electronics @\py

Article
Approximate LSTM Computing for Energy-Efficient
Speech Recognition

Junseo Jo 107, Jaeha Kung 2(” and Youngjoo Lee *

1 Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH),

Pohang 37673, Korea; joejs@postech.ac.kr

Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Sceince and
Technology (DGIST), Daegu 42988, Korea; jhkung@dgist.ac.kr

Correspondence: youngjoo.lee@postech.ac.kr

check for
Received: 30 October 2020; Accepted: 18 November 2020; Published: 25 November 2020 updates

Abstract: This paper presents an approximate computing method of long short-term memory (LSTM)
operations for energy-efficient end-to-end speech recognition. We newly introduce the concept of similarity
score, which can measure how much the inputs of two adjacent LSTM cells are similar to each other.
Then, we disable the highly-similar LSTM operations and directly transfer the prior results for reducing
the computational costs of speech recognition. The pseudo-LSTM operation is additionally defined for
providing the approximate computation with reduced processing resolution, which can further relax the
processing overheads without degrading the accuracy. In order to verify the proposed idea, in addition,
we design an approximate LSTM accelerator in 65 nm CMOS process. The proposed accelerator newly
utilizes a number of approximate processing elements (PEs) to support the proposed skipped-LSTM and
pseudo-LSTM operations without degrading the energy efficiency. Moreover, sparsity-aware scheduling is
introduced by introducing the small-sized on-chip SRAM buffer. As a result, the proposed work provides
an energy-efficient but still accurate speech recognition system, which consumes 2.19 times less energy
than the baseline architecture.

Keywords: approximate computing; LSTM architecture; speech recognition; VLSI design

1. Introduction

In the last few years, speech recognition using deep neural networks (DNNs) has become an important
challenge in the internet-of-things (IoT) communities as well as the artificial intelligence (Al) industries [1].
In general, to handle sequential data such as voice signals, it is well known that the recurrent neural network
(RNN) is suitable to improve the recognition accuracy by activating the prior histories during the inference
processing [2]. In order to achieve the attractive algorithm-level performance that can be even applied to
the commercialized products; however, the contemporary RNN-based algorithm normally necessitates a
huge amount of computing resources [3]. For example, the recent long short-term memory (LSTM) model
utilizes additional gate operations to provide state-of-the-art end-to-end speech recognition; however, it
significantly increased the memory overheads storing the excessive number of trained parameters [4].
Considering the amount of accessing energy for external DRAMs [5], therefore, the modern DNN-based
speech recognition solutions are mainly available at the server-scale or cloud-level computing platforms.
Targeting the on-device speech recognition, on the other hand, it is impractical to directly apply the recent
LSTM architectures at the resource-limited IoT or mobile platforms.

Several studies have presented optimization techniques for reducing energy consumption of neural
network processing [6,7]. For example, the work from [8] provides the energy-accuracy trade-off by utilizing

Electronics 2020, 9, 2004; doi:10.3390/ electronics9122004 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-5953-9666
https://orcid.org/0000-0001-6151-8602
https://orcid.org/0000-0002-2467-8276
http://dx.doi.org/10.3390/electronics9122004
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/12/2004?type=check_update&version=2

Electronics 2020, 9, 2004 20f 13

the control gate, which is suitable for handling the image classification problem. The pruning-based approach
can reduce the number of multiply-accumulate (MAC) operations as well as the number of memory
accesses by eliminating less important parameters [9]. Considering the continuous speech signal, the
conventional LSTM-based network is modified in [10] by adding more gate networks that determine the
activation of state updates. As the computing steps in LSTM operations can be expressed as matrix-to-matrix
multiplications, the approximate computing from the singular-value decomposition (SVD) is applied to relax
the computational complexity without degrading the algorithm-level accuracy [11]. It is also possible to
further reduce the computing costs of each RNN/LSTM cell by adopting the concept of delta-network, which
adjusts the level of approximate parts by changing the sparsity level dynamically [12]. More aggressive
method adopting binary neural network (BNN) can be applied to minimize the energy consumption of DNN
processing [13]. However, it is generally reported that such a BNN-based method severely degrades the
recognition performance; even its flexible hardware can be easily implemented by utilizing the latch-based
scratch-pad memories (SCMs). In this work, the proposed work reduces computational complexity through
an approximate computing approach that focuses on complicated networks utilizing multiple bits to represent
weight values, which normally provide more accurate accuracy than BNN models.

In addition to the previous works, there are still potential rooms to enhance the energy-efficiency
of DNN-based speech recognition if we carefully tack account of the properties of input speech signals.
Compared to the practical time interval to construct each input state of LSTM (or RNN) structure, more
precisely, the input states from the speech data change quite slowly compared with other types of inputs [12].
Therefore, it is reasonable to assume that the adjacent input states tend to be highly similar to each other.
Starting from our prior work in [14], this paper presents an energy-efficient LSTM accelerator design that
performs the approximate LSTM operations based on the similarity-based cell activation. As described
in [14], we first introduce the similarity score measuring how two adjacent LSTM inputs are similar to each
other. The skipping method is then applied by limiting the number of consecutive disabled cells, remarkably
reducing the number of activated cells during the end-to-end speech recognition with acceptable accuracy.
The computational cost is further relaxed by adopting the pseudo-skipping approach, which is basically the
variation of delta-LSTM processing in [12].

