2017 and BraTS 2018. The BraTS 2017 dataset consists of images collected from 285 glioma patients,
out of which 210 were HGG cases and the remainder belong to LGG cases. Further, the validation
dataset of BraTS 2017 carries images of 46 patients with unknown grade. The ground truths of the
training data were labeled by the experts, and the labels of validation dataset are not made publicly
available; therefore, the results can only be generated from the online web-server of BraTS. The dataset
is labeled as four main classes which are:

• Enhancing tumor.
• Necrosis and non-enhancing tumor.
• Edema.
• Healthy tissue.

Figure 1 shows the two sample cases from the dataset. The BraTS 2018 dataset contains similar
training images as that of BraTS 2017. The labeling procedure and classes remain the same. The only
difference being made in BraTS 2018 is of the validation dataset. A new validation dataset is made
available which carried images collected from 66 patients from unknown grade.
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Figure 1. Showing two cases (a,b) of a brain tumor with multimodal and labeled plots. From left
to right are T1, T2, T1ce (T1c), flair, and the ground truth (labels). In ground truth images there are
3 colors used to represent three different tumor classes. Red represents necrosis and non-enhancing;
green represents edema; and yellow represents an enhancing tumor.

3. Methodology

In this section, we first discuss image preprocessing, which is necessary for an input image. Then,
proposed BU-Net is discussed along with the two modules RES and WC, which are included to get
better performance.

3.1. Image Preprocessing

One of the weaknesses of deep learning models is that they are robust to noise; therefore, data
processing is an important task to be carried out before the image is given to the network. For this
purpose, N4ITK algorithm [34], a bias correction technique, is used on all images to make them
homogeneous. In the literature many different algorithms are used for the pre-processing of the input
images; however, the majority of the literature suggests that the N41TK algorithm for brain image
pre-processing is the most reliable [35,36]. The N41TK algorithm is capable of correcting the bias field
of MRI data. Moreover, the intensities at top 1% and bottom 1% are discarded, as done in [26]. As a
final step, all the images are normalized to a zero mean with unit variance.

3.2. Proposed BU-Net

In previous baseline architecture, no contextual information is shared between the shallow and
deep layers. There is a need to introduce a module which can create an information bridge between
shallow and deep layers so that local and global features of the network can be enhanced. Figure 2
shows the overall architecture of the proposed BU-Net, which includes RES blocks and a WC block.
The architecture takes input images of resolution 256× 256 and outputs the images with the same
dimensions. The left part of the model act as an encoder and the right part of the model acts as a
decoder. The convolution layers with padding are used in BU-Net. This allows getting the same sized
image as the output as that given as input.

The encoder and decoder of the network are divided into blocks. On the encoder side every block
consists of two convolution layers along with a single max-pooling layer and a dropout layer. Every
block of the decoder side starts with the Conv2DTranspose layer applied on the output of the previous
block. The output of Conv2DTranspose layer is concatenated with the output generated from the
associated RES block. Dropout is applied to the concatenated output followed by two convolution
layers. The last block of the decoder includes another convolution layer with six filters of size 1× 1.
The encoder side performs the contraction process on the image, and the decoder side performs the
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expansion process. Further, for the transition from the encoder to the decoder, the architecture uses
a wide context block. All the convolution layers of BU-Net are followed by batch normalization
and ReLU activation function, except for the last convolution layer, which uses a sigmoid activation
function. The numerical representations of ReLU and sigmoid activation function are as follows:

ReLU(q) =

{
0, if q ≤ 0

q, otherwise
(1)

Sigmoid(q) =
1

1 + exp(−q)
(2)

Figure 2. Overall architecture of the proposed BU-Net including RES blocks and wide context block.

The BU-Net is implemented on Keras framework [37]. To set the dropout ratio, we applied
hyper-parameter tuning—a range of dropout ratios were tested to get the most optimal dropout ratio;
0.3 proved to be the most optimal dropout ratio for the network. Adam optimizer was used along with
the customized loss function. The learning rate was set to 0.01 with a momentum of 0.9. The batch
size was 16, and early stopping based on validation loss with patience level of 10 was utilized for the
maximum number of training iterations.

The RES block, wide context block, and customized loss function are discussed in upcoming
subsections.

3.2.1. Residual Extended Skip (RES)

Figure 3 shows the architecture of the residual extended skip (RES) block. The input to the
architecture is given to 5 parallel connections. In the first four of them, two convolutions layers are
applied. In each connection with convolution layers, we have used N× 1 filter size for first convolution
layer and 1× N filter size for second convolution layer. We used two cascaded convolution layers
rather than using a single convolution layer with the filter size of N × N. Using two convolution
layers generates a lesser number of parameters which benefits the overall architecture. Moreover,
during experiments, the observation was made that the impact of cascaded convolution layers with
the lower number of parameters is similar to that of a single layer of convolution having a higher
number of parameters. The last connection is a skip connection where the input is as it is forwarded.
All the outputs from five connections are summed up to get a single output. Three convolution layers
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one after another are applied on the summed output. The three convolution layers have filter sizes of
3× 3, 3× 3, and 1× 1.

