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Abstract: In this article, we propose a set of efficient algorithmic solutions for computing short linear
convolutions focused on hardware implementation in VLSI. We consider convolutions for sequences
of length N = 2, 3, 4, 5, 6, 7, and 8. Hardwired units that implement these algorithms can be used as
building blocks when designing VLSI -based accelerators for more complex data processing systems.
The proposed algorithms are focused on fully parallel hardware implementation, but compared to
the naive approach to fully parallel hardware implementation, they require from 25% to about 60%
less, depending on the length N and hardware multipliers. Since the multiplier takes up a much
larger area on the chip than the adder and consumes more power, the proposed algorithms are
resource-efficient and energy-efficient in terms of their hardware implementation.

Keywords: linear convolution algorithms; fast hardware-oriented computations; convolution
neural networks

1. Introduction

Discrete convolution is found in many applications in science and engineering. Above all, it plays
a key role in modern digital signal and image processing. In digital signal processing, it is the
basis of filtering, multiresolution decomposition, and optimization of the calculation of orthogonal
transform [1–10]. In digital image processing, convolution is a basic operation of denoising, smoothing,
edge detection, blurring, focusing, etc. [11–13]. There are two types of discrete convolutions: the cyclic
convolution and the linear convolution. General principles for the synthesis of convolution algorithms
were described in [1–3]. The main emphasis in these works was made primarily on the calculation of
cyclic convolution, while in many digital signal and image processing applications, the calculation of
linear convolutions is required.

In recent years, convolution has found unusually wide application in neural networks and deep
learning. Among the various kinds of deep neural networks, convolutional neural networks (CNNs)
are most widely used [14–17]. In CNNs, linear convolutions are the most computationally intensive
operations, since in a typical implementation, their multiple computations occupy more than 90% of
the CNN execution time [14]. Only one convolutional level in a typical CNN requires more than two
thousand multiplications and additions. Usually, there are several such levels in the CNN. That is why
developers of such type of networks seek and design efficient ways of implementing linear convolution
using the smallest possible number of arithmetic operations.

To speed up linear convolution computation, various algorithmic methods have been proposed.
The most common approach to effective calculating linear convolution is dipping it in the space of
a double-size cyclic convolution with the subsequent application of a fast Fourier transform (FFT)
algorithm [15–17]. The FFT-based linear convolution method is traditionally used for large length
finite impulse response (FIR) filters; however, modern CNNs use predominantly small length FIR
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filters. In this situation, the most effective algorithms used in the computation of a small-length
linear convolution are the Winograd-like minimal filtering algorithms [18–20], which are the most
used currently. The algorithms compute linear convolution over small tiles with minimal complexity,
which makes them more effective with small filters and small batch sizes; however, these algorithms
do not calculate the whole convolution. They calculate only two inner products of neighboring vectors
formed from the current data stream by a moving time window of length N; therefore, these algorithms
do not compute the true linear convolution.

At the same time, there are a number of CNNs in which it is necessary to calculate full-size
small-length linear convolutions. In addition, in many applications of digital signal processing,
there is the problem of calculating a one-dimensional convolution using its conversion into a
multidimensional convolution. The algorithm thus obtained has a modular structure, and each
module calculates a short-length one-dimensional convolution [21].

The most popular sizes of sequences being convoluted are sequences of length 2, 3, 4, 5, 6, 7,
and 8. However, in the papers known to the authors, there is no description of resource-efficient
algorithms for calculation of linear convolutions for lengths greater than four [1,4,6,21,22]. In turn,
the solutions given in the literature for N = 2, N = 3, and N = 4 do not give a complete imagination
about the organization of the linear convolution calculation process, since their corresponding signal
flow graphs are not presented anywhere. In this paper, we describe a complete set of solutions for
linear convolution of small length N sequences from 2 to 8.

2. Preliminaries

Let{hm} and, {xn}, m = 0, 1, . . . , M− 1, n = 0, 1, . . . , N − 1 be two finite sequences of length M
and N, respectively. Their linear convolution is the sequence {y1}, i = 0, 1, . . . , M + N − 2 defined
by [1]:

yi =
N−1

∑
n=0

hi−nxn, (1)

where we take hi−n = 0, if i− n < 0.
As a rule, the elements of one of the sequences to be convolved are constant

numbers. For definiteness, we assume that it will be a sequence {hm}.
Because sequences{xn} and {hm}are finite length, then their linear convolution (1) can also be

implemented as matrix-vector multiplication:

Y(N+M−1)×1 = H(N+M−1)×NXN×1 (2)

where

H(N+M−1)×N =



h0

h1 h0
... h1

. . .

hM−1
... · · · h0

hM−1 · · · h1
. . .

...
hM−1


, (3)

XN×1 = [x0, x1, ...xN−1]
T,

Y(N+M−1)×1 = [y0, y1, ..., yN+M−2]
T,

HM×1 = [h0, h1, ..., hM−1]
T.