In the proposed accelerator, we first realize the efficient controller architecture to support the
on-demand calculation of the similarity score. The processing elements (PEs) are then carefully designed
to support two types of MAC operations dynamically, i.e., the normal full-precision MAC computations
and the approximate MAC processing with the reduced precision. The new data scheduling technique
is proposed to allow the small-sized SRAM bulffer by latching only the survived parameters to handle
the sparse matrix-to-matrix multiplications. As a result, the prototype LSTM accelerator in 65nm CMOS
technology supports the low-power on-device speech recognition by achieving the energy-efficiency of
211 GOPS/W, which is only 49% of the required energy at the baseline implementation.

The rest of this paper is organized as follows. Section 2 describes the background knowledge of the
end-to-end speech recognition using the DeepSpeech Network [15], which is the baseline model of this
work. Section 3 describes the algorithm-level innovations of the proposed method, including skipping and
approximate cell operations. The proposed accelerator architecture is then detailed with the hardware-level
optimizations in Section 4. Simulation and implementation results are shown and compared to the prior
works in Section 5, and the concluding remarks are finally made in Section 6.

2. Background

2.1. DNN-Based End-to-End Speech Recognition

Figure 1 depicts how the DNN-based end-to-end speech recognition handles the input speech signal
and generates the final recognition results. Note that the input speech signal in the time domain is divided

Electronics 2020, 9, 2004 30f 13

into equal-length windows, i.e., each window contains the same number of speech samples. Then, we
capture the essential features of the input window, which is normally based on the frequency-domain
analysis [16]. The captured features are issued at the DNN-based recognition system, resulting in a character
with the most probability for each window input. As we perform the window-level DNN processing, as
illustrated in Figure 1, the dedicated decoder should be added at the end of the recognition system to
construct the final output sentence.

W s I E}@@@ hhecellclioo! hello!

Raw Audio |:> Windowing I:“> Featu.re >| Acoustic |::> Decoder |:|J> Qutput
Extraction Sentence

Model

Figure 1. Processing overview of end-to-end speech recognition.

In the baseline system used for this work, considering the contemporary speech processing works [17],
we adopt the time interval of 100 ms for making the input speech windows. After performing FFT
processing, numerous Mel-frequency cepstral coefficient (MFCC) values in the frequency domain are
used as features to be the input state of the LSTM-based network where the internal processing layers
will be described later. Similar to the other state-of-the-art solutions [18], the connectionist temporal
classification (CTC) step is finally applied for realizing the decoder architecture, removing the copies of
detected characters, as shown in Figure 1.

2.2. DeepSpeech Network and LSTM Operations

For the DNN-based recognition system, in this work, we adopt the recent DeepSpeech network
from [15] as a baseline network to develop our energy-efficient optimization schemes. Accepting the
input MFCC features, as illustrated in Figure 2, the DeepSpeech network utilizes several processing layers;
three fully-connected layers (FC1~FC3) for tailoring the input MFCC features, a bi-directional LSTM
layer over n feature sets, and two fully-connected layers (FC4~FC5) for making the reliability values of
29 character candidates. Here, n denotes the number of windows for the input speech data. Note that
the character candidates include 26 alphabets, an apostrophe symbol, a blank symbol, and a punctuation
mark. With the proper pre-/post-processing steps, including feature extractions and CTC operations,
as described in [14], the DeepSpeech network achieved an attractive word-error-rate (WER) of 9.33% when
it applied to recognize Librispeech dataset [19].

The LSTM cell operation in the DeepSpeech network is a key computation for providing such a high
recognition quality. More precisely, as described in Figure 3, each LSTM operation receives the current
input data, which is a d x 1 vector x;, and the hidden state and cell state of the previous LSTM unit,
which are two k x 1 vectors denoted as h;_; and ¢;_1, respectively. Note that the subscript ¢ here is the
index of the window sample, representing the timing stamp during the recognition process. The LSTM
cell then computes the output cell and hidden states, i.e., ¢; and h;. More precisely, three gate operations
called input, output, and forget gates, first generate internal vectors denoted as f;, i;, and oy, respectively,
which are formulated as follows.

fr = o(Wypxi + Wyrhy 1 +by) ey

it = c(Wyixt + Wyhy 1 +b;) ()
0 = O'(onxt + whohtfl + bo) (3)

