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Abstract: The key challenges of manycore systems are the large amount of memory and high
bandwidth required to run many applications. Three-dimesnional integrated on-chip memory is a
promising candidate for addressing these challenges. The advent of on-chip memory has provided
new opportunities to rethink traditional memory hierarchies and their management. In this study,
we propose a polymorphic memory as a hybrid approach when using on-chip memory. In contrast to
previous studies, we use the on-chip memory as both a main memory (called M1 memory) and a
Dynamic Random Access Memory (DRAM) cache (called M2 cache). The main memory consists of M1
memory and a conventional DRAM memory called M2 memory. To achieve high performance when
running many applications on this memory architecture, we propose management techniques for
the main memory with M1 and M2 memories and for polymorphic memory with dynamic memory
allocations for many applications in a manycore system. The first technique is to move frequently
accessed pages to M1 memory via hardware monitoring in a memory controller. The second is M1
memory partitioning to mitigate contention problems among many processes. Finally, we propose a
method to use M2 cache between a conventional last-level cache and M2 memory, and we determine
the best cache size for improving the performance with polymorphic memory. The proposed schemes
are evaluated with the SPEC CPU2006 benchmark, and the experimental results show that the
proposed approaches can improve the performance under various workloads of the benchmark.
The performance evaluation confirms that the average performance improvement of polymorphic
memory is 21.7%, with 0.026 standard deviation for the normalized results, compared to the previous
method of using on-chip memory as a last-level cache.

Keywords: memory management; on-chip memory; 3D stacked memory; heterogeneous memory;
DRAM cache

1. Introduction

Owing to the recent emergence of manycore systems in computing architecture, it is possible
to simultaneously run many applications such as rich multimedia and scientific calculations [1–4].
Manycore systems are specialized multi-core processor-based systems designed for high-level parallel
processing of data-intensive applications. The key challenge for manycore systems is how to utilize
a large amount of memory with high bandwidth because most applications require a large amount
of main memory [5–9]. However, memory latency and bandwidth are limiting factors for manycore
systems. Moreover, adding more memory channels to increase the bandwidth is not an effective
approach because of the pin limitation of the processor. This problem is called the “memory wall” [10].

Three-dimensional stacked on-chip Dynamic Random Access Memory (DRAM) [11–15] is a
promising candidate for overcoming the memory wall between the processor and the memory.
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Placing it near the processor can significantly increase the memory bandwidth. In particular, placing it
near the processor core results in lower latency compared to off-chip DRAM memory, and it is not
limited by the pins of the processor. With 3D stacked on-chip memory, the computing system is
organized by two types of memories: on-chip memory and conventional off-chip DRAM memory.
We refer to 3D stacked on-chip memory as “M1” and off-chip DRAM memory as “M2”.

Many studies have investigated 3D stacked on-chip memory. These studies are categorized into
two types: those that use on-chip memory as the last-level cache of off-chip memory [16–20] and those
that use a flat address region with hybrid on-chip and off-chip memories [21–26]. Recently, some studies
have investigated memory systems using a combination of cache and migration [27]. The relationship
between M1 and M2 is (i) copying and caching data from M2 to M1 if the on-chip M1 memory is
used as a DRAM cache and (ii) migration between M1 and M2 if M1 memory is used as a flat address
space. The use as a cache or flat address region for on-chip memory has advantages and disadvantages.
Caching sacrifices the address region; however, there is less data transfer overhead since it has no
data swapping between M1 and M2. On the other hand, flat addressing does not sacrifice address
space, but there is data swapping overhead between the two. It could be efficient to use a hybrid
approach by achieving a suitable trade-off between the two approaches [27]. Moreover, when running
multiple applications in a multi-core system, allocating the on-chip M1 memory to each application is
an important issue in terms of improving the performance of the overall system [5,8,28–30]. However,
not many existing studies have used M1 memory as a hybrid memory with a cache and flat address
region; furthermore, little studies have investigated dynamic M1 allocation for manycore systems.

To achieve high performance when running numerous applications on a manycore system with a
hybrid memory architecture, we designed a hybrid memory management scheme called polymorphic
memory, in which M1 is dynamically allocated according to the state of the application running in
the manycore system, and the allocated M1 is further divided into the DRAM cache and flat address
region. Specifically, we designed several schemes to deal with the hybrid polymorphic memory
architecture in a manycore system. The first scheme is migration between M1 and M2 for a flat
address region of the memory to enhance the memory throughput by placing frequently accessed
data in high-bandwidth M1 via hardware monitoring in a memory controller. For efficient migration,
we proposed a monitoring method to monitor the page access pattern and to calculate the overhead of
page migration. Second, in the polymorphic memory system, part of M1 is used for M2 cache to reduce
the latency of memory access; we determined the best cache size for improving the performance of the
polymorphic memory system. Finally, we designed an M1 partitioning scheme to mitigate contention
problems and to improve the balancing of M1 allocation among many processes, which can enhance
the overall throughput of the entire manycore system. Our experimental results showed that the
proposed approaches can improve the performance of processes under various workloads.

The remainder of this paper is organized as follows. Section 2 reviews previous studies. Section 3
describes the management of the proposed polymorphic memory system. Section 4 presents the
evaluation results. Finally, Section 5 concludes the paper and briefly explores directions for future work.

2. Related Works

Owing to the emergence of the manycore architecture after the multi-core architecture, the memory
subsystem has gained a more important role in running many threads concurrently. However,
the International Technology Roadmap for Semiconductors (ITRS) has reported that the pin count of a
socket limits the enhancement of the memory subsystem. Thus, the capacity gap between supply and
demand increases. There are two design approaches for utilizing on-chip DRAM memory: one is to
use it as a DRAM cache, and the other is to deal with it as a part of the memory. Recently, some studies
have combined caching and a part of memory with on-chip memory.

The DRAM cache of on-chip memory is located between the last-level Static Raneom Access
Memory(SRAM) cache and the DRAM main memory. Although the latency of DRAM is somewhat
greater than that of SRAM, previous studies [31–33] have shown that DRAM-based caches can provide
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twice the bandwidth of the main memory with one-third of the memory latency. The overhead of a tag
array increases with the size of on-chip memory. To decrease the tag overhead, it is possible to use
large cache line sizes such as 4 KB or 8 KB. However, this approach requires a high memory bandwidth
because a large amount of data should be transferred in one cache miss. Zhang et al. [32] increased the
DRAM cache line size to reduce the cache tag overhead. They also proposed a prediction technique that
accurately predicts the hit/miss status of an access to the cached DRAM, thereby reducing the access
latency. Jiang et al. [34] proposed Caching HOt Pages (CHOP) and solved the problem of a large cache
line that requires a high-memory bandwidth. To this end, the authors proposed a filter-based DRAM
caching technique. The filter module selects the hot pages, and these hot pages are only selected to be
allocated to the DRAM cache. Woo et al. [35] proposed SMART-3D to improve the bandwidth of the
DRAM cache directly.