In the future, we assume that XN×1 is a vector of input data, Y(N+M−1)×1 is a vector of output
data, and HM×1 is a vector containing constants.
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Direct computation of (3) takes MN multiplications and (M−1)(N−1) addition. This means that
the fully parallel hardware implementation of the linear convolution operation requires MN multipliers
and N + M−3 multi-input adders with a different number of inputs, which depends on the length of the
sequences being convolved. Traditionally, the convolution for which M = N is assumed as a basic linear
convolution operation. Resource-effective cyclic convolution algorithms for benchmark lengths (N = 2,
3,...,16) have long been published [1–9]. For linear convolution, optimized algorithms are described
only for the cases N = 2, 3, 4 [4,6,21,22]. Below we show how to reduce the implementation complexity
of some benchmark-lengths linear convolutions for the case of completely parallel hardware their
implementation. For completeness, we also consider algorithms for the sequences of lengths M = N = 2,
3, and 4.

So, considering the above, the goal of this article is to develop and describe fully parallel
resource-efficient algorithms for N = 2, 3, 4, 5, 6, 7, 8.

3. Algorithms for Short-Length Linear Convolution

The main idea of presented algorithm is to transform the linear convolution matrix into circular
matrix and two Toeplitz matrices. Then we can rewrite (3) in following form:

Y(2N−1)×1 = H(2N−1)×NXN×1 =


HK×N

H̆N
HL×N

−


0K×N
HL×N
01×N
HK×N
0L×N



XN×1 (4)

where HK×N =
[
T(l)

K 0K×(N−K)

]
and HL×N =

[
0L×(N−L) T(r)

L

]
are matrices that are horizontal

concatenations of null matrices and left-triangular or right-triangular Toeplitz matrices, respectively:

T(l)
K×N =


h0 0 · · · 0
h1 h0 · · · 0
...

...
. . .

...
hK−1 hK−2 · · · h0

 , T(r)
L =


hN−1 hN−2 · · · hN−L−2

0 hN−1 · · · hN−L−1
...

...
. . .

...
0 0 · · · hN−1

 ,

which gives

HK×N =


h0 0 · · · 0 0 0 · · · 0

h1 h0 · · · 0 0 0
... 0

...
...

. . .
...

...
...

. . .
...

hK−1 hK−2 · · · h0 0 0 · · · 0

 ,

HL×N =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

hN−1 hN−2 · · · hN−L−2

0 hN−1 · · · hN−L−1
...

...
. . .

...
0 0 · · · hN−1

 .

A circulant matrix H̆N is a matrix of cyclic convolution HN with rows cyclically shifted by n
positions down:
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H̆N = I(←n)
N HN =



hK hK−1 · · · hK+1

hK+1 hK · · · hK+2
...

...
. . .

...
hN−1 hN−2 · · · h0

h0 hN−1 · · · h1
...

...
. . .

...
hK−1 hK−2 · · · hK


,

where I(←n)
N - is permutation matrix obtained from the identity matrix by cyclic shift of its columns by

n positions to the left and:

HN =


h0 hN−1 · · · h1

h1 h0 · · · h2
...

...
...

...
hN−1 hN−2 · · · h0

 .

The coefficients K and L are natural numbers arbitrary taken and fulfilling the dependence K + L
= N − 1. These values are selected heuristically for each N separately.

The product H̆NXN×1 is calculated using the well-known fast convolution algorithm.
The products of HK×NXN×1 and HL×NXN×1 are also calculated using fast algorithms for matrix-vector
multiplication with Toeplitz matrices. We use all of the above techniques to synthesize the final short-
length linear convolution algorithms with reduced multiplicative complexity.

3.1. Algorithm for N = 2

Let X2×1 = [x0, x1]
T and H2×1 = [h0, h1]

T be 2-dimensional data vectors being convolved and
Y3×1 = [y0, y1, y2]

T be an input vector representing a linear convolution. The problem is to calculate
the product

Y3×1 = H3×2X2×1, (5)

where

H3×2 =

 h0

h1 h0

h1

 .

Direct computation of (5) takes four multiplications and one addition. It is easy to see that the
matrix H3×2 possesses an uncommon structure. By the Toom–Cook algorithmic trick, the number of
multiplications in the calculation of the 2-point linear convolution can be reduced [1,21].

With this in mind, the rationalized computational procedure for computing 2-point linear
convolution has the following form:

Y3×1 = A(2)
3 D3A(2)

3×2X2×1 (6)

where

A(2)
3×2 =

 1
1 −1

1

 , A(2)
3 =

 1
1 −1 1

1

 , D3 = diag(h0, h0 − h1, h1), (7)

s(2)0 = h0, s(2)1 = h0 − h1, s(2)2 = h1. (8)

Figure 1 shows a signal flow graph for the proposed algorithm, which also provides a simplified
schematic view of a fully parallel processing unit for resource-effective implementing of 2-point linear
convolution. In this paper, the all data flow graphs are oriented from left to right. Straight lines
in the figures denote the data transfer (data path) operations. The circles in these figures show the
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operation of multiplication (multipliers in the case of hardware implementation) by a number inscribed
inside a circle. Points where lines converge denote summation (adders in the case of hardware
implementation) and dotted lines indicate the sign-change data paths (data paths with multiplication
by −1) . We use the usual lines without arrows on purpose, so as not to clutter the picture [23].
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Figure 1. The signal flow graph of the proposed algorithm for computation of 2-point linear convolution.

