
electronics

Article

Grid Voltage Estimation Based on Integral Resonant
Current Controller for LCL-Filtered Grid-Connected
Inverter without AC Voltage Sensors

Thuy Vi Tran and Kyeong-Hwa Kim *

Department of Electrical and Information Engineering, Research Center for Electrical and
Information Technology, Seoul National University of Science and Technology, 232 Gongneung-ro,
Nowon-gu, Seoul 01811, Korea; tranvithuy@gmail.com
* Correspondence: k2h1@seoultech.ac.kr; Tel.: +82-2-970-6406; Fax: +82-2-978-2754

Received: 13 November 2020; Accepted: 1 December 2020; Published: 2 December 2020
����������
�������

Abstract: A high reliability of a grid-connected inverter (GCI) system at reasonable cost is a critical
requirement for maximizing renewable energy potential in the electrical energy market. Several grid
voltage sensorless control approaches have been investigated not only to eliminate the vulnerability
of faulty sensors but also to further reduce the GCI commercial price. In this paper, a frequency
adaptive integral-resonant full-state feedback current control scheme with the facilitation of a
full-state observer is adopted for a grid-connected inductive–capacitive–inductive (LCL) filtered
inverter without sensing the grid voltages. The proposed scheme actively damps the filter resonance
and ensures the robustness of the inverter system against unexpected severe grid conditions with
low cost and simplified hardware construction. The synchronization of the inverter with the main
grid is accomplished by the proposed current controller-based grid voltage estimator, in which the
grid frequency and phase angle can be detected effectively. In addition, the actual grid voltages are
precisely regenerated to ensure the stable performance of the full-state observer. A safe start-up
procedure is also presented for the grid voltage sensorless control of the LCL-filtered inverter to avoid
a critical overcurrent and long settling time during the start-up instant, offering a stable and reliable
inverter system operation with low computational burden. The effectiveness and feasibility of the
proposed voltage sensorless current control scheme are validated by the simulation and experimental
results under non-ideal grid conditions such as the harmonic distortion, grid frequency variation,
and sudden grid phase angle jump.

Keywords: distorted grid; frequency adaptation; grid-connected inverter; LCL filter; phase angle jump;
voltage sensorless control

1. Introduction

Voltage source inverters (VSIs) are typically used as an interface between the main grid and
renewable distributed generation (DG) sources. By regulating the injected grid currents using a proper
current control strategy, the maximized active power extracted from the DG can be delivered to the grid.
Because the pulse width modulation (PWM) technique with a high switching frequency is commonly
adopted for the inverter topologies, inductive (L) or inductive–capacitive–inductive (LCL) filters are
a mandatory part in inverter structures to eliminate the switching harmonics injected into the grid.
Among them, the LCL filter configuration is preferred because of its superiority of high switching
frequency attenuation with a small and compact size in comparison with the L filter giving a similar
performance. However, the undamped resonance nature of the LCL filter requires a robust control
algorithm to the stabilize system. The damping issue in the LCL-filtered inverter can be solved simply
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by a passive solution using additional resistors in LCL circuits at the expense of higher power loss [1].
On the other hand, active damping methods based on the modified control algorithm or additional
LCL filter state feedback are preferable [2–5]. In particular, the research works in [2,3] install additional
sensors for the capacitor currents or voltages to accomplish the virtual-resistor-based active damping
solution. Alternatively, the full-state feedback control method is studied for an LCL-filtered inverter
system in detail in [4,5] to actively damp the resonance peak. To save the cost of sensing devices for all
system states, a full-state observer to estimate the system state variables is used in those works.

Controlling an LCL-filtered inverter while reducing the total cost and hardware complexity
has gained considerable research attention recently. Further elimination of the sensor is feasible if
the software-based methods in sensorless control approach can replace the measurement signals by
the sensor without harming the system’s reliable operation. In the grid-connected inverter (GCI),
the direct current (DC)-link voltage and grid-side current sensors should be installed for the purpose
of protection and output regulation, while the grid voltage sensors ensure an accurate synchronization
between the inverter and grid to maximize the injected active power. However, if the grid voltage
information is effectively extracted by alternative methods, the grid voltage sensors can be safely
removed in the inverter system. Generally, there are several approaches to estimate the grid voltages,
such as the direct calculation from the system model [6], virtual-flux-based grid voltage estimation [7,8],
power model-based grid voltage estimation [9], observer-based grid voltage estimation [2,5,10,11],
and grid voltage estimation from control-structure dependent methods [12–18]. All these methods
have both advantages and disadvantages.

