# A Hybrid DC–DC Quadrupler Boost Converter for Photovoltaic Panels Integration into a DC Distribution System

## Abstract

**:**

## 1. Introduction

- The two-phase boost stage with interleaving reduces the current ripples on input current, doubles the ripple frequency, makes it easy to be filtered, and allows precise current measurements to enhance the maximum power point tracking.
- The converter offers high-voltage gain and, at the same time, low voltage stress across both active and passive components.
- The proposed converter has a modular structure and can be extended to reduce further the operating duty cycle and voltage stresses across the components.
- The output of the converter shares the ground with input sources. Thus, the output voltage can be sensed through a voltage divider and no need for expensive differential voltage sensors and isolated feedback loop.
- The proposed converter can operate in continuous conduction mode (CCM) with smaller inductance. Therefore, higher power density can be achieved.
- The average current of both inductors are equal, so that conduction loss is at its minimum since the conduction loss is a quadratic function of the inductor RMS currents.

## 2. Principle of Operation and Derivation of Steady-State Equations

#### 2.1. Mode 1: The MOSFETs Are Both Conducting

#### 2.2. Mode 2: ${S}_{1}$ Is OFF and ${S}_{2}$ Is ON

#### 2.3. Mode 3: ${S}_{1}$ Is ON and ${S}_{2}$ Is OFF

#### 2.4. Steady-State Static Voltage Gain

_{f}) is calculated by

## 3. Converter Design and Efficiency Analysis

#### 3.1. Inductor Selection

#### 3.2. MOSFET Selection

#### 3.3. Diode Selection

#### 3.4. Capacitors Selection

#### 3.5. Efficiency Analysis

## 4. Comparative Analysis

## 5. Simulation and Experimental Results

## 6. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Katiraei, F.; Aguero, J.R. Solar PV Integration Challenges. IEEE Power Energy Mag.
**2011**, 9, 62–71. [Google Scholar] [CrossRef] - Bialasiewicz, J.T. Renewable Energy Systems with Photovoltaic Power Generators: Operation and Modeling. IEEE Trans. Ind. Electron.
**2008**, 55, 2752–2758. [Google Scholar] [CrossRef] - Li, Q.; Wolfs, P. A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies with Three Different DC Link Configurations. IEEE Trans. Power Electron.
**2008**, 23, 1320–1333. [Google Scholar] [CrossRef] [Green Version] - Blanchard, R. Property Assessed Clean Energy (PACE) Renewable Energy Program Plan and Pilot Project: On Behalf of Northport Energy Action Taskforce (NEAT) & Levin Energy Partners. Master’s Thesis, University of Michigan, Ann Arbor, MI, USA, 2017. [Google Scholar]
- Hegazy, O.; Mierlo, J.V.; Lataire, P. Analysis, Modeling, and Implementation of a Multidevice Interleaved DC/DC Converter for Fuel Cell Hybrid Electric Vehicles. IEEE Trans. Power Electron.