Electronics 2020, 9, 2004 40f 13

= =
- Z= -
2] & N
5 =2 =
3 vV =y
£ :
—» © : = |-
5 2
; [
= E
= =) © 2 vy S) = I
= s b 3 — s — - S ~ 5
3 < = & < =} N . Qe
3 X x |2 =) x |o LA BN X |o » [2 w <
u—>5—>qﬁ—>gﬁ—>g¢°ﬁ—' — L | & e E M »
2 O e |2 S | S |x S |x Q| Kt =
c O < IS IS 3 = 2
= L — ~ = P n =
= O I8} 3] 5 Q 5
(1% g e - — 4 © = = ©
3 @,
= LK *05
L) § : 'r% I
2
p: A4 5
(22} ©
[D — & I R N
1
L {4 ©
Figure 2. DeepSpeech network architecture.
1 ~
he1 o 10 & he
’J;X% ’LX%’LXE ’_LX%
o [0 [@on (o]
b
Cr 0O {+] — Ct

Figure 3. LSTM cell architecture including three gate operations.

To reflect the contributions of input data and the hidden state, as shown above, we introduce two
types of weight matrices W, and W), at each gate operation. As elements in each matrix are trained
individually for the gate operations, it is required to keep a total of eight matrices for realizing the LSTM
cell. In addition, a vector b having the same size as the input data is used as bias values. As depicted
in Figure 3, note that non-linear operators like a sigmoid function and a hyperbolic tangent function are
applied at the end of gate operations. The final outputs of the LSTM cell are then calculated as follows,
where © stands for the element-wise product between two vectors.

¢=f0c¢ 1+t ® tanh(Wxgxt + Whghtfl + bg) 4)
h; = o; ® tanh(c¢;) &)

3. Similarity-Based LSTM Operation

Although the LSTM-based DeepSpeech network achieves an attractive accuracy, it requires a huge
amount of computing cost and network size, which is difficult to apply in resource-limited systems such
as mobile and IoT environments. After performing feature extraction, more specifically, the baseline
DeepSpeech network converts the input speech data into 7 series of features, each of which includes
494 MFCC elements. Compared to the five FC layers utilizing 22M MAC operations, as reported in [14],
the bi-directional LSTM structure actually dominates the overall computational costs by requiring more
than 100M MAC computations. In order to improve the efficiency of DNN-based speech recognition,
therefore, it is necessary to relax the computing overheads of LSTM processing.

Electronics 2020, 9, 2004 50f 13

3.1. Cell-Skipping Method Using Similarity Score

For the input voice signal, in general, the MFCC-based speech recognition manages the excessive
number of windows for taking account of various speakers having different speeds. Therefore, even
a single character input is divided into several windows having similar MFCC coefficients, generating
similar features handled by consecutive LSTM cells. As a result, in the baseline DeepSpeech system in
Figure 2, the output sequence at the FC5 layer contains several identical characters for a single input
character, and the final CTC step is inevitable to remove these redundant results. As described in our
conference paper [14], we newly propose the cell-level deactivation and approximation schemes for the
energy-efficient speech recognition by detecting these redundant positions at the run time, which is
conceptually illustrated in Figure 4a. At the time stamp of ¢, the LSTM cell compares the current input x;
with the prior one x;_ to obtain the similarity score S; before activating its gate operations. More precisely,
we can compute the similarity score at the t-th window sample as follows.

C(xt/2w — M(Xt) ® Xt—1 /Zw) — C(Xt)
C(xt)

For the input 1 x k vector, the function C(-) returns the number of nonzero elements, whereas the

St =

(6)

function M(-) generates a 1 x k masking vector at which its elements become one for the nonzero positions
and otherwise zero. In order to ignore the small variations in two adjacent inputs, we define the clipping
parameter w to adjust the meaningful ranges for computing the similarity score. As reported in [14], input
vectors with high similarity scores successfully correspond to the redundant time positions that generate
the characters to be deleted at the later CTC step.

The similarity-based cell skipping method is then simply introduced by setting the skipping threshold
of 6s. When the current S; is larger than the pre-defined threshold, then we simply copy the prior outputs
without activating the LSTM cell operations, as exemplified in Figure 4b, which can significantly save
the overall computational costs. As the consecutive skips may degrade the recognition accuracy severely,
as described in [14], it is possible to limit the number of serial skips properly, leading to the energy-efficient
and accurate LSTM processing scenario. In this work, to develop the cost-effective LSTM accelerator,
we allow only two consecutive skips of LSTM operations for highly-similar inputs, which can reduce
the overall complexity by 26.8% under the 1% accuracy drop compared to the baseline LSTM operations

activating all the cells [14].

Similarity Delta Similarity Delta Similarity
Check Gen Check Gen Check

Approximate mode

| Normal mode if S;< 6, | Skip mode if S;> 6, 1 if 6> S¢> 6,
—————— Cemmmmmem e e = D——-———L—'l-———-——--——-—1--| e S e
N 0 v (N
1 1 1 1
1] 1]
P i
1 1 1 1
o .
x] [x X E ! i '
he1— (o] [tanh] [O] : :
: : he
] 1
° ° 1 1
I.__| L__|
Cea O {+] c
t

Figure 4. Proposed LSTM cell processing for (a) normal mode, (b) skip mode, and (c) approximate mode.