In particular, the study in [6] applies a simple approach to obtain the grid voltages directly
from the mathematical relation between the inverter voltages, sensed currents, and filter parameters.
However, the calculation of the voltage drop across the inductors requires the differentiation of the
currents, which amplifies the measurement noise. Since using a pure integrator in the virtual-flux-based
method still exposes a problem of DC drift, the studies in [7,8] implement a low pass filter to reduce
the unexpected DC drift with a cost of slow dynamic response. Other studies construct disturbance
estimators in parallel with the current controllers to estimate the grid voltage information [2,5,10,11].
In [2], even though the grid voltage sensors are successfully removed in the LCL-filtered inverter,
this scheme requires the direct measurements of both the inverter-side and grid-side currents to
realize the capacitor currents. The research in [5,10] proposes a comprehensive voltage sensorless
solution for the LCL-and L-filtered inverter based on an adaptive neural network, respectively.
However, the implementation of [10] requires information of the actual grid frequency, whereas the
performance of the scheme in [5] is still dependent on the slow dynamic of a phase-locked loop used
to estimate the grid phase angle. Another approach to obtain the grid voltage information by the
model-based observer is presented in [11] at the expense of high computational burden.

As an alternative to building a separate estimator for the grid voltages, several control schemes
develop the grid voltage estimation based on the current controller to further reduce the computational
burden. The studies in [15,16] extract the grid voltage information by implementing an additional
proportional-integral (PI) or resonant controller with the current error as the control input in the
synchronous reference frame (SRF) or stationary frame, respectively. Rather than utilizing the current
controller, in [17], the grid frequency and phase angle in a three phase PWM converter are obtained by
the output of the PI controller for the DC-link voltage control loop.

All the above schemes in [15–17] are devised for the L-filter inverter. The research work
in [18] directly feeds the inverter voltage to the phase-locked loop to extract the phase angle for the
synchronization purpose of an LCL-filtered inverter. Even though the scheme is simple, the phase
shift between the inverter voltage and the actual grid voltage is unavoidable. To solve this problem,
the research in [12] utilizes the output of the resonant current controller to first estimate the frequency
and phase angle of the inverter voltage, which are added with a compensator factor to obtain the grid
phase angle. The studies in [13,14] present a novel algorithm to extract the grid voltage information
by modifying the PI or proportional-resonant (PR) current regulator in the SRF or stationary frame,
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respectively. To obtain the high precision of estimated phase angle and frequency, the angle error
which is obtained from the output of the current controller is used to drive a grid voltage observer.
However, since those schemes are applied to an L-filtered inverter only, further development should
be conducted to apply them to an LCL-filtered inverter.

The grid voltage sensorless control scheme commonly raises major concerns for the user about the
operation reliability, especially during the start-up instant. However, only a few start-up methods are
mentioned in the existing voltage sensorless solutions [7,10,11,13–15,18]. In this regard, the accurate
information of actual grid phase angle and grid voltage magnitude are essential to ensure a smooth
start-up with low overshoot of injected currents as well as short settling time of the control scheme.
In [13,15,18], to estimate the grid phase angle, a zero-state vector is applied to the inverter, and then,
the grid angle is derived from the measured currents. However, this technique causes a severe
overcurrent in the system. Other methods in [7,10] utilize the rectifier operation mode to extract the
grid information before starting the controller in the L-filtered inverter. In the case of an LCL-filtered
inverter, the start-up procedure presented in [11] exploits small currents flowing through the capacitor
branches to effectively estimate the actual grid phase angle.

In this paper, a grid voltage sensorless current control scheme with a frequency adaptation
capability is presented for a grid-connected LCL-filtered inverter. For the purpose of stabilizing the
LCL-filtered inverter system under adverse grid conditions and grid disturbance, a full-state feedback
regulator augmented with multiple control terms in [4,5] is employed. The requirement of reducing the
system cost and hardware complexity is further taken into consideration in the design process. For this
purpose, the proposed controller utilizes only the grid-side currents and DC-link voltage sensors to
control the inverter system. By means of a discrete current-type observer, the system state variables are
estimated precisely to accomplish the full-state feedback current controller. The proposed grid voltage
estimator based on the integral-resonant current control successfully reconstructs the grid voltages and
provides accurate estimates of the grid phase angle and frequency even under severe grid conditions
such as the harmonic distortion, grid frequency variation, and sudden phase jump. To guarantee a
highly reliable inverter operation of the proposed grid voltage sensorless control scheme, the start-up
process presented in [11] is also adopted to avoid the overcurrent problem. The main contributions of
this paper are summarized as follows:

(1) A current control scheme with a frequency adaptation capability is designed for a grid-connected
LCL-filtered inverter without using the grid voltage sensing devices.

(2) The proposed grid voltage estimator reconstructs the distorted grid voltages with high accuracy
to ensure the stability of the current-type full-state observer and provide the precise estimates of
the grid information, which ensures a stable synchronization process.

(3) The start-up process is deployed to guarantee a safe start-up of the grid voltage
sensorless controller.

(4) A disturbance rejection performance and system stability are theoretically analyzed based on the
frequency response and pole-zero map approaches.

In order to validate the effectiveness and the feasibility of the proposed control scheme,
PSIM software-based simulations have been carried out comprehensively under adverse grid conditions
including: distorted grid voltages, grid frequency variation, and grid phase angle jump. For practical
evidence, the experiments have been also conducted with the same grid conditions by using a
three-phase 2 kVA prototype grid-connected inverter system. A fair comparison with the conventional
methods is presented to highlight the performance of the proposed control scheme.