The RES block generates the middle-level features from the low-level features, which helps to
control the information degradation. The cancer regions have high size variations for which residual
extended skip performs contextual aggregation on multiple scales, which makes it scale-invariant.
The RES increases the valid receptive field, and this allows the BU-Net to have better segmentation.

Figure 3. The architecture for Residual Extended Skip (RES) block.

3.2.2. Wide Context (WC)

Figure 4 shows the architecture of the wide context (WC) block. The input to WC is given to
two parallel connections. Both the connections have 2 convolution layers. In the first connection,
the two convolution layers use N × 1 and 1× N respectively. The second connection first uses the
1× N filter size, and then the next convolution layer has filter size N × 1. This change in combination
in both the connections makes up a good feature set which can contribute towards the performance.
The observation was made that a change in combination changes the extracted features, and both the
combinations can contribute towards the final result. The outputs from both connections are summed
up and treated as an output of WC.

The wide context (WC), similarly to RES, extracts the contextual information which is important
for sub-classification between different sub-classes of cancer. Further, it performs the feature
aggregation at the transition level, which leads to a better reconstruction of the segmented regions.

Figure 4. The architecture for the Wide Context (WC) block.
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3.2.3. Customized Loss Function

One of the challenges with brain tumor segmentation is related to the imbalance class data.
For reference, Table 1 shows the distribution of the classes for BraTS training data. The total area
covered by healthy tissues in brain tumor MRI is 98.46%. The edema region covers 1.02% and the
enhancing tumor region covers 0.29% of brain tumor MRI image. The lowest volume is covered
by the non-enhancing tumor, which is only 0.23%. The large difference has a severe effect on the
segmentation performance.

Table 1. Distribution of area to classes in MRI brain tumor image.

Class Area Covered in %

Healthy Tissue 98.46
Edema 1.02

Enhancing Tumor 0.29
Non-Enhancing Tumor 0.23

To address the discussed problem, BU-Net utilizes a combined loss function that sums weight
cross-entropy (WCE) and Dice loss coefficient (DLC). The respective mathematical expressions for the
loss functions are as follows:

WCE = −
N

∑
j

wjgjlog(pj) (3)

DLC = 1− 2
∑N

j wjgj pj

∑N
j wj(gj + pj)

(4)

where N represents the total number of labels, wj is the assigned weight to the label “j”. Further,
pj denotes the predicted binary pixel value of segmented image and gi denotes ground truth binary
pixel value of the segmented image. Thus, the total loss function will be:

Ltotal = WCE + DLC (5)

The loss function is composed of two objective functions: one objective function is used to get
maximum overlap between the ground truth and predicted segmented regions regardless of the class,
which is performed by Dice loss coefficient (DLC); and the second objective function is responsible for
classifying the tissue cells concerning their class, which is performed by weight cross-entropy (WCE).

4. Results and Discussion

We have carried out quantitative and qualitative analysis. For quantitative analysis, the performance
evaluation in terms of numbers is discussed. For qualitative analysis, the visual quality of the results
is discussed.

For evaluating the performance of BU-Net, we have used the Dice score as the figure of merit.
Dice score is used by the previous state-of-the-art techniques, so it will allow us to have a better
quantitative comparative analysis between existing state-of-the-art and proposed BU-Net architectures.
The Dice score gives similarity between sets P & Q which can be mathematically expressed as

Dice =
2× |P ∩Q|
|P|+ |Q| (6)

where |P| and |Q| represents the cardinalities of sets P & Q respectively.
Firstly the proposed model was evaluated on BraTS 2017 HGG dataset which has 210 cases. Out of

these cases, 80% were used for training purposes and the other 20% were used for testing purposes.
The training and testing cases are defined by the BraTS challenge. Table 2 shows the achieved results
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by BU-Net compared with existing techniques. All the architectures have used similar cost functions,
optimizers and all other co-factors. BU-Net obtained gains of 7%, 6.6% and 8.5% when compared with
its baseline U-Net for segmentation of whole, core, and enhancing tumor segmentation respectively.
In terms of Dice score, the proposed model has further outperformed four existing state-of-the-art
techniques which hold the best performance of segmentation for HGG data.

Table 2. Comparison of results with the BraTS 2017 HGG data.