**2012**, 27, 4445–4458. [Google Scholar] [CrossRef] - Dragičević, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids; Part II: A Review of Power Architectures, Applications, and Standardization Issues. IEEE Trans. Power Electron.
**2016**, 31, 3528–3549. [Google Scholar] [CrossRef] [Green Version] - Kouro, S.; Leon, J.I.; Vinnikov, D.; Franquelo, L.G. Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology. IEEE Ind. Electron. Mag.
**2015**, 9, 47–61. [Google Scholar] [CrossRef] - Kazimierczuk, M.K. RF Power Amplifiers; Wiley Online Library: Hoboken, NJ, USA, 2008; Volume 1. [Google Scholar]
- Revathi, B.S.; Prabhakar, M. Non isolated high gain DC–DC converter topologies for PV applications—A comprehensive review. Renew. Sustain. Energy Rev.
**2016**, 66, 920–933. [Google Scholar] [CrossRef] - Khadmun, W.; Subsingha, W. High voltage gain interleaved dc boost converter application for photovoltaic generation system. Energy Procedia
**2013**, 34, 390–398. [Google Scholar] [CrossRef] [Green Version] - Yaramasu, V.; Wu, B. Predictive control of a three-level boost converter and an NPC inverter for high-power PMSG-based medium voltage wind energy conversion systems. IEEE Trans. Power Electron.
**2013**, 29, 5308–5322. [Google Scholar] [CrossRef] - Kwon, J.M.; Kwon, B.H.; Nam, K.H. Three-phase photovoltaic system with three-level boosting MPPT control. IEEE Trans. Power Electron.
**2008**, 23, 2319–2327. [Google Scholar] [CrossRef] [Green Version] - Bratcu, A.I.; Munteanu, I.; Bacha, S.; Picault, D.; Raison, B. Cascaded dc–dc converter photovoltaic systems: Power optimization issues. IEEE Trans. Ind. Electron.
**2010**, 58, 403–411. [Google Scholar] [CrossRef] - Morales-Saldana, J.A.; Galarza-Quirino, R.; Leyva-Ramos, J.; Carbajal-Gutierrez, E.E.; Ortiz-Lopez, M.G. Modeling and control of a cascaded boost converter with a single switch. In Proceedings of the IECON 2006—32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 6–10 November 2006; pp. 591–596. [Google Scholar]
- Barth, C.B.; Assem, P.; Foulkes, T.; Chung, W.H.; Modeer, T.; Lei, Y.; Pilawa-Podgurski, R.C. Design and control of a GaN-based, 13-level, flying capacitor multilevel inverter. IEEE J. Emerg. Sel. Top. Power Electron.
**2019**, 8, 2179–2191. [Google Scholar] [CrossRef] - Liao, Z.; Brooks, N.C.; Ye, Z.; Pilawa-Podgurski, R.C.N. A High Power Density Power Factor Correction Converter with a Multilevel Boost Front-End and a Series-Stacked Energy Decoupling Buffer. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 7229–7235. [Google Scholar]
- Husev, O.; Blaabjerg, F.; Roncero-Clemente, C.; Romero-Cadaval, E.; Vinnikov, D.; Siwakoti, Y.P.; Strzelecki, R. Comparison of impedance-source networks for two and multilevel buck–boost inverter applications. IEEE Trans. Power Electron.
**2016**, 31, 7564–7579. [Google Scholar] [CrossRef] - Paez, J.D.; Frey, D.; Maneiro, J.; Bacha, S.; Dworakowski, P. Overview of DC–DC converters dedicated to HVdc grids. IEEE Trans. Power Deliv.
**2018**, 34, 119–128. [Google Scholar] [CrossRef] - Tseng, K.C.; Huang, C.C.; Shih, W.Y. A high step-up converter with a voltage multiplier module for a photovoltaic system. IEEE Trans. Power Electron.
**2012**, 28, 3047–3057. [Google Scholar] [CrossRef] - Chen, S.M.; Liang, T.J.; Yang, L.S.; Chen, J.F. A safety enhanced, high step-up DC–DC converter for AC photovoltaic module application. IEEE Trans. Power Electron.