2. System Description

Figure 1 represents the circuit topology of a GCI with LCL filter where R1, L1, R2, and L2 denote
the resistances and inductances of the filter in the inverter-side and the grid-side, respectively, and Cf
denotes the filter capacitance. This figure also shows the structure of the proposed control algorithm
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which comprises a current controller to drive the inverter via the space vector PWM technique,
a current-type full-state observer to provide the information on all the system state variables, and a
grid voltage estimator to reconstruct the actual grid voltages. Since a grid voltage estimator extracts
the grid line voltages without the voltage measurement, it realizes the sensorless control scheme of the
inverter. Obviously, the proposed control scheme requires only three sensing devices to operate the
inverter system, which are one DC-link voltage sensor and two grid current sensors. It is worth noting
that the superscript in each variable denotes the reference frame. In this paper, the superscripts ‘a’, ‘b’,
‘c’ denote the variables in the natural reference frame, ‘α’, ‘β’ denote those in the stationary frame, and
‘d’, ‘q’ denote those in the SRF. Moreover, the variables with hat ‘ˆ’ denote the estimated quantities
provided from the respective observers.
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A mathematical model of the three-phase LCL-filtered inverter system in the natural reference
frame is found in [4,5], in which the LCL-filtered VSI model is expressed for phase-a as:

d
dt

ia1(t) = −
R1

L1
ia1(t) +

1
L1

va
i (t) −

1
L1

va
c(t) (1)

d
dt

ia2(t) = −
R2

L2
ia2(t) +

1
L2

va
c(t) −

1
L2

va
d(t) (2)

d
dt

va
c(t) =

1
C f

ia1(t) −
1

C f
ia2(t) (3)

where i1, i2, and vc denote the inverter-side current, the grid-side current, and the capacitor voltage,
respectively, vi is the inverter voltage, and vd denotes the grid voltage. Similar equations are applied
for phases −b and −c.

3. Proposed Grid Voltage Sensorless Frequency Adaptive Current Control

In this section, the proposed frequency adaptive sensorless current control scheme is described,
in which the current control algorithm and the current-type full-state observer for estimating the system
state variables are briefly presented owing to the detailed development in the previous works [4,5].
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Alternatively, the discussion is focused on a disturbance rejection performance and stability analysis
of the deployed current controller. For the purpose of realizing the grid voltage sensorless control
scheme, the current control-based grid voltage estimator developed for the LCL-filtered inverter is
discussed. The start-up procedure is also presented to ensure the reliability of the proposed sensorless
control scheme.

3.1. Frequency Adaptive Current Controller and Discrete-Time Current-Type Full-State Observer

The current controller is depicted in Figure 2, which solves the inherent resonance phenomenon of
the LCL-filtered inverter by a full-state feedback regulator in the SRF. For full-state feedback, the system

state variables constitute the system state vector as x = [iq2 id2 iq1 id1 vq
c vq

c ]
T

. Since the additional
sensing devices except for the grid-side currents and DC-link voltage sensors are not used in the
proposed system, the current-type full-state observer is adopted to provide precisely the information
on the remaining state variables as the inverter-side currents and capacitor voltages.

Figure 2. Block diagram of the proposed current controller.

To achieve other essential control objectives such as the asymptotical reference tracking of the
grid-injected currents with the immunity to the negative effects from the distorted grid environment,
the error between the reference and measured grid-side currents are fed to other control terms such as the
integral and resonant terms tuned at interested harmonics, respectively. The frequency information in
the resonant terms is updated with online by the estimated grid frequency to maintain the performance
of the current controller under grid frequency variation as shown in Figure 2. The control block
diagram shows that the control terms are presented in the state-space form and then combined with
the full-state feedback regulator. Proper feedback gain sets of Kx, KPz, K6z, and K12z are chosen
systematically by the linear quadratic regulator (LQR) approach. Except for the fact that the grid
voltage estimations are used instead of direct measurements, the design process for gain selections of
the current controller and the full-state observer are similar to the previous works.

It is worth noting that the grid voltage estimator has a direct influence on both the effectiveness
and performance of the grid-connected inverter operation. Firstly, the full-state observer needs the
same input quantities as the actual plant, which are the inverter and grid voltages, to maintain the
stability and high accuracy of the state estimations. Since the space vector modulation technique
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ensures a good match between the inverter voltages and outputs of the current controller, it is valid
to directly feed the current controller outputs to the observer. In the grid voltage sensorless control
approach, the measurement of the actual grid voltages for feeding back to the state observer is not
available. Thus, the estimated grid voltages by the proposed scheme should be quite closed with
the actual quantities. Secondly, the capability of resonant controllers to compensate the harmonic
distortion from the grid is easily degraded as the frequency in resonant controllers is mismatched with
that of the real grid. As a result, the estimated grid frequency should be highly accurate and track the
actual value fast even when there exists a frequency variation occurring in the main grid.

As shown in Figure 2, the estimated grid information including the grid voltages, grid phase
angle, and frequency is obtained from the proposed grid voltage estimator, which uses the current
controller output as the inputs. The detailed development on the proposed grid voltage estimator is
presented in the next section.