Another drawback of using a DRAM cache is the tag checking overhead. Because the cache tags
should be read to check a hit or miss at every memory request, the total latency increases. To reduce
the hit latency, Loh et al. [16] scheduled the tag and data accesses as a composite access and proposed
a new DRAM cache design to ensure that data access is always a row buffer hit. The row buffer size is
2 KB, and it is divided into 32 blocks of 64 bytes. The authors developed a set-associative DRAM cache
with 64-byte cache lines. Further, they designed MissMap to manage a vector of block-valid bits for the
pages, which is stored in the L2 SRAM cache. We refer to it as LH-Cache. Qureshi et al. [17] introduced
Alloy Cache, which is a direct-mapped cache [36]. They tightly integrated tags and data into a single
entity called TAD (tag and data); TAD can be read at one memory access with a direct-mapped cache.
Furthermore, they designed a parallel access model (PAM) in which DRAM cache and DRAM memory
accesses are performed in parallel. PAM is used along with the memory access predictor when the
hit ratio on Alloy Cache is low. However, if the hit ratio is high, most accesses to DRAM memory
are unnecessary; thus, PAM requires a high memory bandwidth. Other studies have attempted to
reduce the tag access latency by locating tags on the processor die. Huang designed a small SRAM
cache for a DRAM cache tag to reduce the tag lookup latency [18], while Vasilakis et al. organized the
tags of on-chip Last-Level Cache (LLC) for storing tag information of the DRAM cache [19]. Yu et al.
used Translation Lookaside Buffers (TLBs) to track the contents of the DRAM cache and designed a
bandwidth-aware replacement policy for balanced use of the DRAM cache and main memory [20].

As another approach, on-chip DRAM can be used as a part of the main memory of the system.
In this case, both a conventional DRAM such as DDR3 and on-chip DRAM are organized as the main
memory. Existing Operating Systems (OSs) can operate in this manner without modification; however,
the OS should be able to manage two types of memories with knowledge of their distinct features such
as latencies and bandwidths to achieve high performance. In the memory scheme, data migration
occurs between on-chip memory and off-chip memory, and the main decision factors are the migration
granularity, flexibility, and how to select data to be migrated.

Furthermore, in the memory scheme, migration data can be selected with some hardware support,
or the OS can select the data to be migrated without the aid of hardware. Dong et al. [21] focused on
how to reduce the migration overhead and proposed data migration between on-chip and off-chip
memory, in which the unit of migration is a macro page; the macro page size ranged from 4 KB
to 4 MB. Chou et al. [22] divided the memory into several memory groups, and migration is only
performed in a group that reduced the remapping overhead. Sim [23] deployed hardware competing
counters in a segment group and used a threshold value for dynamic adjustment. Cemelon [24] created
new instructions for allocation and migration of data in group-based hybrid memory. Mempod [25]
attempted to overcome group-based migration and performed all-to-all migration using the majority
element algorithm. Vasilakis [26] proposed an LLC-guided data migration scheme for hybrid memory
systems and subsequently combined caching and migration [27], in which some small parts of on-chip
memory were used for caching. Their metadata were supported by a common mechanism to alleviate
the overhead. However, this approach does not consider the manycore architecture for allocating
on-chip memory.
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Therefore, nowadays, many existing approaches that use 3D stacked on-chip DRAM memory
are evolving toward hybrid memory systems that use a combination of a cache and a part of memory.
Moreover, a dynamic memory partition and allocation method for on-chip DRAM memory is required
to efficiently run multiple data-intensive applications in a manycore system. Our polymorphic memory
system is designed as a hybrid memory that uses on-chip memory as both a DRAM cache and a part
of memory, and the dynamic partitioning method of on-chip M1 memory between processes solves
the contention problem of multiple processes in manycore systems.

3. Polymorphic Memory System

In the polymorphic memory system, the main memory consists of M1 memory and M2 memory;
M1 is placed in the processor and shows higher bandwidth and lower latency than M2 memory.
The architecture of polymorphic memory system is described in Figure 1. We assume that the main
memory is exclusively arranged through the physical memory area and physically divided by the
memory address space. We also use some parts of M1 as a DRAM cache of M2 to take advantage of
both a cache and a memory with the low latency of M1. In addition, in a multi-process and manycore
environment, many processes attempt to obtain a larger amount of M1 memory to execute their tasks
more rapidly, i.e., they can contend for large M1 memory. Distinct memory management is needed
to allocate frequently accessed pages into M1 memory and to solve the contention problem among
multiple processes to improve overall performance.

M2 Memory

Page Access Monitor

M2 MC M1 MC Tag data

M1 Memory

Memory Controller

L2
L1CORE

...

Main
Memory

L2
L1CORE

Processor

On-chip memory(M1)

Main
Memory

M2 Cache

DRAM(Off-chip memory, M2)

Board

Figure 1. Architecture of the polymorphic memory.

3.1. Memory Management with Monitor

To improve the performance when using the main memory with M1 memory and M2 memory,
the pages that are accessed more frequently must be mapped to M1 memory. OS should attempt to
allocate the most frequently used pages to M1 memory and the less frequently used pages to M2
memory. Figure 2 shows a high-level overview of the main memory management scheme through data
migration between M1 and M2, which is based on periodic hardware-assisted page access monitoring.
During a period, the hardware page access monitor collects information about page accesses. At the
end of the period, the OS intervenes in memory management. The OS uses the collected information
to determine a new mapping of pages. The key assumption of this approach is that the page access
pattern during one period is similar to that in the next period. The OS moves the frequently accessed
pages in M2 memory into M1 memory and the less accessed pages in M1 memory into M2 memory.
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Figure 2. Timeline showing high-level overview for management of main memory with M1 and
M2 memories.

For the OS to determine the pages that must be allocated to M1 memory, the system should be able
to monitor the page access pattern when the application is running. To monitor the information about
the page accesses, we designed a hardware-supported monitor in a memory controller, as shown in
Figure 3. The data migration between M1 and M2 is performed with the hardware-assisted page access
pattern-monitoring module. Operation of the hardware-assisted page access monitor is as follows.
At the hardware cache level, LLC misses cause memory requests for the missed data. These requests
are handled by the hardware memory controller; thus, the memory controller can observe all the
memory requests. We add a page access monitor module to the memory controller, which gathers a
list of the most frequently accessed pages. This module maintains tables that include entries consisting
of page addresses and counters, as shown in Figure 3. Whenever a memory request occurs, it finds the
matching entry in a table with a page address and the corresponding counter value is increased by
one. If there is no matching entry, a new entry is created and added to the table.

