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Abstract: Fast computation of the coefficients of the reduced impedance matrix of the method
of moment (MM) is proposed by expanding the basis functions (BFs) in pulses and solving an
equivalent periodic problem (EPP) for analyzing large multilayer structures with non-uniform
rational basis spline (NURBS) modeling of the embedded layout. These coefficients are required
by the computation of sparse approximate inverse (SAI) preconditioner, which leads an efficient
iterative version of the MM. This reduced coefficient matrix only considers the near field part of the
MM matrix. Discrete functions of small sizes are required to implement the pulse expansion and
EPP. These discrete functions of small size lead to discrete cyclic convolutions that are computed in
a very fast way by fast Fourier transform (FFT)-accelerated matrix—vector multiplication. Results
obtained using a conventional laptop show an analysis of very large multilayer structures with
resonant layouts, as whole reflectarrays of electrical size 40 times the vacuum wavelengths, where the
iterative MM with a SAI preconditioner can be 22.7 times faster than the pure iterative MM without
any preconditioner.

Keywords: integral equations; moment methods; multilayered media; iterative methods; reflectarrays

1. Introduction

Analysis of a large multilayer structure is an usual task in electrical device designs as
reflectarrays antennas [1], frequency selective surfaces [2], leaky-waves antennas [3], phased arrays, etc.
These devices are made of resonant planar layouts. Accurate models of the geometry of these layouts
are required. Non-uniform rational basis spline (NURBS) surfaces show a high-order description of the
geometry of layout for complex geometries [4]. NURBS surfaces can be efficiently discretized using
Bézier patches [5,6]. After this discretization, in [7] generalized rooftops are defined on these patches
as basis functions (BFs) in the approximation of surface current densities. Then, MM is implemented
to solve a system of coupled mixed potential integral equations (MPIEs). The system of MPIEs can
be transformed in a linear system of equations where the weights of BFs are unknown coefficients.
This resultant system of equations has a coefficient matrix with N}, X Ny, size where N}, is the number
of BFs used.

Although the MM leads accurate solutions of a system of MPIEs, CPU time consumption for the
direct computation of the coefficients matrix of the system of equations is proportional to Np X Ny, [8,9].
So, prohibitive CPU time consumption can be obtained when large number N}, of BFs is used, as for
example in the analysis of large multilayer structures. Moreover, the direct solution of the resultant
large system of equations produces drawbacks as a large required CPU memory resource [10-12].
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In order to avoid these drawbacks, iterative methods are preferable where the unknowns of the system
of equations are iteratively computed to reduce a normalized error, until a threshold is reached.

There are iterative methods based on MM that are suitable for large structures analysis as for
example: the technique in [13,14] based on conjugate gradient fast Fourier transform (CG-FFT) with
regular conventional rooftops as BFs, the technique shown in [15,16] where extending the multilevel
fast multipole algorithm (MLFMA) [17] or adaptive integral method (AIM) [18] are proposed. However,
both [15] and [16] are shown for layout with a single interface. Proposed techniques in [19,20]
where Rao-Wilton-Glisson (RWG) BFs [21] are expanded using pulses to implement precorrected FFT
algorithm [22] are also suitable.

However, in all these techniques NURBS surfaces are not used in order to keep high-order
description of the geometry of layouts. There is recent work where efficient technique is proposed
to analyze multilayer structures made of resonant layouts modeled with NURBS surfaces using
an iterative scheme [23]. In this work pulse expansion of the basis functions (BFs) that represent
surface current densities and the equivalent periodic problem (EPP) approach [14] are implemented.
This implementation leads discrete cyclic convolutions instead of conventional slow continuous
convolutions between Green'’s functions and current densities that appear in the computation of the
MM coefficient matrix of the system of equations. The proposed approach shown in [23] is similar to
that proposed in [24] where a regular grid is implemented in order to obtain the impedance matrix
with a Toeplitz structure FFT-accelerated matrix—vector multiplication [24]. However, unlike [24],
in [23] the Toeplitz structure is not produced since multilayer Green’s functions are used and EPP has
to be found in order to avoid aliasing effects.

Although the approaches implemented in [23] lead fast computation of normalized error in the
iterative process, no preconditioner was used. The main advantage of the uses of a preconditioner
in the iterative method is that it leads a transformation of the linear system of equations with more
favorable spectral properties of the original system of equations. These favorable spectral properties
ensure a significant increment of the rate of convergence of the iterative method [25]. A very popular
preconditioner is a sparse approximate inverse (SAI) preconditioner [25-27]. The SAI preconditioner is
computed as a matrix that minimizes the Frobenius’ norm of the difference between the identity matrix
and standard matrix product between the SAI matrix and coefficient matrix of the linear system of
equations [26,27]. This minimization can be efficiently computed by solving independent linear least
square (LLS) systems that generate the rows of the preconditioner [27]. Since the full computation of the
coefficient matrix is not recommended due to large CPU time consumption, SAI preconditioner is often
generated from a reduced coefficient matrix, which only considers the near field part of the coefficient
matrix. This near field part includes the strongest interactions between BFs and weighting functions
(WPFs) [27]. These interactions between BFs and WFs are usually considered in the near field part when
the distances between BFs and WFs are less than one quarter of the wavelength under analysis.