3.2. Grid Voltage Estimator Based on the Integral-Resonant Current Controller

In this section, a current controller-based grid voltage estimator is presented to effectively estimate
the information on three-phase grid voltages such as the grid voltage magnitude, phase angle,
and frequency. Inspired by the research work [13], the output of integral control term in the d-axis is
utilized to obtain the phase angle error signal. By means of the observer concept in modern control,
the phase angle error signal is used to drive an observer to estimate the phase angle and frequency of
the actual grid voltage.

The continuous-time representation of the LCL-filtered VSI expressed in the natural reference
frame in (1)–(3) can be transformed to the rotating estimation frame with the estimated grid phase

angle as
ˆ
θ, and be expressed in a state-space model as:

.
x(t) = Ax(t) + Bv(t) + Dvd(t) (4)

y(t) = Cx(t) (5)

where x = [iq2 id2 iq1 id1 vq
c vq

c ]
T

is the system state vector, v = [vq
i vd

i ]
T

is the system input vector,

vd =
[

VP cos(̃θ) VP sin(̃θ)
]T

is the grid voltage vector, θ̃ = θ −
ˆ
θ is the difference between the

actual grid voltage phase angle θ and the estimated one
ˆ
θ, and VP is the magnitude of the grid voltage.

The system matrices A, B, C, and D are presented as:

A =



−R2/L2 −ω 0 0 1/L2 0
ω −R2/L2 0 0 0 1/L2

0 0 −R1/L1 −ω −1/L1 0
0 0 ω −R1/L1 0 −1/L1

−1/C f 0 1/C f 0 0 −ω
0 −1/C f 0 1/C f ω 0


, B =



0 0
0 0

1/L1 0
0 1/L1

0 0
0 0


(6)

D =



−1/L2 0
0 −1/L2

0 0
0 0
0 0
0 0


, C =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
. (7)

It is obvious that, once the difference θ̃ reaches to zero, the representation of the LCL-filtered
inverter in the SRF is reduced to the model as presented in [4,5].
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By defining X ≡ VP sin(̃θ), the value
ˆ
X which is an estimate of X can be obtained via an integrator

action on the d-axis current error as follows:

d
dt

ˆ
X = η(id∗2 − id2) (8)

where η is the estimation gain. To estimate the grid voltage phase angle and frequency from (8),
an observer can be established based on the model as below:

d
dt
θ = ω (9)

d
dt
ω = 0. (10)

From (9) and (10), a full-state observer is constructed as:

d
dt


ˆ
θ
ˆ
ω

 =
[

0 1
0 0

]
ˆ
θ
ˆ
ω

+
[
α1

α2

]̃
θ (11)

where θ̃ ≈ sin(̃θ) =
ˆ
X

VP
.

Instead of using a similar concept which employs the q-axis voltage to estimate the grid voltage
magnitude as presented in [13], the grid voltage magnitude is replaced by the q-axis capacitor voltage
estimated from the current-type full-state observer in this study with the assumption that the voltage
drop across a small size grid-side inductor is negligible. As a result, the grid phase error is obtained as:

θ̃ ≈ sin(̃θ) =

ˆ
X

VP
=

ˆ
X
ˆ
v

q

c

. (12)

For a digital implementation, the observer in (11) is discretized by a simple forward Euler method
with the sampling time Ts. The observer gains α1 and α2 in (11) are chosen in order that the observer
poles are located inside the unit circle. In this study, the gains are selected as α1 = 0.952 and α2 = 9.51.

As the grid phase angle and frequency well converge to the actual quantities, the fundamental
grid voltages in the stationary frame are obtained from the estimated quantities to feed them into the
current-type full-state observer as follows:

ˆ
v
α

d1 =
ˆ
v

q

c cos(
ˆ
θ) (13)

ˆ
v
β

d1 =
ˆ
v

q

c sin(
ˆ
θ). (14)

Generally, the main grid is often contaminated with distorted harmonics although the harmonic
magnitudes are significantly smaller than the fundamental component. In the current-type full-state
observer designed in [4], the actual grid voltages are required to be fed into the observer structure for
ensuring a good performance of the state estimation. To successfully eliminate the grid voltage sensor
while still maintaining the stability of the state observer, the estimation for the distorted harmonics in
the main grid is further investigated.

It is recognized that in the steady-state condition, the current controller has the main role to diminish
the error between the reference and grid-side current. Hence, the output signals of current controller
must contain the same harmonic components as distorted grid voltages. Furthermore, because it is
valid to assume that the LCL filter impedances generate a trivial voltage drop and phase shift between
inverter and grid voltages, it is reasonable to combine the outputs of the resonant control terms into the
estimated fundamental grid component in (13) and (14) to fully reconstruct the estimated grid voltages.
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In summary, the detailed block diagram of the proposed grid voltage estimator is represented
in Figure 3, in which the outputs of the resonant control terms are transformed from the SRF to the
stationary frame and added to the fundamental components to form the estimated grid voltages.