Figure 3. Page access monitor and its operation.

We construct two tables to monitor the page access pattern. The storage area to store tables in
the memory controller must be limited because the hardware cost increases with the memory range
used by a process. Consequently, the memory controller cannot log all types of accessed pages during
operation. We should design a monitoring method with small tables. In the case of the first table,
we designed it to contain entries of the most frequently accessed pages. It is managed with an Least
Frequently Used(LFU)-like replacement policy to represent “frequency”. It always contains pages
with larger count values than pages in the second table. It can contain the entries of the pages that are
located in both M1 memory and M2 memory during one period. At the end of the period, all pages
located in M2 memory among the pages in the first table will be moved into M1 memory. If one entry
is removed from the first table by adding a new one, the count value of this page will be lost. The page
access monitor cannot store the count values of removed pages without the second table, and the
corresponding page also loses the chance to move to the first table when it is reaccessed in the same
period. To store the history of the pages, we add the second table, which is managed by the Least
Recently Used (LRU) replacement policy to represent “recency,” as shown in Figure 3.
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Algorithm 1 shows how to manage the two tables for monitoring the page access pattern. When a
new page is accessed, its corresponding entry is inserted with a count value of 1. If the first table has a
free slot to store the entry, this entry is filled into the first table. Otherwise, a new entry of an accessed
page is inserted into the Most Recently Used (MRU) position of the second table with a count value of
1. If the page is accessed and its corresponding entry is already in the first or second table, the count
value of the corresponding entry is increased by 1. When the corresponding entry is in the second
table, we compare the count value after increasing by 1. If the count value is greater than or equal to
the minimum count value on the first table, the entry of the accessed page is moved to the first table
and the entry with the minimum count value is moved to the MRU position of the second table.

Algorithm 1 Page access monitoring function.

1: Tf irst: The first table
2: Tsecond: The second table
3: Ep: Entry for p page, which includes page address and count value
4: Cp: Count value of Ep
5: Minq: The smallest count value whose page is q on Tf irst

6: During a period, p page is accessed
7: if Ep is on Tf irst then
8: Increase Cp by 1
9: else

10: if Tf irst is not full then
11: Insert Ep on Tf irst with Cp = 1
12: else
13: if Ep is on Tsecond then
14: Increase Cp by 1
15: Move Ep to MRU position
16: else
17: if Tsecond is full then
18: Remove LRU entry
19: end if
20: Put Ep on MRU of Tsecond with Cp = 1
21: end if
22: if Cp ≥ Minq then
23: Move Ep on Tf irst
24: Move Eq on MRU of Tsecond
25: end if
26: end if
27: end if

28: At the end of a period, all pages on Tf irst are moved to M1 memory. Reset all the count values of

Tf irst and Tsecond.

At the end of every period, the OS obtains the information of the page access pattern from the
monitoring module, determines the allocations of pages for processes, and then transfers the most
frequently accessed pages to M1 memory. In our scheme, the pages in the first table are the most
frequently accessed pages during one period; thus, the OS will allocate all pages in the first table to M1
memory. When the OS moves the pages to M1 memory, both the pages related to M1 memory and the
pages related to M2 memory in the first table should be allocated to M1 memory.

3.2. Page Migration between M1 and M2

Next, the OS intervenes in regular program execution and performs migration of the most
frequently used pages of M2 into M1 memory. First, the OS obtains the list of frequently accessed
pages from the memory controller. Then, the OS handles page migrations. We use a page as a
migration granularity, and the migration is based on the swapping mechanism. To migrate one
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page, the OS performs the following processes: (i) The OS finds the page table entry related to the
corresponding physical page, which can be achieved by reverse mapping (RMAP) in Linux [37,38].
(ii) The OS transfers the data to a new physical position. (iii) It replaces the physical page address in
the corresponding page table entry. (iv) It updates the TLB entry that is related to the corresponding
old page table entry. When the OS processes the migration of the page in M2 memory into M1 memory,
the page that is the least used in M1 memory should be moved to M2 memory. Therefore, the processes
described above are performed twice.

3.3. M2 Cache Management Using Part of M1

Our memory management assumes that the page access pattern during one period is similar to
that in the next period. We predict that the M1 hit ratio and performance can be improved after moving
the most frequently accessed pages to M1 memory. However, some memory-intensive workloads
can show dynamic memory access patterns; hence, it is possible that hot pages during one period
will not overlap with those during the next period. Although we designed an efficient monitoring
algorithm, it uses tables of a limited size to monitor the accessed pages. As a result, misprediction can
occur, which degrades the hit ratio and performance. To mitigate performance degradation due to
misprediction, we design polymorphic memory in which M1 is both a part of memory and M1 cache.

If we use all of M1 as just a part of memory, the memory access performance could be degraded
if misprediction and mis-migration occur in the memory management scheme owing to dynamic
changes in page access patterns. One of the advantages of using a cache is that it can quickly react to
dynamic changes in memory access patterns. M1 can be used as a cache for M2 because it has a much
lower latency than M2. However, if we use all of M1 as an M2 cache, the cache tag overhead can be a
major problem and the performance with M2 cache would be worse than that with M1 memory. If we
assume that 16 MB out of 128 MB of M1 is used as an M2 cache, the performance of M1 memory is not
degraded by a reduction of 16 MB because the M1 hit ratio barely changes when the size is changed
from 128 MB to 112 MB for most of applications, as we identified with the benchmark experiments for
cache miss rate according to M1 cache size, which is shown in Figure 4. Compared to the M2 cache
with all of M1, the tag space of the 16 MB M2 cache only occupies 352 KB. In addition, this M2 cache
can increase the total hit ratio of M1 by caching M2 memory accesses, especially those that are caused
by misprediction. According to our memory management scheme, M1 memory can store most of
the frequently accessed pages, while M2 cache stores only memory requests missed on M1 memory.
Therefore, polymorphic memory can reduce both the total access counts on M2 cache and the total
overhead to search for a tag in comparison with using all of M1 as an M2 cache.

Figure 4. M1 miss rate of different M1 sizes when all of M1 is used as M1 memory.