As it can be seen, the calculation of 2-point linear convolution requires only three multiplications
and three additions. In terms of arithmetic units, a fully parallel hardware implementation of the
processor unit for calculating a 2-point convolution will require three multipliers, one two-input adder,
and one three-input adder. In terms of arithmetic units, a fully parallel hardware implementation of
the processor unit for calculating a 2-point convolution will require three multipliers, one two-input
adder, and one three-input adder instead of four multipliers and one two-input adder in the case of
completely parallel implementation of (6). So, we exchanged one multiplier for one three-input adder.

3.2. Algorithm for N = 3

Let X3×1 = [x0, x1, x2]
T and H3×1 = [h0, h1, h2]

T be 3-dimensional data vectors being convolved
and Y5×1 = [y0, y1, y2, y3, y4]

T be an input vector represented linear convolution for N = 3. The problem
is to calculate the product

Y5×1 = H5×3X3×1, (9)

where

H5×3 =


h0

h1 h0

h2 h1 h0

h2 h1

h2

 . (10)

Direct computation of (9) takes nine multiplications and five addition. Because the matrix H5×3

also possesses uncommon structure, the number of multiplications in the calculation of the 3-point
linear convolution can be reduced too [1,4,21].

An algorithm for computation 3-point linear convolution with reduced multiplicative complexity
can be written with the help of following matrix-vector calculating procedure:

Y(3)
5×1 = A(3)

5×6D(3)
6 A(3)

6×3X3×1, (11)

where

A(3)
6×3 =



1
1

1
1 1
1 1

1 1


, A(3)

5×6 =


1
−1 −1 1
−1 1 −1 1

−1 −1 1
1

 , (12)

D(3)
6 = diag(h0, h1, h2, h0 + h1, h0 + h2, h1 + h2). (13)

Figure 2 shows a signal flow graph of the proposed algorithm for the implementation of 3-point
linear convolution. As it can be seen, the calculation of 3-point linear convolution requires only
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6 multiplications and 10 additions. Thus, the proposed algorithm saves six multiplications at the cost
of six extra additions compared to the ordinary matrix-vector multiplication method.
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Figure 2. The signal flow graph of the proposed algorithm for computation of 3-point linear convolution.

In terms of arithmetic units, a fully parallel hardware implementation of the processor unit for
calculating a 3-point linear convolution (11) will require only six multipliers, four two-input adders,
one three-input adder, and one four-input adder instead of 12 multipliers, 2 two-input adders, and 1
two-input adder in the case of fully parallel implementation of (9).

3.3. Algorithm for N = 4

Let X4×1 = [x0, x1, x2, x3]
T and H4×1 = [h0, h1, h2, h3]

T be 4-dimensional data vectors being
convolved and Y7×1 = [y0, y1, y2, y3, y4, y5, y6]

T be an input vector represented linear convolution
for N = 4.

The problem is to calculate the product:

Y7×1 = H7×4X4×1, (14)

where

H7×4 =



h0

h1 h0

h2 h1 h0

h3 h2 h1 h0

h3 h2 h1

h3 h2

h3


.

Direct computation of (14) takes 16 multiplications and 9 addition. Due to the specific
structure of matrix H7×4, the number of multiplication operations in the calculation of (14) can
be significantly reduced.

An algorithm for computation 4-point linear convolution with reduced multiplicative complexity
can be written using the following matrix-vector calculating procedure:

Y7×1 = A(4)
7×8A(4)

8×9D(4)
9 A(4)

9×8A(4)
8×4X4×1, (15)

where

A(4)
8×4 =



1
1 1

1 1
1 −1

1 −1
1

1
1


, A(4)

9×8 = 1⊕H2 ⊕

 1
1

1 1

⊕ I3,
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where IN is an identity N × N matrix, H2 is the (2 × 2) Hadamard matrix, and sign ,”⊕” denotes
direct sum of two matrices [23–25].

D(4)
9 = diag(s(4)0 s(4)1 , ..., s(4)8 ),

s(4)0 = h0, s(4)1 = (h0 + h1 + h2 + h3)
/

4 , s(4)2 = (h0 − h1 + h2 − h3)
/

4 ,

s(4)3 = (h0 − h1 − h2 + h3)
/

2, s(4)4 = (h0 + h1 − h2 − h3)
/

2, s(4)5 = (h0 − h2)
/

2 , s(4)6 = h3 ,

s(4)7 = h2 , s(4)8 = h3,

A(4)
8×9 = 1⊕H2 ⊕

[
−1 1

−1 1

]
⊕ I3, A(4)

7×8 =



1
1 1 −1 −1

1 −1 −1
1 −1

−1 1 1
1 1

1


.