Electronics 2020, 9, 2004 60f 13

3.2. Pseudo-Skipping Method for Approximate LSTM Operations

In order to further relax the computational costs in the algorithm level, we also present novel
approximate computing of LSTM cell when the LSTM inputs are relatively similar but not enough to
disable their cell operations. In this work, we define the additional threshold 6, to activate the approximate
computing rather than the original LSTM cell when 6, < S; < 60s. To realize the approximate LSTM
operations, more precisely, we adopt the concept of the delta-RNN scheme from [12], which calculates
the difference vector between two consecutive inputs followed by the clipping operation, increasing the
sparsity of matrix multiplications. As we only apply the delta computing for marginally-similar cases, it is
shown in [14] that the LSTM cells activating this pseudo-skipping mode avoid operations from the inputs
having large differences naturally. When the pseudo-skipping cases are detected, therefore, we can allow
more aggressive approximation on the LSTM operations by reducing the computing resolution compared
to the normal LSTM operations. In other words, as illustrated in Figure 4c, the time positions with large
input changes automatically activate the original LSTM cells with high-resolution MAC operators, and the
pseudo-skipping scenario is only used for handling the small number of changes between two inputs
by exploiting the reduced computing precision. Combined with the cell-skipping method described
in the prior subsection, the algorithm-level optimization can reduce the number of MAC operations of
DNN-based speech recognition by 49% when compared to the original DeepSpeech processing, relaxing the
computational complexity accordingly while maintaining the WER performance. To develop the hardware
accelerator, we reduce half of the original computing resolution for approximate LSTM operations, allowing
the high utilization of hardware resources.

4. Accelerator Design for Approximate LSTM Processing

Figure 5 shows the conceptual architecture of the proposed energy-efficient LSTM accelerator, including
an external memory interface for receiving input vectors and weight matrices, a similarity check module for
checking S; of incoming input vectors, non-linear operators for computing activation functions, an LSTM
engine including 32 parallel processing elements (PEs), and on-chip memories for storing input/output
feature maps. When a 4096-sized 16-bit quantized input vector is transferred from the external memory;, it
is first stored in on-chip SRAM buffers. In order to provide a sufficient bandwidth required by the LSTM
operations, the on-chip memory is configured by using eight 64-entry dual-port SRAM banks. Note that
total n vectors are serially accessed from the external memory and issued to the LSTM engine for handling
a sentence, which depends on the length of the recorded speech signal. To support the similarity-based
LSTM cell operations, it is required to keep the prior input vector for calculating the similarity score as well
as the sparse vector, as illustrated in Figure 4. The addresses of on-chip buffers are managed in a ping-pong
manner, efficiently supporting the proposed LSTM processing without consuming the additional energy
caused by vector movements.

The similarity check module then easily accesses two most recent vectors to compute S; and selects
the current processing mode among three candidates, i.e., the normal LSTM mode, the approximate
LSTM mode, and the skipping mode. Two thresholds 65 and 6, can be initialized at the run time based on
numerous simulations as described in [14]. The LSTM engine performs the dedicated operations according
to the selected processing mode. Note that the internal MAC processing arrays are totally disabled when
we observe the highly similar inputs satisfying S; > 6s; whereas the large amount changes of input vectors
(St < 6p) allow the fully-activated LSTM engine. As shown in Figure 5, the LSTM engine mainly consists
of 32 PEs, each of which includes a MAC operator. Hence, 32 MAC operations are processed in parallel
for activating the normal LSTM cell operations. The memory controller efficiently manages data flows
between the LSTM engine and numerous dual-port on-chip buffers, maintaining the hardware utilization
to be high enough.

Electronics 2020, 9, 2004 7 of 13

Processing
Similarity mode

check [~ 777 LSTM engine
|
=
1
1
> Delta gen [« -~
= i :
E On-chip :
2 L] srambufter [acres
S (Dual-ported) buffer
2 i}
Non-linear operator
| Sigmoid || Hyper tangent |
> | E-wise mul || E-wise add |

Figure 5. Proposed LSTM accelerator architecture.

For the case of approximate mode, i.e., 6, < S¢ < 65, the LSTM engine supports the approximate
operations with the reduced computing resolution. More specifically, the original MAC operations
performed at each PE are based on 16 x 16 multiplications, whereas the approximate mode requires 8 x 8
multiplications. In order not to degrade the energy efficiency, in this work, the MAC operator is designed
to support two multiplications in parallel when the approximate mode is selected.