**2011**, 27, 1809–1817. [Google Scholar] [CrossRef] - Hsieh, Y.C.; Hsueh, T.C.; Yen, H.C. An interleaved boost converter with zero-voltage transition. IEEE Trans. Power Electron.
**2009**, 24, 973–978. [Google Scholar] [CrossRef] - Nakpin, A.; Khwan-on, S. A novel high step-up DC–DC converter for photovoltaic applications. Procedia Comput. Sci.
**2016**, 86, 409–412. [Google Scholar] [CrossRef] [Green Version] - Subhash, N.P.; Ajmal, K.; Selvi, K.P. A High Step-Up Converter UsingTransformerless Cockcroft-Walton VoltageMultiplier for a PV System. Int. J. Innov. Res. Sci. Eng. Technol.
**2014**, 3, 755–760. [Google Scholar] - Henn, G.A.L.; Silva, R.N.A.L.; Praça, P.P.; Barreto, L.H.S.C.; Oliveira, D.S. Interleaved-Boost Converter with High Voltage Gain. IEEE Trans. Power Electron.
**2010**, 25, 2753–2761. [Google Scholar] [CrossRef] - Karthikeyan, V.; Jamuna, V.; Rajalakshmi, D. Interleaved Boost Converter for Photovoltaic Energy Generation. In Applied Mechanics and Materials; Trans Tech Publ: Zürich, Switzerland, 2014; Volume 622, pp. 97–103. [Google Scholar]
- Liu, H.; Su, X.; Wang, J. High Step-up Coupled Inductor Inverters Based on qSBIs. Energies
**2019**, 12, 3032. [Google Scholar] [CrossRef] [Green Version] - Periyanayagam, M.; Kumar, V.S.; Chokkalingam, B.; Padmanaban, S.; Mihet-Popa, L.; Adedayo, Y. A Modified High Voltage Gain Quasi-Impedance Source Coupled Inductor Multilevel Inverter for Photovoltaic Application. Energies
**2020**, 13, 874. [Google Scholar] [CrossRef] [Green Version] - Shen, C.L.; Chen, L.Z.; Chen, H.Y. Dual-input isolated DC–DC converter with ultra-high step-up ability based on sheppard taylor circuit. Electronics
**2019**, 8, 1125. [Google Scholar] [CrossRef] [Green Version] - Shen, C.L.; Chen, H.Y.; Chiu, P.C. Integrated three-voltage-booster DC–DC converter to achieve high voltage gain with leakage-energy recycling for PV or fuel-cell power systems. Energies
**2015**, 8, 9843–9859. [Google Scholar] [CrossRef] [Green Version] - Nguyen, M.K.; Choi, Y.O. Voltage multiplier cell-based quasi-switched boost inverter with low input current ripple. Electronics
**2019**, 8, 227. [Google Scholar] [CrossRef] [Green Version] - Lin, B.R.; Dai, C.X. Wide Voltage Resonant Converter Using a Variable Winding Turns Ratio. Electronics
**2020**, 9, 370. [Google Scholar] [CrossRef] [Green Version] - Lin, B.R.; Chang, J.W. Analysis and Verification of a Wide Input Voltage PWM Converter with Variable Windings. Energies
**2020**, 13, 1634. [Google Scholar] [CrossRef] [Green Version] - Liu, Z.; Du, J.; Yu, B. Design Method of Double-Boost DC/DC Converter with High Voltage Gain for Electric Vehicles. World Electr. Veh. J.
**2020**, 11, 64. [Google Scholar] [CrossRef] - Almalaq, Y.; Matin, M. Three topologies of a non-isolated high gain switched-inductor switched-capacitor step-up cuk converter for renewable energy applications. Electronics
**2018**, 7, 94. [Google Scholar] [CrossRef] [Green Version] - Müller, L.; Kimball, J.W. High gain DC–DC converter based on the Cockcroft–Walton multiplier. IEEE Trans. Power Electron.
**2015**, 31, 6405–6415. [Google Scholar] [CrossRef]