Some related studies on LH-Cache [16] and Alloy Cache [17] have presented effective approaches
for utilizing on-chip memory as the DRAM cache, reducing the latency when accessing the DRAM
cache. However, Alloy Cache [17] is not suitable for the M2 cache in polymorphic memory because a
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direct-mapped cache shows lower hit ratios with a small size such as 16 MB. LH-Cache is composed
of a 29-way set associative cache with a 64-byte cache line, and it uses MissMap to reduce the miss
latency. According to Jiang et al. [34], the cache hit ratio increases with the cache line size; however,
memory bandwidth utilization also increases. As a result, the best performance improvement is
achieved with a 128-byte cache line.

Accordingly, we designed a 128-byte cache line, and the architecture of the M2 cache is similar
to that of LH-Cache, as shown in Figure 5a. A one-row buffer of 2 KB is divided into 16 blocks.
We designed one block for storing tags and 15 blocks for storing data because all the tags of 15 data
items can be inserted into one block. We implemented a 15-way set-associative cache. Figure 5b
shows the results of preliminary tests for the cache designs. LH-Cache with a 128-byte cache line
shows better performance than LH-Cache. MissMap is used to reduce the miss latency by checking for
the existence of data in LH-Cache before searching for tags. However, it can increase the hit latency
because MissMap is always accessed for every memory access. If the hit ratio is high, the performance
benefit may be lost. In addition, MissMap reduces the size of the LLC because it borrows the LLC
space to store a MissMap table. Therefore, we use a 15-way set-associative cache in Figure 5a for the
M2 cache of polymorphic memory. Figure 5b shows that LH-Cache without MissMap achieves better
performance than LH-Cache. Our design of the M2 cache shows the best performance.

(a) (b)

Figure 5. Design of M2 cache for polymorphic memory: (a) mapping tags and data to a single row
buffer and (b) average weighted speedup with multi-programs, normalized by the case without M1.

3.4. Polymorphic Memory of M1 as Both Part of Memory and M2 Cache

We designed the main memory to be exclusively arranged through the physical memory area,
and the main memory is physically divided by the memory address. The physical memory address
space of M1 memory is easily differentiable from that of M2 memory. By checking the physical
addresses of the requested pages, memory requests can be processed on the appropriate memories.
If the memory request is on M1 memory, it is directly transferred to M1 memory and the data are
read from the M1 memory. At the same time, the page access monitor updates one of two tables for
monitoring the page access pattern. It also updates the tables in the case of M2 memory requests.

If memory requests for accessing M2 memory occur, the operation in the memory controller
should be different. The memory controller must consider the existence of an M2 cache. Therefore,
if there is a memory request for accessing M2 memory, the memory controller should check whether
the memory request is a hit on the M2 cache by looking up a tag array, as shown in Figure 6. If an
M2 cache hit occurs, the data can be directly read from the M2 cache. If a miss occurs, the memory
controller accesses M2 memory and then reads the data from M2 memory. At the same time, it caches
the data into the M2 cache for the next access, as shown in Figure 6.
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M1 Memory On-chip 
memory

L2
L1CORE

Read data

Tag

DRAM
M2 Memory

dataM2 Cache

Processor
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Memory Requests
on M2 Memory
-> First, check if M2
cache hit occurs

Figure 6. Operation of polymorphic memory by partitioning on-chip memory with M1 memory and
M2 cache.

When we use some parts of M1 as an M2 cache, the key decision is on whether the amount of M2
cache is adequate for the cache size. If we increase the size of the M2 cache, the size of the M1 memory
decreases from the fixed size of M1. Increasing misses on M1 memory caused by reducing the size of
M1 memory can be absorbed into an M2 cache for which size is increased. However, increasing the hit
ratio on an M2 cache results in overhead of looking up a tag array. The M2 cache needs two accesses
on M1 per memory access for looking up a tag array and for reading data. Therefore, the performance
will be degraded when using a large M2 cache. This is similar to using all of M1 as a cache if we use a
very large M2 cache. In this case, the performance is much lower than that with all of M1 memory.
In general, the performance curve becomes concave as the size of the M2 cache increases.

3.5. Multi-Process Support Management

In the case of multiple programs in a manycore environment, all the processes of the programs
will attempt to obtain a greater portion of M1 memory for fast execution because M1 memory shows
better performance than M2 memory. The limited size of M1 memory leads to memory contention.
The OS should address the contention problem to optimize the memory access latency and bandwidth
of each process by properly allocating M1 among processes. Our approach for solving the contention
problem among competing processes is to partition M1 memory and to control the size of M1 memory
allocated to each process.

The designed partitioning scheme for M1 memory consists of two parts: (i) categorizing processes
with several levels by monitoring memory usage information and (ii) determining the allocated size of
M1 memory for each process. We modified the memory controller such that it monitors the counts of
memory accesses of M1 memory and M2 memory per core. With these memory access counts, the OS
calculates the M1 hit ratio during a period. We categorize a process into three states with the hit ratio
of M1 and compare the current M1 hit ratio with the previous one: a provider, a consumer, and a
no-action state. A provider is a process that can give some portion of M1 memory to other processes,
and a consumer requires more M1 memory for data processing.

The categorizing algorithm and state diagram of each process are shown in Figure 7a, and the M1
memory balancing procedure between processes through M1 partitioning and allocation is shown in
Figure Diagramb. If the current hit ratio of a process is higher than the previous one or if it is 100%,
we classify this process as a provider. This means that, during the current period, more requests are hits
on M1 memory than in the previous period, or the memory coverage of the process becomes so small
that the most frequently accessed pages are concentrated in M1 memory. In this case, we predict that
this process has sufficient M1 memory. Therefore, we define this process as a provider, and it releases
the portion of M1 memory allocated to it. By contrast, if the current hit ratio is lower than the hit
ratio of the previous period, we set it as a consumer state. This means that the amount of M1 memory
required for this process is not sufficient for it to run efficiently. The consumer allocates the portion
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of M1 memory provided by the provider as its own. Although a consumer obtains some portion of
M1 memory from providers, it is possible not to increase its hit ratio of M1 memory by changing the
memory access patterns. If the hit ratio does not increase, we classify it as a consumer again in order to
obtain more M1 memory. Similarly, in the case of a provider, we classify it as a provider again if its M1
hit ratio is increased after providing some portion of M1 memory to the consumers.

(a) (b)

Figure 7. State transition diagram between processes and releasing and acquiring M1 memory between
processes for M1 balancing. (a) State transition diagram between processes: provider, consumer,
and no-action; (b) releasing and acquiring M1 memory between processes for each period.

Meanwhile, when the M1 hit ratio of the consumer increases after it obtains a small part of
M1 memory, we do not directly change it to a provider. The M1 hit ratio is normally increased by
increasing M1 memory. If we assign this process as a provider directly, it will lose some portion of
M1 memory and its M1 hit ratio will decrease during the next period. This can cause the ping-pong
problem because this process will be a consumer again. Therefore, we add the no-action state to the
state diagram, as shown in Figure 7.