Figure 3 shows a signal flow graph of the proposed algorithm for the implementation of 4-point
linear convolution. So, the proposed algorithm saves 7 multiplications at the cost of 11 extra additions
compared to the ordinary matrix-vector multiplication method.
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Figure 3. The signal flow graph of the proposed algorithm for computation of 4-point linear convolution.

In terms of arithmetic units, a fully parallel hardware implementation of the processor
unit for calculating a 4-point linear convolution will require only 9 multipliers, 13 two-input
adders, 2 three-input adders, and 1 four-input adder instead of 16 multipliers, 2 two-input
adders, 2 three-input adders, and 1 four-input adder in the case of fully parallel implementation
of (14).

3.4. Algorithm for N = 5

Let X5×1 = [x0, x1, x2, x3, x4]
T and H5×1 = [h0, h1, h2, h3, h4]

T be 5-dimensional data vectors
being convolved and Y9×1 = [y0, y1, y2, y3, y4, y5, y6, y7, y8]

T be an input vector representing a linear
convolution for N = 5.

The problem is to calculate the product:

Y9×1 = H9×5X5×1, (16)
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where

H9×5 =



h0

h1 h0
... h1

. . .

h4
...

. . . h0

h4
. . . h1
. . .

...
h4


.

Direct computation of (16) takes 25 multiplications and 16 addition. Due to the specific
structure of matrix H9×5, the number of multiplication operations in the calculation of (16) can
be significantly reduced.

Thus, an algorithm for computation 5-point linear convolution with reduced multiplicative
complexity can be written using the following matrix-vector calculating procedure:

Y9×1 = A(5)
9×11A(5)

11×13A(5)
13×16D(5)

16 A(5)
16×15A(5)

15×11A(5)
11×5X5×1, (17)

where

A(5)
11×5 =



1
1 03

1
1 −1

1 −1
1 −1

1 −1
1 1 1 1 1

1
03 1

1



, A(5)
15×11 =



1
1

1
1

1
1 1

1
1

1 1
1 −1

1 −1

011×4

04×7 I4


and 0M×N is a null matrix of order M× N [23–25],

D(5)
16 = diag(s(5)0 s(5)1 , ..., s(5)15 ),

s(5)0 = h0 , s(5)1 = h1 , s(5)2 = h0 , s(5)3 = (h0 − h2 + h3 − h4)
/

4, s(5)4 = (h1 − h2 + h3 − h4)
/

4,

s(5)5 = (3h2 − 2h1 + 2h0 − 2h3 + 3h4)
/

5, s(5)6 = (−h0 + h1 − h2 + h3), s(5)7 = (−h0 + h1 − h2 + h3),

s(5)8 = (3h0 − 2h1 + 3h2 − 2h3 − 2h4)
/

5 , s(5)9 = −h2 + h3 , s(5)10 = h1 − h2 ,

s(5)11 = (−h0 − h1 + 4h2 − h3 − h4)
/

5 , s(5)12 = (h0 + h1 + h2 + h3 + h4)
/

5 , s(5)13 = h4 , s(5)14 = h3 ,

s(5)15 = h4 ,
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A(5)
16×15 =



1
1

1
1

1
1

1
1

1
1

1
1 −1

012×4

04×11 I4



,

A(5)
13×16 = I3 ⊕



1 1
1 1 03

1 1
1 1

03 1 1
1 1


⊕ I4,

A(5)
11×13 = I3 ⊕


1 −1 1
−1 −1 −1 −1 1

1 1 1
1 1 1

1 −1 1

⊕ I3,

A(5)
9×11 =



1 02×6

1 1
1 −1 −1

03×5 1 −1
1

−1 1
02×6

−1 −1 1

02×5
1 1

1



.

Figure 4 shows a data flow diagram of the proposed algorithm for the implementation of 5-point
linear convolution. The algorithm saves 9 multiplications at the cost of 22 extra additions compared to
the ordinary matrix-vector multiplication method.

In terms of arithmetic units, a fully parallel hardware implementation of the processor unit for
calculating a 5-point linear convolution will require 16 multipliers, 20 two-input adders, 2 three-input
adders, 1 four-input adder, and 1 five-input adder instead of 25 multipliers, 2 two-input adders,
2 three-input adders, 2 four-input adders, and 1 five-input adder in the case of fully parallel
implementation of expression (16).
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Figure 4. The signal flow graph of the proposed algorithm for computation of 5-point linear convolution.

3.5. Algorithm for N = 6

Let X6×1 = [x0, x1, x2, x3, x4, x5]
T and H6×1 = [h0, h1, h2, h3, h4, h5]

T be 6-dimensional data vectors
being convolved and Y11×1 = [y0, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10]

T be an input vector representing a
linear convolution for N = 6.

The problem is to calculate the product:

Y11×1 = H11×6X6×1, (18)

where

H11×6 =



h0

h1 h0
... h1

. . .

h5
...

. . . h0

h5
. . . h1
. . .

...
h5


.

Direct computation of (18) takes 36 multiplications and 25 addition. We proposed an algorithm
that takes only 16 multiplications and 44 additions. It saves 20 multiplications at the cost of 19 extra
additions compared to the ordinary matrix-vector multiplication method.