Architecture Whole Core Enhancing

CNN [38] 0.840 0.720 0.620
U-Net [39] 0.831 0.801 0.750

Densely CNN [40] 0.720 0.830 0.810
ResU-Net [41] 0.88 0.850 0.750

FCNN [35] 0.865 0.864 0.816

Proposed BU-Net 0.901 0.867 0.835

For further evaluation of BU-Net, results were obtained for the whole dataset of BraTS 2017.
In this experiment, there were 228 MRI scans used for training purposesm and the remaining 57 MRI
scans were used for testing. Table 3 illustrates the attained results using BU-Net and its comparison
with the best existing techniques. In case of enhancing tumor and core tumor the best results from the
literature are received by ResU-Net. In its comparison our proposed model has shown a performance
increase of 0.3% and 0.5% for enhancing tumor and core tumor respectively. Bets results reported
in the literature for the whole tumor are by NovelNet. Even in this case, the proposed BU-Net have
shown an improvement of 1.6%. The difference between the performance of state-of-the-art techniques
and BU-Net exhibits the fact that proposed model can effectively identify the small tumor regions.

Table 3. Comparison of results with the whole BraTS 2017 dataset (57 MRI scans).

Architecture Whole Core Enhancing

Seg-Net [42] 0.833 0.703 0.496
U-Net [39] 0.870 0.762 0.700

ResU-Net [41] 0.873 0.768 0.716
PSPNet [43] 0.809 0.701 0.554

NovelNet [43] 0.876 0.763 0.642

Proposed BU-Net 0.892 0.783 0.736

The third experiment is carried out on the BraTS 2018 dataset. In this dataset, there are 285 training
samples and 66 testing samples. Table 4 illustrates the comparison of the results of BU-Net and other
state-of-the-art techniques on BraTS 2018 validation dataset. The BU-Net architecture has achieved the
dice score of 0.901, 0.837, 0.788 for whole, core and enhancing tumor respectively. The proposed model
has exhibited better performance when compared with either the baseline architecture which is U-Net
or the other existing state-of-the-art techniques. The better performance by the BU-Net shows that it
has high intersection over union, which means the model can identify majority of the area for every
tumor type.

In the research problem associated with segmentation, the qualitative analysis is as important as
quantitative analysis. For this reason, we have carried out qualitative analysis. Figure 5 illustrates the
visual comparison between the ground truth and the predicted segmented region using BU-Net and
U-Net for four different cases. As can be seen that the predicted regions by BU-Net show high likeness
with the ground truth. Further, the visual quality comparison can be made between the performance
of U-Net and BU-Net. The U-Net prediction holds many unwanted regions segmented as edema
which is the false prediction of edema region. BU-Net has shown high resemblance with the ground
truth. While identifying the necrosis region, the U-Net architecture seems to be unable to identify the
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whole region. Whereas BU-Net has covered most of the area of necrosis region. The high resemblance
between ground truth and proposed architecture, speaks about the high quality of BU-Net architecture.

Table 4. Comparison of results with the BraTS 2018 validation dataset. (66 MRI scans).

Architecture Whole Core Enhancing

U-Net [39] 0.860 0.790 0.767
3DU-Net [44] 0.885 0.718 0.760
ResU-Net [41] 0.867 0.803 0.768

Ensemble Net [45] 0.881 0.777 0.773
TTA [46] 0.873 0.783 0.754

S3DU-Net [47] 0.894 0.831 0.749
MCC [48] 0.882 0.748 0.718

Proposed BU-Net 0.901 0.837 0.788

Figure 5. The qualitative analysis of BU-Net and U-Net. There are 3 colors used to represent
three different tumor classes. Red represents necrosis and non-enhancing; green represents edema;
and yellow represents an enhancing tumor.

5. Conclusions

Brain tumor segmentation is a difficult task due to the complexity of MRI brain images, and it aims
to predict tumors by segmenting them through artificial intelligence models. We propose BU-Net to
segment and classify the brain tumor regions. For the definite segmentation of brain tumors, we have
proposed a novel model with modifications in encoder–decoder architecture. We have introduced
two new blocks, namely, residual extended skip (RES) and wide context (WC), into the existing U-Net
architecture. Special attention is given to the contextual features of the MRI scans which have proved to
be beneficial for the segmentation of tumor regions. An increase in the valid receptive field is achieved
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using RES block, which improves the overall performance. The proposed BU-Net architecture was
evaluated on BraTS 2017 and 2018 datasets. BU-Net has exhibited good improvement when compared
with baseline U-Net architecture and other existing efficient segmentation models. The proposed model
is a brain lesion segmentation prediction framework, and as a related study, it contributes towards
the precise segmentation of brain lesions regions. The 2D U-Net has the limitation of information loss
when compared with 3D U-Net. BU-Net loses local details and context information between different
slices. In the future, the authors intend to explore 3D-based networks to improve the performance
of segmentation.
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