Figure 6 is an overall structure of the LSTM engine of the proposed accelerator, which can support
various computing resolutions required at the proposed approximate LSTM computing method. As shown
in the figure, the proposed LSTM engine internally includes a total of 32 processing elements (PEs).
By utilizing dual-port on-chip memories, we can perform the read and write accesses simultaneously,
improving the energy efficiency of the overall LSTM accelerator by reducing the number of inactive PEs.
In fact, each processing element is nothing but a MAC operator, which flexibly supports two different
computing resolutions according to the LSTM processing mode delivered from the similarity check module.
By supporting the optimal computing precision depending on the current input vector, we can additionally

enhance energy efficiency.
Similarity Check

ST [N T e S g S |

‘ PE, [| PE; Fi| PE, }ﬂ ﬁ-i
53 T EEEE T e T S Processing
& | Dl i 1 IR T = PR ey
= : i | | = MUL | !Aprx MUL{L.|..mode
= | PE, ‘ PEs PE, PE, }ﬂ = "';‘U :
2 vi — | % r— |POy S !
o - o e
= g i
o N R ‘
Son 1 4 1 11 1| |§ PIE

el [ren} [} [ren]

T i i r— |DOs

Figure 6. Overall architecture of LSTM engine providing multiple operation modes.

Figure 7 details the internal architecture of each PE, where the connections of multiplication steps are
conditionally modified on demand. More precisely, a PE is first initialized by reading 16 bits from the on-chip
SRAM and divides the data into two W registers, each of which contains eight bits. When we perform the
normal LSTM cell mode, two W registers together denote a weight value, whereas the approximate mode
handles two 8-bit weight values separately. Whenever a PE receives the data input (DI) in order to perform
the normal LSTM cell operation, which is an element of the current input vector, note that we can turn
on two internal 8 x 8 multiplications followed by a summation unit to support a 16 x 16 multiplication.

Electronics 2020, 9, 2004 8 of 13

Otherwise, for the case of approximate LSTM mode, we disable the red-colored modules in Figure 7, and
then only the leftmost/rightmost 8 x 8 multipliers are involved in the cell operation, supporting two 8 x 8
multiplications used for the delta-based LSTM operation with reduced computing precision. Note that
the delta generator in Figure 5 stores the approximate input values into on-chip memories, reducing the
unnecessary memory accesses associated with the high-resolution values. As a result, the proposed LSTM
engine structure offers an attractive energy efficiency by eliminating all the operations for the skipped
LSTM cells and also by reducing the number of processing cycles for the approximate computing cases.

(On-chip MEM (Read))
Y16
l: 8 }’8

I 1] l

|DI[15:8]| lW[lS:S] | DI[7:0] l | W([7:0] l

Approximate
mode

[On-chip MEM (Write)]

Figure 7. Detailed PE architecture.

As we adopt the delta-based processing from [20] to develop the processing scenario of approximate
mode, some elements of input vector are changed to zero values before starting the LSTM cell operation,
increasing the sparsity of matrix-to-matrix multiplications for gate operations shown in (1)~(3). If we
directly use the same sequential memory accessing for pseudo-skipping LSTM operations as what we
apply to the normal mode, as illustrated in Figure 8, the increased sparsity results the additional redundant
on-chip memory accesses for taking meaningless weight parameters. To solve this problem, in this work, we
newly introduce a small-sized on-chip SRAM to keep the accessing sequence of W matrices. This address
buffer is initialized at the run time by marking the nonzero element positions whenever the delta generator
module in Figure 5 produces the survived input elements with reduced resolution. As we only apply the
delta processing for the partially similar inputs, the number of survived elements are naturally less than
that of the original delta-RNN processing [20], allowing to reduce the size of this additional SRAM. For the
prototype design, we only utilize the address buffer of 64 entries for the prototype design, minimizing the
additional hardware complexity. By accessing only meaningful columns of W, as a result, the proposed
accelerator maximizes the energy efficiency even for supporting the approximate LSTM operations.

After performing the MAC-oriented operations at the LSTM engine, the proposed accelerator enables
the non-linear operators such as sigmoid and hyperbolic tangent functions. We realize these non-linear
operators by adopting a number of look-up tables, which are basically obtained by piece-wise linear
approximations. It is also possible to re-utilize internal MAC operations at the LSTM engine for performing
five FC layers; the first three for the pre-processing and the rest two for the post-step as depicted in
Figure 2. As a result, the proposed accelerator design shown in Figure 5 successfully supports all the
processing sequences defined by the state-of-the-art DeepSpeech network while even allowing multiple
LSTM operating modes to save energy consumption by eliminating redundant processing parts as many
as possible.

Electronics 2020, 9, 2004 90f 13

Normal mode with Approximate mode with Approximate mode with the
sequential buffer access sequential buffer access proposed buffer access
x [TTTTTTT] ax [CJoTTTo[o[T] ax o T ofo!
X X X W X Axy x W : : X : : : Axy x W

11 11 1
Address : : : : :

W = W = MEM [W L 1 =
= 11 111
LB L

L]

I A I A A

Only access for
non-zero input elements

Redundant accessing

Figure 8. Sparsity-aware buffer accessing method for approximate LSTM processing.