Proposed algorithm for computation 6-point linear convolution can be written with the help of
following matrix-vector calculating procedure:

Y(6)
11 = A(6)

11 Ă(6)
11 A(6)

11×14Â(6)
14 Ă(6)

14 A(6)
14×16D(6)

16 A(6)
16×14Ă(6)

14 A(6)
14 A(6)

14×6X6×1, (19)
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where

A(6)
14×6 =



1
1

1
1

1

05×3

03

1
1

1
1

03

1
1

1

02×3
1 1

1



, A(6)
14 = I3 ⊕ (H2 ⊗ I3)⊕ I5,

Ă(6)
14 = I3 ⊕

I2 ⊗

 1 1 1
1 −1
1 −1


⊕ I5, A(6)

16×14 = I3 ⊕

I2 ⊗


1

1
1
1 1


⊕ I5,

D16 = diag(s(6)0 , s(6)1 , ..., s(6)15 ),

s(6)0 = 6h0 , s(6)1 = 6h1 , s(6)2 = 6h0 , s(6)3 = h0 + h3 + h4 + h1 + h2 + h5 ,

s(6)4 = 3(h4 + h1 − h0 − h3), s(6)5 = 3(h2 + h5 − h0 − h3),

s(6)6 = 3(h0 + h3)− (h0 + h3 + h4 + h1 + h2 + h5), s(6)7 = h0 − h3 + h4 − h1 + h2 − h5),

s(6)8 = 3(h4 − h1 − h0 + h3), s(6)9 = 3(h2 − h5 − h0 + h3),

s(6)10 = 3(h0 + h3)− (h0 − h3 + h4 − h1 + h2 − h5), s(6)11 = 6h5 , s(6)12 = 6(−h4 + h5),

s(6)13 = 6(h3 − h4), s(6)14 = 6h4 , s(6)15 = 6h5 ,

A(6)
14×16 = I4 ⊕


1 1

1 1
02×4

01×3 1 01×3

02×4
1 1

1 1

⊕ I5, Â(6)
14 = I4 ⊕


1

1
1

1
1

⊕ I5,

A(6)
11×14 =

[
1

1 1

]
⊕ (H2 ⊗ I3)⊕

 1 1 1
1 1

1

 , Ă(6)
11 =



I3 03×4 03

04×3

1
1

1
1

04×3

04×3 04×3 I4


,



Electronics 2020, 9, 2115 12 of 22

A(6)
11 =



1
1

02×7

04

1 −1
1 −1

1 −1
1

−1 1
−1 1

02×7

03×4

1
03×4 1

1


and sign “⊗” denotes tensor or Kronecker product of two matrices [23–25].

Figure 5 shows a data flow diagram of the proposed algorithm for the implementation of 6-point
linear convolution.

In terms of arithmetic units, a fully parallel hardware implementation of the processor unit
for calculating a 6-point linear convolution will require 16 multipliers, 32 two-input adders, and 5
three-input adders, instead of 36 multipliers, 2 two-input adders, 2 three-input adders, 2 four-input
adders, 2 five-input adders, and 1 six-input adder in the case of completely parallel implementation of
expression (18).
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Figure 5. The signal flow graph of the proposed algorithm for computation of 6-point linear convolution.

3.6. Algorithm for N = 7

Let X7×1 = [x0, x1, x2, x3, x4.x5, x6]
T and H7×1 = [h0, h1, h2, h3, h4, h5, h6],T be 7-dimensional data

vectors being convolved and Y13×1 = [y0, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12]
T be an input vector

representing a linear convolution for N = 7.
The problem is to calculate the product:
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Y13×1 = H13×7X7×1, (20)

where

H13×7 =



h0

h1 h0
... h1

. . .

h6
...

. . . h0

h6
. . . h1
. . .

...
h6


.

Direct computation of (20) takes 49 multiplications and 36 addition. We developed an algorithm
that contains only 26 multiplications and 79 additions. It saves 23 multiplications at the cost of 43 extra
additions compared to the ordinary matrix-vector multiplication method.

The proposed algorithm for computation 7-point linear convolution with reduced multiplicative
complexity can be written using the following matrix-vector calculating procedure:

Y(7)
13×1 = A(7)

13×26D(7)
26 A(7)

26×7X7×1, (21)

where
A(7)

13×26 = A(7)
13×15A(7)

15×20A(7)
20×21A(7)

21×22A(7)
22×25A(7)

25×21A(7)
21 A(7)

21×26,

A(7)
26×7 = A(7)

26 A(7)
26×28A(7)

28×21A(7)
21×18A(7)

18×7

and

A(7)
18×7 =



1
1

1
1 1

1
1 1 1

06×3

I4 04×2 −14×1

02×4
1 −1

1 −1

06×4

1
1
1

1
1 1

1



, A(7)
21×18 = I5 ⊕



1
1 1

1
−1 1

1
1 1
−1 1

1 1
−1 1

1
1



⊕ I5,

−14×1 = [−1,−1,−1,−1]T,
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A(7)
28×21 = I7 ⊕