After determining the states of the processes, we recalculate the amount of M1 memory that
belongs to each process and reallocate them between providers and consumers. The providers send
their M1 memory pages to the consumers. The total size of the change in M1 memory is equal to the
maximum number of page migrations; we set the total number of migrations as 100 pages. For example,
if there are two providers and one consumer, each provider gives 50 pages of M1 memory to the
consumer, and the consumer receives 100 pages of M1 memory from the two providers.

4. Evaluation

4.1. Simulation Environment

To evaluate the proposed memory management techniques for polymorphic memory,
we developed a simulator based on Pin [39], which is well-known tool for the dynamic instrumentation
of applications. The Pintool can used for profiling and performance evaluation for architecture-specific
details, so it is suitable for testing the dynamic cache and memory system with 3D stacked DRAM.
Pin is publicly available for Linux platforms. To evaluate the performance of our management schemes,
we first define the architecture with Pintool, in which we assume that a processor has four cores with
L1 and L2 caches, M1 on-chip memory, and memory controllers for M1 and M2, as shown in Figure 8.
The M2 memory is an on-board DRAM memory similar to DDR3. Each core has its private 32 KB
L1 cache and 512 KB L2 cache. We assume that the L2 cache is private to evaluate the performance
using only memory management. M1 has a size of 128 MB, and we assume that M2 has an infinite size.
The detailed experimental configurations are listed in Table 1.
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Figure 8. The architecture of a simulator for polymorphic memory that uses Pin.

Table 1. Evaluation system architecture and configuration.

Microprocessor Cache

# of cores 4 L1 Cache
32 KB, 64b line, 2-way
5 cycles, private

Freq. 4 GHz L2 Cache
512 KB, 64b line, 8-way
18 bybles, private

M1 (on-chip memory) M2 (off-chip memory)

LLC
128 MB, 128b line, 16-way
hit: 220 cycles, miss: 110 cycles Infinite size, 400 cycles

BW: 12.8 GB/s
Memory

128 MB, 110 cycles
BW:64GB/s

We used the SPEC CPU2006 benchmark [40] for the evaluation workloads. All the benchmarks
were compiled with gcc 4.4.5. All the simulations were run with real data sets. With the SPEC CPU2006
benchmark, we used Pin to create a simulator and to extract all memory traces when running the SPEC
CPU2006 workloads. Pin is organized with two routines, namely an instrumentation routine and an
analysis routine, as shown in Figure 8. When running an application, Pin extracts all instructions and
transfers all load instructions to the analysis routine. We performed the analysis routine by adding our
memory architecture including the designed cache systems. The designed page access monitor and
memory allocator for migration are added to this architecture.

Before performing the evaluation, we tried to classify the benchmark programs into several
groups. To this end, we extracted both counts of memory requests and how many pages were used
during 5 billion cycles, and we examined the access frequency, which was calculated as the average of
access counts, and the page coverage, which is the number of pages used. Table 2 summarizes the
results. We classified workloads into three categories based on the access frequency and page coverage.
First, we divided the workloads by access frequency; then, we divided the workloads that showed
high frequency into two groups by page coverage. These two groups are group 1, which shows high
frequency and large coverage, and group 2, which shows high frequency and small coverage. Finally,
group 3 includes workloads with low frequency.
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Table 2. Benchmark classification

Class Benchmark
Epoch Average

Frequency Coverage

Group 1

mcf 58,142.79 2346.21

milc 19,081.75 1288.17

soplex 31,918.00 1846.54

omnetpp 36,843.53 8234.16

astar 22,989.37 6838.60

Group 2

bzip2 14,720.05 494.11

gcc 34,717.65 1042.55

libquantum 54,957.87 860.21

lbm 25,512.36 414.60

Group 3

namd 1536.91 34.82

gobmk 3863.09 532.39

povray 11.58 3.18

hmmer 7050.03 158.56

sjeng 4306.39 1050.87

h264ref 4403.83 245.32

4.2. Evaluation of Memory Management with M1 as Part of Memory

In this section, we present the performance results of our techniques for the main memory.
As workloads for evaluation, we selected the SPEC CPU2006 benchmark [40].

4.2.1. Analysis of Migration Overhead

First, we analyzed the migration overhead of our memory management scheme. In every period,
migration is operated by swapping pages between M1 memory and M2 memory. Migration includes
many memory accesses to change the page tables and TLB updates; hence, it increases the total
operation time. To analyze the overhead of a page migration, we first checked how many memory
accesses are needed to find the page table entry by the OS. According to [37], RMAP does not provide
a direct method of linking the physical page and the page table entry but requires many memory
accesses. A page descriptor corresponding to the physical page points to the anon_vma data structure,
which is the starting point of the RMAP. Further, anon_vma points to a memory region descriptor,
i.e., the vm_area_struct data structure, and the field vm_mm in vm_area_struct points to another memory
region descriptor, i.e., the mm_struct data structure. The mm_struct data structure includes a field pgd
that contains the address of the Page Global Directory. To find the address of the Page Global Directory,
four memory accesses are needed. For 64-bit architectures, four levels of paging are used in Linux.
Therefore, four memory accesses are additionally needed to find the page table entry. Finally, the OS
should perform eight memory accesses for the first step.

During the second procedure, data copy overhead will occur. The data copy overhead can be
calculated using the memory access time and time to transfer data. Because M2 memory has a large
latency and low bandwidth, the data copy overhead is bounded to the M2 access latency and data
transfer time. With a 4 GHz CPU and 12.8 GB/s of bandwidth of M2 memory (see Table 1), it takes
1280 cycles to transfer one page and its access latency is 400 cycles. Finally, replacing the corresponding
page table entry with a new physical page address and updating the TLB entry are the remaining
tasks. Replacing the value of the page table entry requires one memory operation, and the overhead of
updating TLB is approximately 127 cycles [21,41].
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Figure 9 shows the total overhead of one-page migration. We assumed that a frequently accessed
page in M2 memory is first moved into an empty slot in M1 memory and that a rarely accessed
page in M1 memory is then moved into the place at which the frequently accessed page was located.
This means that we should calculate twice the time needed to transfer data and the memory access
times of M1 memory and M2 memory. In addition, we should calculate twice the overheads for steps 1,
3, and 4, as shown in Figure 9. We assumed that all the memories for storing pages are in M1 memory;
hence, the overhead of memory access was calculated as 110 cycles. The total overhead per page in a
cycle can be calculated by

CTotal = CFind ∗ 2 + CUpdate ∗ 2 + (400 + 1280) + (110 + 1280) (1)

where CFind = 110 ∗ 8 and CUpdate = 110 + 127. Finally, we calculate the migration overhead for
one-page migration as 5304 cycles. At the end of every period, the total number of pages that should be
moved by the OS is determined by the number of pages of M2 memory in the first table. The migration
overhead is calculated by multiplying CTotal by the total number of moved pages.