5. Simulation and Implementation Results

5.1. Algorithm-Level Performance

In order to show the algorithm-level innovations from the proposed similarity-based LSTM operations,
we simulated various processing scenarios using the DeepSpeech network on the LibriSpeech dataset [14],
which are evaluated based on the tensorflow framework [21] to realize the original LSTM processing [15],
the delta-based computation [12], and the proposed multi-mode approach. To evaluate the computational
costs quantitatively, for each LSTM processing method, we measured the number of active MAC operations,
and the number of external memory accesses, which are known to be the two most energy-consuming
workload in LSTM operations [22]. For the cost-reduction techniques, we allowed a 1% accuracy drop
from the baseline WER.

Figure 9 illustrates the simulation results of different LSTM processing approaches, where the number
of MAC operations and the number of memory accesses are normalized to those of the baseline bi-directional
LSTM processing [15], which fully utilizes LSTM cells for achieving the most accurate WER result. When
compared to the baseline network, more precisely, we can save the number of external memory accesses and
the number of MAC operations by 55% and 49%, respectively. Note that our algorithm is also superior to the
prior delta-based LSTM processing, as depicted in Figure 9. Therefore, the proposed similarity-based LSTM
processing provides the most cost-efficient way to handle speech recognition by dynamically adjusting the
processing mode.

o 10 T T : T ': T : T J
5 | BASE [15] |
= : WER 9.3%
g o08f ! g
o 55% | ! by
o : Delta[12]
< sl : WER 10.3%
E :]
kS :
g ________________________ s
g O4r Proposed ! 49% 7]
2 WER 10.3% !
3 :
N 02F ! _
g | \
= i
Zo 0 N | N 1 " | N | "

0 02 0.4 06 0.8 1.0

Normalized number of memory accesses

Figure 9. Computing cost reduction by the proposed algorithm-level optimization.

Electronics 2020, 9, 2004 10 of 13

5.2. Prototype Implementation

To validate the proposed idea, we realized the prototype LSTM accelerator, whose internal architecture
is depicted in Figure 5. For hardware analysis, we perform the post-layout simulation of the prototype LSTM
accelerator, which is designed in a 65nm CMOS technology. For synthesizing the prototype, more precisely,
we adopted Synopsys Design Compiler [23], whereas the place and route steps were based on Synopsys
IC compiler [24]. Figure 10a depicts the layout result of the proposed approximate LSTM accelerator,
occupying 3.37 mm?, where the area breakdown is summarized in Table 1. From the post-layout simulation,
the prototype decoder can operate at the speed of 100 MHz, consuming only 33 mW by adopting the various
hardware-level optimization methods. Figure 10b shows how the proposed schemes gradually improve the
energy efficiency of the LSTM-based end-to-end speech recognition, where the energy efficiency is computed
by dividing the maximum throughput of the proposed LSTM processing scheme by the corresponding
power consumption, which is widely used to present the allowed number of operations for the given power
budget [25].

LCCCCCCCCT T T LR T T T T
250 -
3200um

1501 | =] 119% |

100 —+ original|

Energy efficiency (GOPS/W)

50 - -

Original LSTM Algorithm ~ Multi-mode Sparsity-aware
operation optimization PE design buffer control

T | (11 1115 (1[5 | 1EEE | [1111 B HEEEl

e [B | [1 B

Proposed schemes

(a) (b)

Figure 10. Implementation of the prototype LSTM accelerator. (a) Layout result, (b) Improvement of
energy efficiency).

Table 1. Area breakdown of the prototype LSTM accelerator

Total Area Similarity Check Delta Gen Non-Linear Operations LSTM Engine = SRAM Others
(1m) (1m) (1m) (nm) (nm) (1m) (1m)

3,367,650 13,830 37,703 522,732 140,629 2,639,526 13,230

For the same processing architecture, note that the original bi-directional LSTM processing provides
less than 100 GOPS/W. By introducing the algorithm-level innovations, combining the similarity-based cell
skipping and approximation, we can enhance the energy-efficiency up to 160 GOPS/W. As the approximate
LSTM operation reduces the required computing precision, as depicted in Figure 6, our accelerator
architecture presents the flexible MAC architecture supporting different resolutions, further improving
the energy-efficiency by 15.4% compared to the naive implementation of the proposed algorithm-level
optimization. Finally, the sparsity-aware memory accessing achieves the most energy-efficient processing by
eliminating the unnecessary on-chip buffer requests, increasing the energy-efficiency by 119% and 31% when
compared to the original LSTM operations and the naive version, respectively. As a result, the proposed
work provides the energy-efficient LSTM processing scenario by exploiting the co-optimization approaches
between the algorithm and hardware levels, leading to the on-device end-to-end speech recognition.

However, depending on the applications, there might be some limitations for directly applying
the proposed approximate LSTM computing, which is dedicated to reducing the computational cost
of bi-directional LSTM operations used for the recent DeepSpeech-based speech recognition systems.