Figure 3. Block diagram of the proposed estimator for the grid voltage, phase angle, and frequency.

3.3. Disturbance Rejection Performance and Stability Analysis

In this subsection, the capabilities of the current controller to track the reference and to reject
the disturbances from a distorted grid environment are assessed by the Bode plot of the closed-loop
transfer function which relates the output grid current iq2 to its reference iq∗2 , and the transfer function
from the disturbance dq to the system output iq2. These two transfer functions are expressed as follows:

TFcl(z) =
iq2(z)

iq∗2 (z)
(15)

TFdy(z) =
iq2(z)

vq
d(z)

. (16)

In addition, the eigenvalue plot of the closed-loop system is also presented to verify the stability
of the control scheme.

The transfer functions TFcl(z) and TFdy(z) are derived from the entire system model which is
obtained by augmenting the integral and resonant control terms into the system model, as follows:

xe(k + 1) = Aexe(k) + Beu(k) + Devd(k) + Brer(k) (17)

y(k) = Cexe(k) (18)

u(k) = −Kxe(k) (19)

where
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where Im×p and 0m×p denote the identity and zero matrices with appropriate dimension. The detailed
development is presented in the previous works [4,5]. As a result, the closed-loop transfer function of
the entire system in (17)–(19) is deduced as:

TFcl(z) =
iq2(z)

iq∗2 (z)
= Ce(zI−Ae)

−1Bre (20)

TFyd(z) =
iq2(z)

vq
d(z)

= Ce(zI−Ae)
−1De. (21)

The Bode diagram of the closed-loop transfer function TFcl(z) is represented in Figure 4a. Obviously,
the distorted harmonics at 360 Hz and 720 Hz corresponding to 6th and 12th orders, respectively,
are well compensated with significantly low gains, whereas the controller maintains a good reference
tracking performance at the fundamental frequency with the unity gain magnitude. The Bode diagram
of the transfer function TFyd(z) is shown in Figure 4b to verify the disturbance rejection performance
of the inverter system. From the frequency response analysis of the system which is subject to a
disturbance from the main grid, the greatly reduced magnitudes at the harmonic frequencies in the
Bode plot represent an improvement in the grid harmonic rejection capability. Hence, introducing
specified resonant control terms into the current controller considerably improves the grid-injected
currents while still maintaining the reference tracking objective. The analysis results by the frequency
responses validate the performance of the presented current controller well.

Figure 4. Frequency responses of the closed-loop transfer functions. (a) TFcl(z); (b) TFyd(z).

To investigate the system stability further, the eigenvalue plot of the current controller is presented
for a different grid frequency in Figure 5. By means of the LQR approach to select the optimal feedback
gain set in a systematical way and the frequency adaptability, the closed-loop poles are maintained in
the stable region even when the grid frequency varies in a wide range from 50 Hz to 60 Hz.
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Figure 5. Eigenvalue map of the integral-resonant current controller for different grid frequency.

3.4. Start-Up Procedure

Since the information of the grid voltages is not obtained from the sensing devices in the proposed
sensorless control scheme, a start-up procedure should be applied to ensure a rapid synchronization
and system stabilization during the start-up period. To avoid the severe overshoot currents and slow
convergence of the proposed grid voltage estimator, the actual grid phase angle should be known
before the start of the control algorithm. Therefore, the initial grid phase angle detection based on the
measured currents when disabling the inverter operation as proposed in [11] is employed in this study.

Assuming that the DC-link input capacitor is fully charged, no current flows back into the inverter
from the main grid. However, there are small currents going through the filter capacitor branches and
these currents can be detected by the grid-side current sensors. Since the phase angle of the detected
currents are different by 90◦ with respect to the grid voltages, these measured currents can be used
effectively to determine the initial grid phase angle. Other information of the grid frequency and grid
voltage magnitude are chosen by the best prior system knowledge. The first guess of the grid voltage
magnitude is also used to suppress the current overshoot by means of a grid-voltage feedforward
concept [19].

4. Simulation Results

To evaluate the performance of the proposed grid voltage sensorless current control scheme
presented in this paper, PSIM software-based simulations were carried out using the LCL-filtered GCI
as shown in Figure 1, with the system parameters listed in Table 1. It is also worth noting that the
actual grid voltages are measured by voltage sensors only for comparison purposes, without using in
the control algorithm.
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Table 1. System parameters of a grid-connected inverter.

Parameters Value Units

DC-link voltage 420 V
Resistance (load bank) 24 Ω

Filter resistance 0.5 Ω
Filter capacitor 4.5 µF

Inverter-side filter inductance 1.7 mH
Grid-side filter inductance 1.7 mH

Grid voltage (line-to line rms) 220 V
Grid frequency 50–60 Hz

Switching frequency/Sampling frequency 10 KHz

In order to simulate the worst operation condition happening in the main grid, the proposed
current control scheme is verified under distorted grid voltages containing the harmonic components in
the orders of 5th, 7th, 11th, and 13th with 5% magnitude of the fundamental grid voltage as represented
in Figure 6a. The fast Fourier transform (FFT) result of phase-a voltage is also shown in Figure 6b to
clearly visualize the magnitude of distorted harmonics, in which the total harmonic distortion (THD)
is 9.99%.