M1

Empty

Find
Update

: Find the page table entry. (step 1)
: Update PTE and TLB entries. (step 3 and 4)

M2

1

2

Migration of two pages

M1

M2
Find

Write
110

1280
Update

Read

Read

Write
1280

110
Access

Access
400

Update
Find

Migration overhead per one page

Figure 9. Migration overhead per page.

According to these analyses, we measured the migration overhead as a percentage of the total
operation time, and the results are summarized in Table 3. In the table, except for the milc and
lbm benchmark workloads, most of the workloads have a small migration overhead that accounts
for less than 1% of the operation time. Milc and lbm show dynamically changed access patterns;
hence, misprediction occurs repeatedly. As a result, the OS moves many pages at the end of the
period, and this increases the migration overhead. Thus, in summary, from the experimental results,
we determined that the total migration overhead accounts for less than 1% of the operation cycles of
most of the workloads.

Table 3. Migration overhead as a percentage of total operation time

Workload % Workload % Workload %

bzip2 0.16 sjeng 0.47 milc 3.19

gcc 0.20 omnetpp 0.01 lbm 4.33

mcf 0.61 astar 0.04

4.2.2. Performance with a Single Workload

For the memory management of M1 as a part of the memory, we first show the performance
with a single workload. We compared the Instructions Per Cycle (IPC) when using all of M1 as a
part of the memory with the IPC when using all of M1 as a DRAM cache with LH-Cache and Alloy
Cache. For these experiments, we conducted a full simulation with our simulator. Figure 10 shows
the results of hit ratios on M1 and performance. In this evaluation, M1 memory means that all of
M1 is used as the main memory and is managed by our migration policy. We measured the cache
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hit ratio and IPC of each benchmark running for the three M1 configurations, and the results are
plotted in Figure 10. Figure 10a shows the hit ratio of three configurations, namely LD-Cache, Alloy
Cache, and M1 as a part of the memory. As shown in the figure, LH-Cache has the highest cache hit
ratio. In the case of LH-Cache, the requested data will be immediately loaded into the cache when the
memory request is missed. As a result, it can quickly react to dynamically changing memory access
patterns. By contrast, in the case of M1 as a part of the memory, the most frequently accessed pages
are predicted by monitoring page access patterns during a period, and we then migrate those pages.
In the next period, the page access patterns can be changed so that the M1 hit ratio can be reduced,
i.e., it is lower than that of LH-Cache. Alloy Cache shows a low hit ratio compared to LH-Cache and
M1 memory because it uses the direct-mapped cache.

Figure 10b shows the normalized IPC of each benchmark, which also gives the error range of
each experimental result. As shown in the figure, our M1 management scheme shows the highest
IPC among the three configurations for most of the benchmarks. Although LH-Cache can reduce
access latency by making a row buffer hit and, with MissMap, it still needs two accesses on M1,
however, M1 memory guarantees direct access to data because the memory data can be read by the
memory address. Therefore, M1 memory needs fewer cycles than LH-Cache when accessing data
on M1, resulting in better performance. Our policy can improve the performance by an average of
13.7% with 0.8 standard deviation for the normalized IPC value. The reason for the large standard
deviation is due to the large difference in performance improvement for each benchmark. For instance,
the performance improvement of libquantum is 54.2% compared to that of LH-Cache, while namd has
little improvement.

Among the workloads shown in Figure 10, gobmk, hmmer, sjeng, h264ref, namd, and povray are
classified as group 3. These workloads show small improvements in performance. If we use 128 MB of
M1 memory, most workloads of group 3 show nearly 100% hit ratios on M1 memory because they have
a small memory footprint. In addition, they show low frequency during a period. If we compare the
performance improvement with the results of group 2, we can see that the performance is significantly
affected by frequency. Except for the case of Alloy Cache, Bzip2, gcc, and libquantum also show nearly
100% hit ratios. However, these performances are improved significantly. In the case of Alloy Cache,
the hit ratio is reduced because the high frequency causes large misses. With the same hit ratios on
LH-Cache and M1 memory, a higher frequency implies larger hit counts on M1. The overhead when
a memory request is a hit on LH-Cache is larger than that when a memory request is a hit on M1
memory. Therefore, the accumulated overhead of LH-Cache becomes much larger than that of M1
memory as the number of hit counts on M1 increases. Consequently, the performance of M1 memory
will be better than that of LH-Cache and Alloy Cache.

Workloads in group 1, such as mcf, omnetpp, astar, milc, and soplex, can also improve the
performance. However, the improvements for workloads in group 1 were lower than those for
the workloads in group 2. Because of the large coverage, the workloads in group 1 show lower M1 hit
ratios than the others. In addition, the hit ratios on LH-Cache are larger than those on M1 memory,
as shown in Figure 10a. Although the overhead of hits on LH-Cache is larger than that of accessing
M1 memory directly, it is smaller than the overhead of accessing M2 memory. For the workloads of
group 1, the improvement in the performance of M1 memory is reduced because the hit ratios on
M1 memory are much lower than those on LH-Cache. Milc shows the largest difference between hit
ratios on M2 cache and M1 memory. As a result, the performance improvement is the least among the
workloads of group 1. Further, lbm, which is in group 2, shows the largest difference through all the
workloads, and the performance of M1 memory is lower than that of DRAM caches such as LH-Cache
and Alloy Cache.
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Figure 10. Hit ratio on M1 memory and IPC performance.

4.2.3. Performance with Multiple Workloads

To evaluate the performance of memory management in a multi-process environment, we used
many sets with multi-programmed workloads. Table 4 summarizes 31 sets of workloads. To make
various sets of multi-programmed workloads, we combined workloads from all the groups. Sets 1,
2, and 3 mix the workloads from group 1, and sets 4, 5, and 6 mix the workloads from group 2.
Sets 10 to 13 were selected from both group 1 and group 2. In this manner, we created 31 sets of
multi-programmed workloads with various combinations.

We measured the performance of the management policy of M1 memory using the weighted
speedup [42] equation, as follows.