In this work we propose a fast computation of the reduced coefficient matrix to lead the SAI
preconditioner. So, this work is an extension of the work proposed in [23]. In this paper, the results
will show that the fast computation of the reduced coefficient matrix can lead analysis of multilayer
structures with resonant layouts, as whole reflectarrays of electrical size 40A x 40A. Comparison of
CPU time consumption for obtaining these results will show that the iterative method with the SAI
preconditioner is between 11.1 and 22.7 times faster than the pure iterative method proposed in [23].
These results justify the extension of the work proposed in [23].

The paper is organized as follows. Section 2 shows the iterative MM with NURBS surfaces for
the large multilayer structure analysis with several interfaces with resonant layouts. In this section,
a procedure for fast computation of reduced coefficient matrix based on pulse expansion of BFs and
EPP is shown. Section 3 shows results and numerical validations of three analysis of whole reflectarray
antennas of electrical sizes from 9.6\ x 9.6\ to 44A X 44A. Finally, conclusions are shown in Section 4.
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2. Description of the Problem

Let us consider a multilayer medium with NC dielectric layers of thickness d, (p =1, ..., NC) and
complex permittivity e,= €gerp(1 — jtandy). The multilayer medium is upper limited by free space and
lower limited by either free space or the ground plane. This multilayer medium hosts Q interfaces
with metallized planar surfaces S; (I =1, ..., Q) with negligible thickness and arbitrary geometry
(see Figure 1). These metallized planar surfaces will be considered as PEC throughout. On each
metallized surface S;, surface current densities J;(x,y) and charge densities o;(x,y) are induced by either
fed voltage or incident electric field of arbitrary distribution. Both, current and charge densities are
related by a known continuity equation. Since the surfaces 5; (I =1, ..., Q) are planar, the induced
current densities J;(x,y) have ‘x” and ‘y’ components (i.e., there is not a z-component). These induced
current densities satisfy the system of MPIEs from boundary conditions on PEC [7]. In order to solve
the system of MPIEs, expansion in terms of known BFs (see (1)) with unknown coefficients (coefficients
¢j shown in (1)) and the method of weighted residual are usual applied.
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Figure 1. NCth, kth and th layers of a multilayer medium, kth and Ith layers host interfaces with planar
metallizations. Discretization of the planar metallizations in terms of Bezier patches is shown. On the
Ith layer generalized rooftops are used as basis functions (BFs). On the kth layer razor-blades are used
as weighting functions (WFs).

In this work the metallized planar surfaces were modeled by NURBS surfaces. The NURBS are
discretized as piecewise Bezier patches [4]. Figure 1 shows metallized surfaces (grey color surfaces)
with generic geometry, which are discretized as Bezier patches. So, subsectional generalized rooftop
functions were used as BFs J j(x,y) j=1,... ,Np;;1=1,...,Q) and razor-blade were used as weighting
functions (WFs), both defined on two adjacent Bezier patches [4]. Figure 1 shows subsectional BFs
of discretized metallized surfaces hosted in /th interface and a razor-blade function hosted in the
kth-interface. The razor-blade joins the centers (x;;*~, yi;7/~) of each adjacent Bezier patches by
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means the isoparametric curved lines C; (i=1,... ,Npi, k=1, ..., Q) in the kth-interface. when the
generalized rooftops were used as BFs and razor-blade were used as WFs, the resultant system of
equations for the unknown coefficients ci, G=1,...,Np;;I=1,...,Q) was obtained:

Q
. ’+ ,— .
[§1[V;'<1},C}(C1,1/-~~'C1,Nb/z)+szi,fz) (o1 rCiNg) Vi (Cire- ey = Ve (i=1,..., Npik=1,...,Q)  (2)

where:
V}:}O} = ja)ff}{rl‘ld(x, y) -dr (3)
Cik
cap,+/- _ ap, /- 4 /-
Vil = ki (xk,i 'Y ) (4)
with:
i =A / ’ ’ ;o ’ 7.
£ (v, y) = fG (x=x,y-v,z=2n,7 =2N));(x, v )dx'dy (5)
Si
f;?p(x, y) = qu>(x -xX,y-y,z=2zNn,72 =250 X,y )dx' dy (6)
S

—A
G is the dyadic Green'’s function for the vector potential and G® is the Green’s function for
the scalar potential respectively of the multilayer medium of the Figure 1. In this work, formulation

C of [28] was assumed. Since there is no z-component of surface current densities J;(x",y"), EA can
be substituted by the Green’s function Gy, for the x-component of the vector potential throughout.
In this work, two accurate techniques shown in [29,30] were used for computations of Green’s functions
in both the near field region (i.e., when kop < 10 with p = (x — x)? + (y - ]/')2]1/2 and ky = 271/A being A
the vacuum wavelength) and far field regions (i.e., when kpp > 10) respectively.