Figure 6. Distorted three-phase grid voltages. (a) Three-phase voltages; (b) fast Fourier transform
(FFT) result of phase-a voltage.

Figure 7 shows the simulation results of three-phase grid-side currents at steady-state under the
grid condition in Figure 7a. The current injected into the grid is 7 A. The simulation test clearly shows
high-quality grid-side currents even in the presence of a severely distorted grid condition with only the
THD value of 3.68%, which is compliant with limits specified by the grid interconnection regulation
IEEE Std. 1547 [20]. The magnitudes of harmonics are presented more evidently in the FFT result of
phase-a current as shown in Figure 7b, which illustrates that the current controller well rejects the
distorted harmonics from the grid to produce clean output currents.
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Figure 7. Simulation results for steady-state grid current responses under distorted grid voltage with
the proposed controller at 60 Hz. (a) Three-phase grid-side currents; (b) FFT result of phase-a current.

In the grid voltage sensorless current control scheme, the control performance such as current
overshoot and transient time should be validated because one of the most severe transient responses
occurs during the start-up instance. For this purpose, Figure 8a represents the grid current control
performance at start-up instance based on the start-up procedure in Section 3.4. As shown in this figure,
the current controller starts to control the injected currents at 0.15 s. With the prior information of the
actual grid phase angle obtained by the start-up algorithm, and the best guess of the grid frequency
and voltage magnitude, the sensorless control can be started smoothly with minimal current overshoot
and transient time. The current responses reach the steady state after about 2 grid voltage cycles.
Initial transient current overshoot is observed as 8 A. However, it is damped rapidly and it does not
trigger the system halt caused by the protection mechanism. To verify the dynamic performance of the
current controller, another transient test result is shown in Figure 8b under a step change in the q-axis
current reference from 4 A to 7 A at 0.25 s. It is obviously shown that the currents quickly track the
new reference value without overshoot, which validates the stable and desirable transient response of
the proposed control scheme.

Figure 8. Simulation results for transient grid current responses under distorted grid voltage with the
proposed controller at 60 Hz. (a) Start-up process at 0.15 s; (b) Three-phase grid-side currents under
step change in q-axis current reference at 0.25 s.
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Other transient response of the current controller is tested under the frequency of distorted grid
varying from 60 Hz to 50 Hz at 0.6 s as depicted in Figure 9a. Since a sudden change in the grid
frequency causes the mismatch between the estimated and actual frequency of the grid, the injected
phase currents encounter a transient period lasting 38 ms before reaching the steady state at 50 Hz as
illustrated in Figure 9b. Figure 9c shows more visibly the estimating performance of the grid frequency
by the proposed voltage sensorless scheme in comparing with the actual one f*, and the output of
a moving average filter-based phase locked-loop (MAF-PLL) with the measured grid voltages [21].
Even under abrupt grid frequency variation of f*, the proposed grid voltage estimator provides a
smoother and faster estimated frequency than the MAF-PLL method. Finally, the synchronization
behavior of the proposed grid voltage estimation under such an operation condition is validated in
view of the estimated grid phase angle. The estimated phase angle is compared to the output of a
MAF-PLL in Figure 9d. As expected, the estimated quantity is aligned well with the output of the
MAF-PLL and keeps a stable synchronization of the inverter with the main grid even without using
the direct grid voltage sensing devices.

Figure 9. Simulation results of the proposed scheme under grid frequency variation from 60 Hz to 50 Hz
at 0.6 s. (a) Three-phase grid voltages; (b) three-phase grid-side currents; (c) estimated frequency by

the proposed scheme
ˆ
f , the extracted frequency by the moving average filter-based phase locked-loop

(MAF-PLL) with measured grid voltages fMAF_PLL, and the actual frequency f*; (d) estimated phase

angle by the proposed scheme
ˆ
θ and the extracted phase angle from the MAF-PLL with measured grid

voltages θMAF_PLL.
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In literature, only a few control schemes are tested under the abrupt phase angle jump which
commonly happens during grid line fault events [5,11]. In particular, the controller in [11] using
a model-based grid voltage estimator is validated with a phase jump of −60◦. The transient time
presented in this study is short and satisfactory; however, this paper does not consider the distorted
grid harmonics together with the phase jump condition. Another study in [5] represents an adaptive
neural network-based grid voltage estimator. Since the phase angle in this paper is still dependent on
the performance of the conventional PLL, the transient time lasts 40 ms for the estimated frequency
and phase currents reaching steady state.