WeightedSpeedup = ∑
i

IPCshared,i

IPCalone,i
. (2)

All the experiments were conducted for 5 billion cycles, including 1 billion cycles for warming up.
Figure 11 shows the normalized weighted speedup for all the workloads from sets 1 to 31, and the
overall average speedup is plotted at the right end of the figure. We normalized the performance results
by the results of the case with no M1 memory. The x-axis represents the number of sets, including
the average values, and the y-axis represents the normalized weighted speedup. In this evaluation,
M1 memory means that only M1 memory management is applied which only has monitoring and
migrating pages between M1 and M2, while M1 memory with partitioning represents the results of
memory management that has M1 partitioning and the dynamic allocation algorithm.
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Table 4. Workload set for multiple workloads evaluation

Workload 4 Processes Workload 4 Processes

1 mcf, omnetpp, astar, soplex 17 mcf, sjeng, milc, name

2 mcf, omnetpp, milc, soplex 18 sjeng, libquantum, namd, lbm

3 omnetpp, astar, milc, soplex 19 bzip2, sjeng, libquantum, namd

4 bzip2, gcc, libquantum, lbm 20 libquantum, h264ref, namd, lbm

5 gcc, hmmer, libquantum, lbm 21 bzip2, gcc, hmmer, lbm

6 bzip2, hmmer, libquantum, lbm 22 mcf, h264ref, omnetpp, lbm

7 gobmk, sjeng, h264ref, namd 23 bzip2, sjeng, omnetpp, soplex

8 Gabor, h264ref, namd, povray 24 bzip2, gobmk, omnetpp, lbm

9 sjeng, h264ref, namd, povray 25 gobmk, h264ref, omnetpp, lbm

10 bzip2, mcf, omnetpp, lbm 26 h264ref, omnetpp, namd, povray

11 mcf, libquantum, milc, lbm 27 bzip2, sjeng, h264ref, povray

12 bzip2, libquantum, omnetpp, milc 28 gcc, mcf, hmmer, lbm

13 libquantum, omnetpp, milc, lbm 29 mcf, omnetpp, milc, lbm

14 mcf, sjeng, h264ref, omnetpp 30 omnetpp, astar, milc, namd

15 mcf, sjeng, omnetpp, namd 31 bzip2, gcc, namd, lbm

16 sjeng, omnetpp, milc, namd

Figure 11. Weighted speedup with multi-programs, normalized by the case without M1.

The results show that the performance of M1 memory is better than that of DRAM cache, including
LH-Cache and Alloy Cache for most of the workload sets. However, some workload sets, such as
3, 30, and 31, show lower performance than that of LH-Cache. Workloads that have a relatively low
frequency among the four workloads will lose M1 memory by contention. In workload sets 3, 30,
and 31, milc and lbm are workloads with relatively low frequencies. In addition, they show dynamically
changed access patterns. Therefore, with small M1 memory and dynamically changed access patterns,
the M1 hit ratio and performance are degraded. From the results, we conclude that the proposed
partitioning and dynamic allocation algorithm can guarantee that a proper amount of M1 memory is
allocated to each workload. Compared to LH-Cache, the performance of M1 memory with partitioning
can be increased by 35.1% at most. On average, the performance improvement was 17.6% with 0.3
standard deviation for the normalized data. Even if the workloads have low frequency, they can
obtain some M1 memory to store their hot pages. As a result, workload sets 3, 30, and 31 can improve
their performance with a partitioning algorithm. However, this can limit workloads that show high
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frequency to take M1 memory from workloads with low frequency. Therefore, the total performance
may be degraded, as in the case of sets 13 and 14. However, most of the workload sets show better
performance with the partitioning algorithm.

4.3. Evaluation for Polymorphic Memory System

4.3.1. Performance with a Single Workload

Next, we evaluated the results of the polymorphic memory system, in which M1 is used both as
M2 cache and a part of the memory region. First, we evaluated the improvement of the polymorphic
memory with a single workload with the variation of M2 cache size from 4 MB to 32 MB. Figure 12
shows the performance results with a single workload. The results are normalized by the case with M1
memory and compared with various M2 cache sizes. We sorted the workloads on the x-axis according
to their groups.

The last three workloads, sjeng, hmmer, and h264ref, are in group 3, in which access frequency is
low. As shown in Table 2, the performance is degraded when the polymorphic memory is employed.
First, hmmer and h264ref have a small memory footprint; hence, they show nearly 100% of the hit
ratio on M1, as shown in Figure 10a. However, the small memory footprint is not the main cause of
performance degradation when using the polymorphic memory. The M2 cache reduces the amount of
M1 memory in the polymorphic memory because the total size of M1 is 128 MB. Some accessed pages
that were located in M1 memory when all of M1 is used as the main memory will be located in the M2
cache in the polymorphic memory, and they produce a larger overhead at every hit compared to the
hit latency on M1 memory. In the case of sjeng, its memory footprint is larger than the memory size
of M1. At low frequencies, the performance gain when using an additional portion of the M2 cache
cannot be higher than the overhead of the two accesses. Therefore, we cannot achieve performance
improvement by using the polymorphic memory through the workloads in group 3.

Meanwhile, the workloads in groups 1 and 2 show performance improvements when using the
polymorphic memory, as shown in Figure 12. These workloads have a high frequency of memory
accesses; hence, the polymorphic memory is useful in improving performance. If we compare the
results of omnetpp and gcc, omnetpp achieves a higher performance gain than gcc. Although the two
workloads show similar frequencies, omnetpp shows a larger coverage than gcc, meaning that the
number of misses on M1 memory of omnetpp can be larger than that of gcc. These missed accesses are
absorbed into the M2 cache. Therefore, omnetpp can achieve a larger performance improvement by the
existing M2 cache than gcc. We achieved a higher performance improvement with the workloads in
group 1 than in group 2.

Figure 12. Results of polymorphic memory with a single program, normalized by the case with M1.
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Finally, mcf and lbm also show high performance improvements with the polymorphic memory.
The two workloads show a very dynamically changed access pattern, causing misprediction. However,
by using the polymorphic memory, we can improve the performance significantly. Among the
workloads in group 1, mcf shows greater improvement because it will cause much larger misses on M1
memory than others. For the same reason, lbm can also achieve a large performance gain when using
the polymorphic memory. As shown in Figure 12, lbm shows the best performance improvement when
using the polymorphic memory.

4.3.2. Performance with Multiple Workloads

Next, we evaluated the results of the polymorphic memory system with multiple workloads.
Figure 13 shows the performance results in the case of multiple workloads. We normalized the
performance results by the results of M1 memory with partitioning and compared the results of
the polymorphic memory with various cache sizes. On average, the performance curve becomes
concave as the size of the M2 cache increases. When the size of the M2 cache is 16 MB, the average
performance is the best and the performance improvement is 3.35% compared to that of M1 memory
with partitioning. In addition, compared to M1 memory with partitioning, the performance of the
polymorphic memory can be improved by 10.6% at most. On average, the performance improvement
is 3.35% when we use a 16 MB M2 cache. Compared to LH-Cache, the maximum improvement of the
polymorphic memory is 41% and the average improvement is 21.7% with 0.026 standard deviation for
the normalized results.