1
1 03×4 03

1
1 1
1 1 04×3

1 1
1 1

1
1

06×3 1 06×3

1
1

1
1
−1 1

04×3 04 1
1



⊕ I4,

A(7)
26×28 = I10 ⊕



1
−1 1

1
1

−1 1
1

06

1
1

1 1 1
1 1 1


⊕ I8

A(7)
26 = I5 ⊕



1 1 1
1

1
1

1
1

06

07

1
1

1
1

1
−1 1

1



⊕ I8,

D(7)
26 = diag(s(7)0 , s(7)1 , ..., s(7)25 ),

s(7)0 = h0, s(7)1 = h2 − h1, s(7)2 = h0 − h1, s(7)3 = h1, s(7)4 = h0,

s(7)5 = (h6 + h5 + h4 + h3 + 2h2 + h1 + h0)/7, s(7)6 = (−h6 − 2h5 + 3h4 − h3 − 2h2 + h1 + 2h0)/2,

s(7)7 = (2h4 − h3 − 2h2 + h1)/2, s(7)8 = (−h6 + h5 + 2h4 − h3 − 2h2 + 3h1 − h0)/2,

s(7)9 = (10h6 + 3h5 − 11h4 + 10h3 + 3h2 − 11h1 − 4h0)/14,

s(7)10 = (−2h6 − 2h5 − 2h4 + 12h3 + 5h2 − 9h1 − 2h0)/14, s(7)11 = (2h6 + 3h5 − h4 − 2h3 + 3h2 − h1)/6,

s(7)12 = (3h6 − 11h5 − 4h4 + 10h3 + 3h2 − 11h1 + 10h0)/14, s(7)13 = (−2h3 + 3h2 − h1)/6,

s(7)14 = (3h6 − h5 − 2h3 + 3h2 − h1 − 2h0)/6, s(7)15 = (−h6 + h4 − h3 + h1)/6, s(7)16 = (−h3 + h1)/6,

s(7)17 = (h5 − h3 + h1 − h0)/6, s(7)18 = 2h6 − h5 − 2h4 + 3h3 − 2h2 − 2h1 + h0,
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s(7)19 = 2h3 − h2 − 2h1 + h0, s(7)20 = −h6 − 2h5 + h4 + 2h3 − h2 − 2h1 + 3h0, s(7)21 = h6,

s(7)22 = h4 − h5, s(7)23 = h6 − h5, s(7)24 = h5, s(7)25 = h6 ,

A(7)
21×26 = I6 ⊕



1 1
1 1

1 1
03×6

02×9
1 1

1 1
−1 1

−1 1
−1 1

03×6

02×9
−1 1

−1 1


⊕ I5,

A(7)
21 = I7 ⊕



1 1
1

1
1

04

04

1
1 1

1
1


⊕ I6, A(7)

25×21 = I7 ⊕



1 1
1 1

1
1
1

1

06×4

06×4

1
1
1 1

1
1
1



⊕ I6,

A(7)
22×25 = I6 ⊕



1 1
1 03

1 −1
1 1 1 1

1

05×7

06×7

1
1 03

1
1 −1
1 1 1 1

1



⊕ I5,

A(7)
21×22 = I6 ⊕



1
−1 −1 −1

1
1 1

1

05

05×6

1
1

1 1
1

1


⊕ I5, A(7)

20×21 = I10 ⊕


1 1

1
1

1

⊕ I6,
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A(7)
15×20 =

 1
1 1

1 1 1

⊕ I5 ⊕



1
−1 −1 −1

1
1

04×5

03×5

1 1 1
1 1

1


,

A(7)
13×15 =



I3 03×4 03×5 03

04×3

1
1
1
1 1

1
1

1

−1
−1

−1

−1 1
−1 1

−1 1

1
1 1

1
03

03×4 03 03×5 I3


,

Figure 6 shows a data flow diagram of the proposed algorithm for the implementation of 7-point
linear convolution.
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Figure 6. The signal flow graph of the proposed algorithm for computation of 7-point linear convolution.

In terms of arithmetic units, a fully parallel hardware implementation of the processor
unit for calculating a 7-point linear convolution will require 27 multipliers, 49 two-input adders,
7 three-input adders, and 5 four-input adders, instead of 49 multipliers, 2 two-input adders,
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2 three-input adders, 2 four-input adders, 2 five-input adders, 2 six-input adders, and 1 seven-input
adder in the case of completely parallel implementation of expression (20).

3.7. Algorithm for N = 8

Let X8×1 = [x0, x1, x2, x3, x4.x5, x6, x7]
T and H8×1 = [h0, h1, h2, h3, h4, h5, h6, h7]

T be 8-dimensional
data vectors being convolved and Y15×1 = [y0, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14]

T be
an input vector representing a linear convolution for N = 8.

The problem is to calculate the product:

Y15×1 = H15×8X8×1, (22)

where

H15×8 =



h0

h1 h0
... h1

. . .

h7
...