In this paper, a similar grid condition with a phase angle jump by −30◦ is considered as a test
condition. At the same time, the grid frequency is changed from 60 Hz to 50 Hz at 0.6 s as presented in
Figure 10a. The distortion level in the grid is maintained as the previous tests. Obviously, even with
the sensor-based control scheme, the grid phase current response shows a serious transient time and
the steady-state will be reached only after the grid phase angle and frequency converge with the actual
quantities. The transient time mostly depends on the dynamic of the synchronization technique if the
current controller ensures a sufficiently fast response. Figure 10b shows the transient performance of
the proposed scheme, in which the grid-side phase currents have very short transient time of only
20 ms, and the overshoot current is damped fast. Clearly, the fast response of the current controller is
facilitated by the high accuracy of the estimated grid frequency and phase angle as demonstrated in
Figure 10c,d, respectively. In spite of using the direct grid voltage measurements, the detected grid
frequency from the MAF-PLL shows larger overshoot and longer settling time as plotted in Figure 10c,
which highlights a superior response of the grid voltage estimator.

To further verify the robustness of the proposed current controller against system parametric
uncertainties, more simulations are conducted with the uncertainties of the filter capacitors and the
weak grid condition.

Figure 11 represents the grid current responses under distorted grid and uncertainty in system
parameters. In particular, the filter capacitance value increases to 5.5 µF in Figure 11a and decreases to
3.3 µF in Figure 11b. Moreover, to consider the parasitic resistance of the filter capacitor caused by the
aging effect of the filter capacitors, the resistances R3 of 2 Ω are added to filter capacitors in series in
these simulations. As expected, since the proposed current controller designed by the LQR concept
has the robustness under system parameter uncertainties, even in these conditions, the three-phase
grid currents are still maintained with good performance of the THD at 3.35% and 3.28%, respectively.

Figure 10. Cont.
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Figure 10. Simulation results of the proposed scheme under grid frequency variation from 60 Hz to
50 Hz and phase jump −30◦ at 0.6 s. (a) Three-phase grid voltages; (b) three-phase grid-side currents;
(c) comparison of the grid frequency between the proposed scheme and the MAF-PLL method; (d)
comparison of the grid phase angle between the proposed scheme and the MAF-PLL method.
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Figure 11. Simulation results for steady-state grid current responses under distorted grid voltage with
filter capacitor uncertainties. (a) Cf = 5.5 µF and R3 = 2 Ω; (b) Cf = 3.5 µF and R3 = 2 Ω.

The next test is carried out to consider the weak grid condition, in which additional inductors Lg

of 3 mH are connected in series with the grid-side filter inductor L2. Figure 12 represents the responses
of the proposed grid voltage sensorless control scheme. Obviously, the grid-connected inverter still
operates stably with a high quality of injected currents as shown in Figure 12a, and accurate estimated
grid voltages as shown in Figure 12b. This simulation demonstrates well the robustness of the proposed
current controller under weak grid condition even when there are no grid voltage sensors installed in
the system.
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Figure 12. Simulation results for steady-state grid current responses under distorted weak grid voltage
with grid inductor Lg of 3 mH. (a) Three-phase grid-side currents; (b) measured and estimated grid
voltages in the stationary reference frame.

In summary, the presented simulation results prove the capability of the proposed voltage
sensorless current controller to produce high-quality grid-injected currents and a reliable operation
under a non-ideal grid environment with the advantage of a lower sensor cost and hardware complexity.

5. Experimental Results

In this section, the feasibility of the proposed grid voltage sensorless control scheme is validated
by a lab-based hardware prototype constructing for a three-phase 2 kVA LCL-filtered GCI with the
system parameters listed in Table 1. The hardware system configuration and the experimental setup are
depicted in Figures 13 and 14, respectively. The overall system was built by a three-phase LCL-filtered
inverter controlled by digital signal processor (DSP) TMS320F28335 [22], a magnetic contactor for
grid-connecting operation, an alternating current (AC) power source (PACIFIC 320-ASX) to emulate
three-phase grid voltages, and sensors to measure the currents and voltages. Similar to the simulation
setup, the grid voltage sensors were included in the system for comparison purpose only.

Figure 13. Hardware system configuration.
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Figure 14. Photograph of experimental setup.

Figure 15a shows distorted grid voltages generated by the AC power source which contain the
same distorted harmonic levels as the simulation in Figure 6a. The FFT result of phase-a grid voltage
clearly presents the fundamental and distorted harmonic grid components in Figure 15b.

Figure 15. Three-phase distorted grid voltages used for experiments. (a) Three-phase grid voltages;
(b) FFT result of phase-a voltage.

The experimental results of three-phase grid-side currents at steady-state are shown in Figure 16a
together with the measured phase-a grid voltage. The considerably sinusoidal waveforms of output
currents confirm the effectiveness of the current controller to maintain a good current quality even
under the several negative effects from the main grid. Furthermore, phase-a current is well aligned
with the measured phase-a grid voltage, which ensures maximizing the active power injecting to
the grid. The FFT result in Figure 16b further shows negligible components of harmonic distortion
in phase-a injected current. To illustrate the performance of the proposed grid voltage estimator,
Figure 16c represents the estimated grid voltages together with the measured one in the stationary
frame. A good match between the estimated and measured waveforms experimentally confirms the
stability of the proposed grid voltage estimator.
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Figure 16. Experimental results for the proposed scheme at steady-state. (a) Three-phase grid currents
and measured phase-a voltage; (b) FFT result of phase-a current; (c) measured and estimated stationary
grid voltages.