The coefficients V. ;¢ of the system of linear equations given in (2) are either the feeding voltages
defined on the ith-set of pair adjacent Bezier patches of the kth-interface or computed by the next
line integral of the tangential component of excitation electric field E**“(x,y,z = zyy) along the ith
isoparametric curved line C ; on the kth-interface:

Vi = fEfXC(x, Y,z =zN,) - dr (7)
Cri

This excitation electric field is produced by the multilayer medium without metallizations when it
is illuminated by incident electric field.

According to (1) and (2), a system with a total of N}, unknowns have to be solved. When large
multilayer structures, which hosts resonant layouts have to be analyzed (for example, whole printed
reflectarray antennas), hundreds of thousands of unknowns are expected. The direct solution of the
resultant large system of equations produces drawbacks as large CPU consumption [8,9], large required
CPU memory resources and ill-conditioned problems [10-12]. In order to avoid these drawbacks,
an iterative solver are preferable where the unknowns clj G=1,...,Np;;1=1,...,Q) are iteratively
computed to reduce a normalized error &, until threshold, &y, is reached. In [23] the BICGSTAB
method [31] was implemented as the iterative solver where the normalized error was defined as the
following:

|Vexc —yind _yeap,+ Vcap,—‘

pr— 8
3 |Vexcl ( )
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where:
V= (VY VR Vi)
Vind _ Z de Z Vind Z Vln % Vind
- L 2 1Nb1,l"" 11 QNp o/l )
A/ - cap,+/— ap,+/— ap,+/— cap,+/—
veap (Z ViR z Vin e z Va“ - z . VoNsal )

Note that VI"d, V€aP+ and V@~ have to be computed in each iteration in the iterative process
for fixed values of caj G=1,..., Nps; I=1,..., Q). If this computation is carried out by direct
computation of (3) and (4) using (5) and (6), the CPU time consumption can be prohibitive due to
slow continuous convolutions between Green’s functions and currents or charges densities shown in
(5) and (6). In [23], a very efficient technique was proposed for fast computation of Vid, V<aP+ and
VP~ using pulse expansion of BFs and the EPP approach. This pulse expansion is carried out by
means of approximations of the BFs in terms of constants pulses in a very dense regular mesh [32]:

2Ny+12Ny+1

3y~ Y Y Ty )P = X, Y = ) (10)
m'=0 n’=0
2N, +12Ny+1

()~ Y Y 0o, Y )POE = X Y = ) (11)

m’=0 n’=0

where xy,’ = xg + m'Ax, yn» = yo + n'Ay and Ax = 2L,/(2Ny + 1), and Ay = 2L,/(2N, + 1) with (2Ly) X (2Ly)
the minimum rectangle that hosts the whole multilayer structure with maximum dimensions Ly X L.
This minimum rectangle ensures that aliasing is avoided [14,23]. The function P(x" — xu/, ¥ — yx’) is
one when x,,» — Ax/2 < x<xy + Ax/2 and y,» — Ay/2 <y < yy + Ay/2 and zero elsewhere. So, constant
pulses on x, — Ax/2 < x < xp + Ax/2 and v, — AY/2 < y< yu' + Ay/2 are defined with values of BFs on
regular mesh points (x,,, ¥,). Figure 2 shows the regular mesh points (x,,, ¥,) of the Ith interface for
an example of two ellipse halves of layout geometry.

2L,

* Layout outer regular mesh points
* Layout inner regular mesh points

X

Figure 2. Regular mesh points (x,,’, y,) of the Ith interface for an example of two ellipse halves of
layout geometry. Constant pulses on x;;r — Ax/2 < x<xpr + Ax/2 and v, — Ay/2 < y< yn' + Ay/2 are
defined with values of BFs on the mesh points (x;,, ¥,). The rectangle (2Ly) X (2Ly) is the minimum
rectangle ensuring that aliasing is avoided [14,23].