. . . h0

h7
. . . h1
. . .

...
h7


.

Direct computation of (22) takes 64 multiplications and 49 addition. We developed an
algorithm that contains only 27 multiplications and 67 additions. Thus, the proposed algorithm
saves 22 multiplications at the cost of 18 extra additions compared to the ordinary matrix-vector
multiplication method.

Proposed algorithm for computation 8-point linear convolution with reduced multiplicative
complexity can be written using the following matrix-vector calculating procedure:

Y15×1 = A(8)
15 Â(8)

15 Ă(8)
15 A(8)

15×17A(8)
17×27D(8)

27 A(8)
27×17A(8)

17×15A(8)
15×8X8×1 (23)

where

A(8)
15×8 =


I3 03×5

I4 I4

I4 −I4

04 I4

 , A(8)
17×15 = I3 ⊕ (H2 ⊗ I2)⊕

 I2 02

02 I2

I2 I2

⊕ I4,

A(8)
27×17 =


1
1

1
1 1

1

⊕H2 ⊕

I4 ⊗

 1
1

1 1


⊕



1
1 1 1
1 −1 1
1

1
1
1

1


,

D(8)
27 = diag(s(8)0 , s(8)1 , ..., s(8)27 ),

s(8)0 = h0, s(8)1 = h2 − h1, s(8)2 = h0 − h1, s(8)3 = h1, s(8)4 = h0,

s(8)5 = 1
8 (h0 + h1 + h2 + h3 + h4 + h5 + h6 + h7), s(8)6 = 1

8 (h0 − h1 + h2 − h3 + h4 − h5 + h6 − h7),

s(8)7 = 1
4 (−h0 + h1 + h2 − h3 − h4 + h5 + h6 − h7), s(8)8 = 1

4 (−h0 − h1 + h2 + h3 − h4 − h5 + h6 + h7),
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s(8)9 = 1
4 (h0 − h2 + h4 − h6), s(8)10 = 1

2 (h0 − h1 − h2 + h3 − h4 + h5 + h6 − h7),

s(8)11 = 1
2 (h0 + h1 − h2 + h3 − h4 − h5 + h6 − h7), s(8)12 = 1

2 (−h0 + h2 + h4 − h6),

s(8)13 = 1
2 (h0 − h1 + h2 − h3 − h4 + h5 − h6 + h7), s(8)14 = 1

2 (h0 − h1 + h2 + h3 − h4 + h5 − h6 − h7),

s(8)15 = 1
2 (−h0 − h2 + h4 + h6), s(8)16 = 1

2 (−h0 + h1 + h4 − h5), s(8)17 = 1
2 (−h0 − h3 + h4 + h7),

s(8)18 = 1
2 (h0 − h4), s(8)19 = h4 − h6, s(8)20 = 1

2 (h5 + h6), s(8)21 = 1
2 (h6 − h5), s(8)22 = h5 − h7,

s(8)23 = h7, s(8)24 = h6, s(8)25 = h7, s(8)26 = h7 ,

A(8)
17×27 =

 1
1 1

1 1 1

⊕H2 ⊕
(

I4 ⊗
[

1 1
1 1

])
⊕
[

1 1 1 1
1 −1 −1

]
⊕
[

1 1
1

]
,

A(8)
15×17 = I3 ⊕ (H2 ⊗ I2)⊕

[
02 I2 I2

I2 02 I2

]
⊕ I4, Ă(8)

15 = I3 ⊕ (H2 ⊗ I4)⊕ I4,

Â(8)
15 = I3 ⊕

[
05×3 I5

I3 03×5

]
⊕ I4, A(8)

15 =


I7 03×4 ⊕ (−I4) −1

−1
−1

⊕ I4 I8

 .

Figure 7 shows a data flow diagram of the proposed algorithm for the implementation of 8-point
linear convolution.
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Figure 7. The signal flow graph of the proposed algorithm for computation of 8-point linear convolution.

In terms of arithmetic units, a fully parallel hardware implementation of the processor unit for
calculating a 8-point linear convolution will require 27 multipliers, 57 two-input adders, 4 three-input
adders and 1 four-input adder, instead of 64 multipliers, 2 two-input adders, 2 three-input adders,
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2 four-input adders, 2 five-input adders, 2 six-input adders, 2 seven-point adders and 1 eight-input
adder in the case of completely parallel implementation of expression (22).

4. Implementation Complexity

Since the lengths of the input sequences are relatively small, and the data flow graphs representing
the organization of the computation process are fairly simple, it is easy to estimate the implementation
complexity of the proposed solutions. Table 1 shows estimates of the number of arithmetic blocks
for the fully parallel implementation of the short lengths linear convolution algorithms. Since a
parallel N-input adder consists of N-1 two-input adders, we give integrated estimates of the
implementing costs of the sets of adders for each proposed solution expressed as the sums of two-input
adders. The penultimate column of the Table 1 shows the percentage reduction in the number of
multipliers, while the last column shows the percentage increase in the number of adders. As you can
see, the implementation of the proposed algorithms requires fewer multipliers than the implementation
based on naive methods of performing the linear convolution operations.