The transient responses of the proposed control scheme are validated by experiments. Figure 17
shows the transient current response of the proposed scheme under the step change in q-axis current
reference from 2 A to 4 A, in which the grid-side currents instantly track the new reference without
noticeable overshoot. The dynamic performance of the proposed current control shows a good
agreement in both the simulation in Figure 8b and the experimental result in Figure 17.

Figure 17. Experimental result for the proposed control scheme under step change in q-axis current
reference from 2 A to 4 A: three-phase grid-side current responses.

Another test is conducted to verify the start-up procedure of the sensorless control scheme
experimentally. As shown in Figure 18a, the sensorless algorithm is successfully started and the
grid phase currents reach steady state rapidly within 30 ms. Similar to the start-up response in the
simulation result in Figure 8a, the current overshoot is damped fast and the settling time is short.
The estimated grid voltages are represented in Figure 18b with the measured quantities in the stationary
frame. It is shown clearly that the estimated values track the measured ones well from the initial time.
This demonstrates the effectiveness of the start-up process to provide the correct information of the
grid phase angle as well as the fast dynamic characteristics of the grid voltage estimator.
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Figure 18. Experimental results for the proposed grid voltage sensorless scheme at start-up instant. (a)
Three-phase currents; (b) measured and estimated stationary grid voltages.

The next transient test is conducted with the condition of the grid frequency variation. Figure 19a
shows the distorted grid voltages having the frequency jump from 60 Hz to 50 Hz. When the grid
frequency is instantly varied, the grid currents are contaminated by the harmonic distortion during
around 2 grid cycles before reaching steady-state at the new grid frequency as shown in Figure 19b.
The estimated grid frequency is also presented in this figure to clearly explain that the mistuned
frequency in the resonant term of the current controller is responsible for the current harmonic distortion.
However, as soon as the estimated grid frequency tracks the actual value well, the grid currents are
recovered to sinusoidal waveforms. To validate the accuracy of the estimated grid frequency, Figure 19c
shows the experimental test result when the actual frequency varies in a small range of 1 Hz. Even for
such a small variation, the grid frequency can be detected well with a reasonable fluctuation of only
around 0.3 Hz as clearly shown in Figure 19c, restoring the grid currents to being quite sinusoidal.
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Figure 19. Experimental results for three-phase grid currents under frequency variations with the
proposed scheme. (a) Three-phase grid voltages with frequency variation from 60 Hz to 50 Hz;
(b) three-phase grid currents and estimated grid frequency under grid frequency variation from 60 Hz
to 50 Hz; (c) three-phase grid currents and estimated grid frequency under grid frequency variation
from 60 Hz to 59 Hz.

As the final experimental test, the performance of the grid voltage sensorless current controller
is validated under both the grid frequency variation and abrupt phase jump condition as shown in
Figure 20a, which is exactly the same as the simulation environment in Figure 10a. Remarkably, the grid
phase currents and estimated grid frequency reach steady state after only 10 ms in Figure 20b. The grid
frequency obtained from the MAF-PLL with the measured grid voltages is also plotted in this figure for
the performance comparison. Larger overshoot and longer settling time in the frequency detection by
the MAF-PLL may cause a severely degraded transient current response, making it more probable the
protection mechanism will be triggered. On the other hand, the proposed current controller effectively
handles the grid phase jump condition with fast transient and reduced current overshoot.

Figure 20. Experimental results of the proposed scheme under grid frequency variation from 60 Hz
to 50 Hz and phase jump of −30◦. (a) Three-phase grid voltages; (b) stationary grid-side currents,
and comparative result of the grid frequency estimations between the proposed control scheme and the
MAF-PLL method.
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6. Conclusions

In this study, a frequency adaptive current controller for a GCI with an LCL filter has been
presented without requiring grid voltage sensing devices. The proposed grid voltage sensorless control
scheme is achieved by employing a frequency adaptive integral-resonant current controller and a
current control-based grid voltage observer. Although the entire control algorithm is implemented
with only the measurements from the grid-side currents and DC-link voltage, the current controller
and grid voltage estimator guarantee to maximize the injected active power with high-quality currents
into the main grid, which is strictly compliant with the grid interconnection regulations even under
several unfavorable grid conditions. The stability and robustness of the current controller has been
further investigated by means of the frequency response analysis and eigenvalue plot. To ensure a
reliable inverter operation from the beginning, the start-up procedure is also incorporated in this study
for a smooth start-up with short settling time. In order to verify the feasibility and effectiveness of the
proposed sensorless control scheme, comprehensive simulations and hardware-based experimental
tests have been conducted under adverse distorted grid conditions with frequency and phase angle
variations. The results obtained confirm a stable and reliable operation of the proposed control method
as well as its robustness against the negative effects from the grid even without the grid voltage sensors.
A fair comparison to the conventional methods is also presented. It is clearly demonstrated from the
comparison results that the grid voltage observer shows a superior performance in terms of very fast
and accurate estimation of the grid voltage quantities, grid phase angle, and frequency.
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