Electronics 2020, 9, 2004 11 of 13

When we consider the streaming applications for the real-time system [26], for example, we have to exploit
a one-directional LSTM structure associated with the attention-based computations, and only a few LSTM
cells in the attention region are involved in identifying the output characters. In this case, the proposed
similarity-based LSTM cell approximation may severely degrade the recognition accuracy. Extending the
proposed approximate LSTM operation to the attention-based processing could be solved by introducing
more advanced similarity-checking criteria, which would be one of the future research directions for
further improving the energy efficiency of the state-of-the-art DNN-based speech recognition systems.

6. Conclusions

In this paper, we have presented an approximate computing method to reduce the processing cost for
LSTM operations used for the speech recognition systems. Based on our previous algorithm-level works,
the proposed method measures the importance of each LSTM cell at the run time and then deactivates the
redundant LSTM cells by the pre-defined similarity score. In addition, we newly define slightly-similar cells
to activate the pseudo-skip operations, which are delta-based approximate LSTM calculations with reduced
resolution. Therefore, we can reduce the energy consumption without compromising accuracy by mitigating
the computational complexity only for less important cells. The dedicated hardware architecture to support
the proposed algorithm-level innovations is carefully designed to further minimize the processing costs by
newly introducing the multi-mode MAC operators as well as the sparsity-aware buffer control scheme. As a
result, the prototype design in 65 nm CMOS technology presents a significant reduction in terms of processing
complexity, improving the energy-efficiency by more than two times than the baseline architecture.

Author Contributions:].J. and Y.L. worked together during the whole editorial process of the manuscript. J.J., J.K.
and Y.L. reviewed, edited and finalized the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the Grand
Information Technology Research Center support program (IITP-2020-2020-0-01612) supervised by the IITP (Institute
for Information & Communications Technology Planning & Evaluation), was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No.2020M3H6A1085498 and
2019R1F1A1060767), and was supported by the Sports Promotion Fund of Seoul Olympic Sports Promotion Foundation
from Ministry of Culture, Sports and Tourism.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gao, F; Huang, T.; Wang, J.; Sun, J.; Hussain, A.; Zhou, H. A novel multi-input bidirectional LSTM and HMM
based approach for target recognition from multi-domain radar range profiles. Electronics 2019, 8, 535. [CrossRef]

2. Kang, S.I; Lee, S. Improvement of Speech/Music Classification for 3GPP EVS Based on LSTM. Symmetry 2018,
10, 605. [CrossRef]

3. Kumar, J.; Goomer, R.; Singh, A.K. Long short term memory recurrent neural network (Istm-rnn) based workload
forecasting model for cloud datacenters. Procedia Comput. Sci. 2018, 125, 676—682. [CrossRef]

4. Kadetotad, D.; Berisha, V.; Chakrabarti, C.; Seo, J.S. A 8.93-TOPS/W LSTM recurrent neural network accelerator
featuring hierarchical coarse-grain sparsity with all parameters stored on-chip. In Proceedings of the ESSCIRC
2019-IEEE 45th European Solid State Circuits Conference (ESSCIRC), Cracow, Poland, 23-26 September 2019;
pp. 119-122.

5. Wang, M,; Wang, Z,; Lu, J.; Lin, J.; Wang, Z. E-Istm: An efficient hardware architecture for long short-term
memory. IEEE |. Emerg. Sel. Top. Circuits Syst. 2019, 9, 280-291. [CrossRef]

6. Kung, J.; Kim, D.; Mukhopadhyay, S. Dynamic approximation with feedback control for energy-efficient recurrent
neural network hardware. In Proceedings of the 2016 International Symposium on Low Power Electronics and
Design, San Francisco, CA, USA, 8-10 August 2016; pp. 168-173.

http://dx.doi.org/10.3390/electronics8050535
http://dx.doi.org/10.3390/sym10110605
http://dx.doi.org/10.1016/j.procs.2017.12.087
http://dx.doi.org/10.1109/JETCAS.2019.2911739

Electronics 2020, 9, 2004 12 of 13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Byun, Y.; Ha, M; Kim, J.; Lee, S.; Lee, Y. Low-complexity dynamic channel scaling of noise-resilient CNN
for intelligent edge devices. In Proceedings of the 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Florence, Italy, 25-29 March 2019; pp. 114-119.

Campos, V,; Jou, B.; Giré-i Nieto, X.; Torres, J.; Chang, S.F. Skip rnn: Learning to skip state updates in recurrent
neural networks. arXiv 2017, arXiv:1708.06834 .

Moon, S.; Byun, Y.; Park, J.; Lee, S.; Lee, Y. Memory-Reduced Network Stacking for Edge-Level CNN Architecture
With Structured Weight Pruning. IEEE |. Emerg. Sel. Top. Circuits Syst. 2019, 9, 735-746. [CrossRef]

Neil, D.; Pfeiffer, M.; Liu, S.C. Phased Istm: Accelerating recurrent network training for long or event-based
sequences. Adv. Neural Inf. Process. Syst. 2016, 29, 3882-3890.