Table 1. Implementation complexities of naïve method and proposed solutions.

Length N
Number of Arithmetical Units (Multipliers — “×” and Adders — “+”)

Naïve Method Proposed Solutions Percentage Stimate

“×” “+” “×” “+” “×" “+”
2 4 1 3 3 25% 66.7%
3 9 4 6 10 33.3% 60%
4 16 9 9 20 43.8% 55%
5 25 16 16 38 57.9% 66%
6 36 25 16 44 55.6% 43.2%
7 49 36 26 79 47% 54.4%
8 64 49 27 67 58% 26.9%

It should be noted that our solutions are primarily focused on efficient implementation in
application specific integrated circuits (ASICs). In low-power designing low-power digital circuits,
optimization must be performed both at the algorithmic level and at the logic level. From the point of
view of designing an ASIC-chip that implements fast linear convolution, you should pay attention to
the fact that the hardwired multiplier is a very resource-intensive arithmetic unit. The multiplier is
also the most energy-intensive arithmetic unit, occupying a large crystal area [26] and dissipating a lot
of energy [27]. Reducing the number of multipliers is especially important in the design of specialized
fully parallel ASIC-based processors because minimizing the number of necessary multipliers reduces
power dissipation and lowers the cost implementation of the entire system being implemented. It is
proved that the implementation complexity of a hardwired multiplier grows quadratically with
operand size, while the hardware complexity of a binary adder increases linearly with operand
size [28]. Therefore, a reduction in the number of multipliers, even at the cost of a small increase
in the number of adders, has a significant role in the ASIC-based implementation of the algorithm.
Thus, it can be argued categorically that algorithmic solutions that require fewer hardware multipliers
in an ASIC-based implementation are better than those that require more embedded multipliers.

This statement is also true for field-programmable gate array (FPGA)-based implementations.
Most modern high-performance FPGAs contain a number of built-in multipliers. This means that
instead of implementing the multipliers with a help of a set of conventional logic gates, you can use the
hardwired multipliers embedded in the FPGA. Thus, all multiplications contained in a fully parallel
algorithm can be efficiently implemented using these embedded multipliers; however, their number
may not be enough to meet the requirements of a fully parallel implementation of the algorithm. So,
the developer uses the embedded multipliers to implement the multiplication operations until all
of the multipliers built into the chip have been used. If the embedded multipliers available in the
FPGA run out, the developer will be forced to use ordinary logic gates instead. This will lead to
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significant difficulties in the design and implementation of the computing unit. Therefore, the problem
of reducing the number of multiplications in fully parallel hardware-oriented algorithms is critical. It is
clear that you can go the other way—use a more complex FPGA chip from the same or another family,
which contains a larger number of embedded multipliers; however, it should be remembered that the
hardwired multiplier is a very resource-intensive unit. The multiplier is the most resource-intensive
and energy-consuming arithmetic unit, occupying a large area of the chip and dissipating a lot of
power; therefore, the use of complex and resource-intensive FPGAs containing a large number of
multipliers without a special need is impractical.

Table 2 shows FPGA devices of the Spartan-3 family, in which the number of hardwired
multipliers allows one to implement the linear convolution operation in a single chip. So, for example,
a 4-point convolution implemented using our proposed algorithm can be implemented using a single
Spartan XC3S200 device, while a 4-point convolution implemented using a naive method requires a
more voluminous Spartan XC3S400 device. A 5-point convolution implemented using our proposed
algorithm can be implemented using a single Spartan XC3S200A chip, while a 5-point convolution
implemented using a naive method requires a more voluminous Spartan XC3S1500A chip, and so on.

Table 2. The possibility of implementation the naive method and proposed solution on the
field-programmable gate array (FPGA) devices of the Spartan-3 family.

Length N
Features of the Implementation in Spartan-3 Family Devices

Naïve Method Proposed Solutions

Type of Device Type of Device

2 XC3S50 XC3S50AN
3 XC3S200 XC3S200
4 XC3S400 XC3S200
5 XC3S1400AN XC3S200AN
6 XC3S2000 XC3S200
7 XC3S4000 XC3S1400AN

Thus, the hardware implementation of our algorithms requires fewer hardware multipliers than
the implementation of naive calculation methods, all other things being equal. Taking into account the
previously listed arguments, this proves their effectiveness.

5. Conclusions

In this paper, we analyzed possibilities to reduce the multiplicative complexity of calculating
the linear convolutions for small length input sequences. We also synthesized new algorithms
for implementing these operations for N = 3, 4, 5, 6, 7, and 8. Using these algorithms reduces
the computational complexity of linear convolution, thus reducing its hardware implementation
complexity too. In addition, as can be seen from Figures 1–7, the proposed algorithms have a
pronounced parallel modular structure. This simplifies the mapping of the algorithms into an
ASIC structure and unifies its implementation in FPGAs. Thus, the acceleration of computations
during the implementation of these algorithms can also be achieved due to the parallelization of the
computation processes.
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