**Figure 1.**The presented converter (

**a**) an example converter converter with one stage; (

**b**) the voltage multiplier cell; (

**c**) an example converter with more than one voltage multiplier cell.

**Figure 4.**The static gain ratio of the proposed converter at various numbers of voltage multiplier cells.

**Figure 5.**The proposed converter with two independent input sources. Both sources share the ground with the output.

**Figure 6.**The difference in inductors’ conduction power loss between a two-phase interleaved boost where the input current is equally shared between inductors and another where input current is not equally shared between inductors.

**Figure 7.**Simulation results of the inductor voltages and currents. The input current is equally shared between inductors.

**Figure 12.**Breakdown loss of the components as function of power (

**top**) and breakdown percentage as a function of time (

**bottom**).

**Figure 15.**The experimental results. Voltage across capacitors, voltage ripples, and the output voltage.

Case | The Output Voltage |
---|---|

${d}_{1}\ne {d}_{2}$ and ${V}_{i{n}_{1}}\ne {V}_{i{n}_{2}}$ | $(N+1)(\frac{{V}_{i{n}_{1}}}{1-{d}_{1}}+\frac{{V}_{i{n}_{2}}}{1-{d}_{2}})$ |

${d}_{1}\ne {d}_{2}$ and ${V}_{i{n}_{1}}={V}_{i{n}_{2}}$ | $(N+1){V}_{in}(\frac{1}{1-{d}_{1}}+\frac{1}{1-{d}_{2}})$ |

${d}_{1}={d}_{2}$ and ${V}_{i{n}_{1}}\ne {V}_{i{n}_{2}}$ | $\frac{N+1}{1-d}({V}_{i{n}_{1}}+{V}_{i{n}_{2}})$ |

${d}_{1}={d}_{2}$ and ${V}_{i{n}_{1}}={V}_{i{n}_{2}}$ | $\frac{2(N+1){V}_{in}}{1-d}$ |

Topology | Conventional Boost | Interleaved Boost | [33] | [34] | [35] | Proposed |
---|---|---|---|---|---|---|

MOSFETs | 1 | 2 | 2 | 1 | 2 | 2 |

Capacitors | 1 | 1 | 1 | 3 | 5 | 4 |

Inductors | 1 | 2 | 2 | 4 | 2 | 2 |

Diodes | 1 | 2 | 3 | 8 | 5 | 4 |

max voltage stress on MOSFETs | ${V}_{o}$ | ${V}_{o}$ | $\frac{{V}_{o}+{V}_{in}}{2}$ | ${V}_{o}\frac{1+D}{1+3D}$ | $\frac{{V}_{o}}{4}$ | $\frac{{V}_{o}}{2}$ |

max voltage stress on Diodes | ${V}_{o}$ | ${V}_{o}$ | $\frac{{V}_{o}+{V}_{in}}{2}$ | ${V}_{o}\frac{1+D}{1+3D}$ | $\frac{{V}_{o}}{4}$ | $\frac{{V}_{o}}{2}$ |

Equal current sharing | - | yes | - | - | No | Yes |

Gain | $\frac{1}{1-d}$ | $\frac{1}{1-d}$ | $\frac{1+d}{1-d}$ | $\frac{1+3d}{1-d}$ | $\frac{5}{1-d}$ | $\frac{4}{1-d}$ |

Parameter | Value |
---|---|

Number of voltage multiplier stages | 1 |

${V}_{in}$ | 20 V |

${V}_{o}$ | 400 V |

Load R | 800 Ω |

Duty cycle | 0.8 |

${f}_{s}$ | 50 kHz |

Inductors ${L}_{1}$ and ${L}_{2}$ | 100 µH |

Capacitors | 10 µF |

Output capacitor | 20 µF |

Element | Symbol | Rating | Element # |
---|---|---|---|

Coils | ${L}_{1},{L}_{2}$ | 100 µH, DCR = 25 mΩ | 60B104C |

Capacitors | ${C}_{1},{C}_{2}$ ${C}_{3}$ | 10 µF | B32674D3106K |

MOSFETs | ${S}_{1},{S}_{2}$ | 150.0 V, 37.0 A ${R}_{ds(on)}$ = 10.53 mΩ | IPA105N15N3 |

Diodes | ${D}_{1},{D}_{2}$ ${D}_{3},{D}_{o}$ | 250 V, 40 A ${V}_{F}$ = 0.860 V, ${t}_{rr}$ = 0.035 µs | MBR40250G |

Load | ${R}_{load}$ | various values | ceramic resistors |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alzahrani, A.
A Hybrid DC–DC Quadrupler Boost Converter for Photovoltaic Panels Integration into a DC Distribution System. *Electronics* **2020**, *9*, 1965.
https://doi.org/10.3390/electronics9111965

**AMA Style**

Alzahrani A.
A Hybrid DC–DC Quadrupler Boost Converter for Photovoltaic Panels Integration into a DC Distribution System. *Electronics*. 2020; 9(11):1965.
https://doi.org/10.3390/electronics9111965

**Chicago/Turabian Style**

Alzahrani, Ahmad.
2020. "A Hybrid DC–DC Quadrupler Boost Converter for Photovoltaic Panels Integration into a DC Distribution System" *Electronics* 9, no. 11: 1965.
https://doi.org/10.3390/electronics9111965