Dai, R.; Li, L.; Yu, W. Fast training and model compression of gated RNNs via singular value decomposition.
In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil,
8-13 July 2018; pp. 1-7.

Neil, D.; Lee,].H.; Delbruck, T.; Liu, S.C. Delta networks for optimized recurrent network computation.
In Proceedings of the International Conference on Machine Learning (PMLR), Sydney, Australia, 11-15 August
2017; pp. 2584-2593.

Andri, R.; Cavigelli, L.; Rossi, D.; Benini, L. YodaNN: An ultra-low power convolutional neural network
accelerator based on binary weights. In Proceedings of the 2016 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), Pittsburgh, PA, USA, 11-13 July 2016; pp. 236-241.

Jo,J.; Kung, J.; Lee, S.; Lee, Y. Similarity-Based LSTM Architecture for Energy-Efficient Edge-Level Speech
Recognition. In Proceedings of the 2019 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), Lausanne, Switzerland, 29-31 July 2019; pp. 1-6.

Hannun, A.; Case, C.; Casper, J.; Catanzaro, B.; Diamos, G.; Elsen, E.; Prenger, R.; Satheesh, S.; Sengupta, S.;
Coates, A.; et al. Deep speech: Scaling up end-to-end speech recognition. arXiv 2014, arXiv:1412.5567.
Mirghafori, N.; Morgan, N. Combining connectionist multi-band and full-band probability streams for speech
recognition of natural numbers. In Proceedings of the Fifth International Conference on Spoken Language
Processing, Sydney, Australia, 304 December 1998.

Nguyen, T.S.; Stiiker, S.; Niehues, J.; Waibel, A. Improving sequence-to-sequence speech recognition training
with on-the-fly data augmentation. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4-8 May 2020; pp. 7689-7693.

Miao, Y.; Gowayyed, M.; Metze, F. EESEN: End-to-end speech recognition using deep RNN models and WFST-based
decoding. In Proceedings of the 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),
Scottsdale, AZ, USA , 13-17 December 2015; pp. 167-174.

Panayotov, V.; Chen, G.; Povey, D.; Khudanpur, S. Librispeech: an asr corpus based on public domain audio
books. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brisbane, Australia, 19-24 April 2015; pp. 5206-5210.

Gao, C.; Neil, D; Ceolini, E.; Liu, S.C.; Delbruck, T. DeltaRNN: A power-efficient recurrent neural network
accelerator. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, 25-27 February 2018; pp. 21-30.

Abadi, M.; Barham, P; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al.
Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX symposium on
operating systems design and implementation (OSDI 16), Savannah, GA, USA, 2—4 November 2016; pp. 265-283.
Silfa, F; Dot, G.; Arnau,].M.; Gonzalez, A. E-PUR: An energy-efficient processing unit for recurrent neural networks.
In Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques, Limassol,
Cyprus, 1-4 November 2018; pp. 1-12.

Dupenloup, G. Automatic Synthesis Script Generation for Synopsys Design Compiler. U.S. Patent 6,836,877,
28 December 2004.

Kommuru, H.B.; Mahmoodi, H. ASIC Design Flow Tutorial Using Synopsys Tools; Nano-Electronics & Computing
Research Lab, School of Engineering, San Francisco State University: San Francisco, CA, USA, 2009.

http://dx.doi.org/10.1109/JETCAS.2019.2952137

Electronics 2020, 9, 2004 13 of 13

25. Moon, S.; Lee, H.; Byun, Y.; Park, J; Joe,]J.; Hwang, S.; Lee, S.; Lee, Y. FPGA-based sparsity-aware CNN
accelerator for noise-resilient edge-level image recognition. In Proceedings of the 2019 IEEE Asian Solid-State
Circuits Conference (A-SSCC), Macao, China 4-6 November 2019; pp. 205-208.

26. Jorge,].; Giménez, A.; Iranzo-Sanchez, J.; Civera, J.; Sanchis, A.; Juan, A. Real-Time One-Pass Decoder for Speech
Recognition Using LSTM Language Models. In Proceedings of the 20th Annual Conference of the International
Speech Communicatoin Association(INTERSPEECH), Graz, Austria, 15-19 September 2019; pp.3820-3824.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article
@ distributed under the terms and conditions of the Creative Commons Attribution (CC BY)

license (http:/ /creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	DNN-Based End-to-End Speech Recognition
	DeepSpeech Network and LSTM Operations

	Similarity-Based LSTM Operation
	Cell-Skipping Method Using Similarity Score
	Pseudo-Skipping Method for Approximate LSTM Operations

	Accelerator Design for Approximate LSTM Processing
	Simulation and Implementation Results
	Algorithm-Level Performance
	Prototype Implementation

	Conclusions
	References