Figure 13. Results of polymorphic memory with multi-programs, normalized by the case with M1
memory partitioning.

Workload sets 7, 8, and 9 consist of only workloads in group 3; hence, they have low frequency.
Similar to the results of a single case, the results of multiple workloads also show that the polymorphic
memory cannot improve performance. Workload sets 26 and 27 include three workloads in group 3
among the four workloads, and their performance barely improved. However, most workload sets
show a performance improvement.

While a single workload in group 1 can achieve a large performance improvement using the
polymorphic memory, multiple workloads that consist of only workloads in group 1 cannot achieve a
large performance improvement, as shown in Figure 13. By contrast, the workload sets with groups 1
and 3 or with groups 2 and 3, such as sets 13, 21, 22, and 31, show a large performance improvement.
However, workload sets 4, 5, and 6 show good performance improvement, and these sets were mixed
with workloads in group 2. Sets 1, 3, and 30 show that the performance improves as the M2 cache size
increases. This is because the M2 cache with a small size causes cache thrashing. Workload sets 1, 3,
and 30 have very high frequency and large coverage. Therefore, a small cache will cause large misses
and the performance will be degraded.
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4.4. Summary and Dicussion

This section summarizes and discusses the experimental results and performance improvements
for the proposed schemes applied in the experiments. Table 5 summarizes the results of experiments
on workload sets for various schemes designed in this paper on the usage of M1 memory. First,
the experimental results for the case where M1 is used as only part of memory are summarized as
follows. When M1 is used as a part of memory, a dynamic migration method between M1 and M2 can
be applied for a single workload, and in this case, performance is improved by 13.7% compared to
the existing cache only scheme. For multiple workload sets, performance is improved up to 17.6% by
applying M1 partitioning and dynamic page allocation between processes.

Table 5. Summary of the experimental results.

Evaluation for M1
vs. M1 Used as M2 Cache Workload Set Applied Schemes Avg.

Improve

Standard
Deviation

(Normalized)

M1
as Part of Memory only

Single Workload Dynamic Migration 13.7% 0.8

Multiple Workload Sets
Dynamic Migration and
M1 Partitioning 17.6% 0.3

M1
as polymorphic Memory

(Cache and Part of Memory)

Single Workload
Dynamic Migration and
Cache 15.7% 0.09

Multiple Workloads Sets
Dynamic Migration and
Cache and
M1 Partitioning

21.7% 0.026

Next, the experimental results for the case of using M1 as a polymorphic memory that is a mixture
of M2 cache and part of memory are summarized as follows. When M1 is used as a polymorphic
memory which uses a portion of M1 as cache and a portion of M1 as part of memory, the hybrid
approach results in an average performance improvement of 15.7% over the previous caching-only
scheme for the single workload set. Moreover, in the case of multiple workload sets, applying M1
partition and dynamic allocation between multiple processes in addition to the hybrid approach results
in an average improvement of 21.7% in performance. In summary, for a multi-core memory contention
system in which multiple-processes are operated competitively, 3D-stacked DRAM can be used as
a polymorphic memory with a hybrid of cache and part of memory, and dynamic M1 partitioning
between processes, which improves overall system performance.

5. Conclusions

Recently, manycore computing systems are widely applied to running data-intensive applications.
The key challenge for these computing systems is how to utilize large amounts of memory with
high bandwidth because most applications require large amounts of main memory. In these systems,
3D stacked on-chip DRAM is increasingly used to overcome the data processing performance between
the processor and memory. Many existing studies have been applied to 3D stacked DRAM, being used
as a cache of general memory or as a NUMA architecture along with general memory. However,
not many existing studies have used the on-chip DRAM as a hybrid memory with a cache and flat
address region, furthermore, little studies have investigated dynamic memory allocation of stacked
DRAM for manycore systems.

In this paper, we proposed a polymorphic memory system of 3D stacked DRAM which employ
dynamic memory allocation of 3D stacked DRAM in both as cache and the flat address region. To deal
with a main memory consisting of M1 memory and M2 memory, we added a page access monitoring
module to the memory controller. At the end of every period, the OS obtains the information of page
access patterns from the monitoring module, partitions the M1 memory for each process according to
the change in the hit ratio, and then migrates the most frequently accessed pages of each process into M1
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memory. We applied the design of an M2 cache and determined its appropriate size in the polymorphic
memory system. In addition, to solve the contention problem between processes in multi-process
system, the states of the process are categorized and the M1 memory is dynamically allocated according
to the state of each process. The management scheme can improve the performance by an average of
17.6% over LH-Cache. In addition, our experimental results showed that the polymorphic memory
can improve the performance by an average of 21.7%.

The proposed system shows the efficiency of dynamic allocation and hybrid use 3D stacked
DRAM in a multi-process system. However, the cache replacement method and the cache mapping
scheme applied in this system could be limited by tag size, and it could have limitations in lazy
adaptation of data migration by OS for each period. In the future, we plan to conduct additional
research to address those limitations.
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Abbreviations

The following abbreviations are used in this manuscript:

ITRS International Technology Roadmap for Semiconductors
CHOP Caching HOt Pages
TAD Tag and Data
PAM Parallel Access Model
RMAP reverse mapping
LLC Last-Level Cache
IPC instruction per cycle
TLB Translation Lookaside Buffer
DRAM Dynamic Random Access Memory
SRAM Static Random Access Memory
DDR Double Data Rate
OS Operating System
LRU Least Recently Used
LFU Least Frequently Used
MRU Most Recently Used
IPC Instructions Per Cycle
GB Giga Byte
SEPC Standard Performance Evaluation Corporation
CPU Central Processing Unit
bzip Basic Leucine Zipper
gcc GNU Compiler Collection, C Language optimizing compiler
mcf Combinatorial optimization/Single-depot vehicle scheduling
sjeng sjeng chess programming
omnetpp Discrete Event Simulation
astar path-finding algorithms program
milc MIMD Lattice Computation (MILC) collaboration
lbm Lattice Boltzmann Method to simulate incompressible fluids in 3D
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soplex a linear program using the Simplex algorithm
hmmer statistical models of multiple sequence alignments
h264ref a reference implementation of H.264/AVC (Advanced Video Coding)
libquantum a library for the simulation of a quantum computer
NUMA NNon-Uniform Memory Access
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