The pulse expansion of BFs given in (10) and (11) leads discrete cyclic convolutions instead of
the continuous convolutions shown in (5) and (6) when the functions fklli“d (x,y) and fi ;P (x,y) are
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evaluated in the samples x;,, = xop + mAx and vy, = yo + nAy. These discrete cyclic convolutions are
shown as the following [32]:

2Ny,+12Ny+1

d,A ’ ’
f,fl“}c/y(xm,yn = Z Z ]lx/ym n}Gk,l [m—m',n—n'| (12)

m’'=0 n’=0

2N,+12Ny+1

k? Xm, Yn) Z Z ‘71 m',n’ Gl‘i'lq}[m—m’,n—n’} (13)

=0 n'=

where the discrete functions ]dllx/y[m’,n’], odi[m’ n], Gk,ld'A[m —m’,n—n’],and Gk,ld"b[m -—m',n—n’]
are shown below [23] when 0 <m" < Nyand 0 <n’ < N

Ny i
]lx/y C,]]l,],x/y Xm’» Yn’ ) (14)

j=1

Ny
O-;i [m,/n/] = Cl,jal,j(xm’/ ]/n’) (15)

j=1

Xm""'% ]/n""‘%
GYAm—m',n—n'] = Gotm = yu =,z =2n,7 = 2zn, )dx'dy’ (16)
k1 xx \Xm ‘Yn =Y, N~ N; Y

_Ax Ay
A e

A
xm""‘% .'/n’+Ty

G,i’lq) [m—m',n—-n'] = f f G~ yn—vy,z2= zN, 2 = 2N, )dx' dy’ (17)

_Ax Ay
' =T Yo =7

These discrete functions have (2N + 2) X (2N, + 2) elements. Zero padding of the discrete
functions ]dl/x/y[m',n’] and o9[m’n’] is carried out when m’ > Ny, n’ > Ny. In order to avoid
unnecessary computations by means of (16) and (17), the following conditions are also imposed on
leld'A[m —m’,n—n'] and leld"b[m —m’,n—n'] whenm’> Ny, n" > Ny.

G/ P[2Ny +2 = (m =), n—n'}if Ny < m—nt'; n—n' <Ny
GdA/q)[m—m’,ZNy—o—Z— (n_n/)] ifNy <n-n'; m—m’ < Ny (18)

GaA/®|
gl
GJA/¢[2Nx+2—(m—m’),ZNy—i—Z—(n—n’)] if Ny <m—m'; Ny <n—n'

m—m',n—n'] =

All these discrete functions lead the cyclic discrete convolutions given in (12) and (13) instead of
the continuous convolutions shown in (5) and (6). These discrete cyclic convolutions can be efficiently
computed by means of FFT-accelerated matrix—vector multiplication [24,32]. Once the discrete cyclic
convolutions are available, the functions fklli“d(x,y) and fi;“°P(x,y) defined in (5) and (6), which are
required in (3) and (4), are approximated in the observation points (x,y) from the samples f; ;™% (x;, )
and fi ;“°P (X, yn) on the dense regular mesh using conventional bilinear interpolation [33].

Although these approaches lead to fast computation of normalized error & of the iterative process,
any preconditioner was not included in [23]. The main advantage of the uses of a preconditioner
in the iterative method is that it leads a transformation of the linear system of equations with more
favorable spectral properties of the original system of equations. These favorable spectral properties
ensure a significant increment of the rate of convergence of the iterative method [23]. These favorable
spectral properties are guaranteed if the resultant matrix obtained from standard matrix product
between the coefficient matrix of the linear system and preconditioner matrix is as close to the
identity matrix as possible [25]. A very popular preconditioner is a sparse approximate inverse (SAI)
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preconditioner [25-27]. This SAI preconditioner is computed as a matrix that minimizes the Frobenius’
norm of the difference between identity matrix and standard matrix product between the SAI matrix
and coefficient matrix of the linear system of equations given in (2) [26,27]. This minimization can be
efficiently computed by solving independent linear least square (LLS) systems that generate the rows of
the preconditioner [27]. However, the system of equations given in (2) provides a coefficient matrix of
a very large size and its computation involves very large CPU time consumption. In order to save CPU
time the SAI preconditioner is often generated from a reduced coefficient matrix, which only considers
the near field part of the coefficient matrix. This near field part includes the strongest interactions
between BFs and WFs [27]. These interactions between BFs and WFs are usually considered in the near
field part when the distances between BFs and WFs are less than one quarter of the wavelength under
analysis. So, the elements of the reduced coefficient matrix are defined as the following:

ZR 0 if dkl,ij >A/4 (19)
L= ind cap,+ cap,— .
K Zaiit Zaii ~Zuy  Hdai<A/4
where:
z =i [ €85 ) o 0
Cik
cap,+/- _ pap, /-  +/-
Zaii = o Ol e T) (21)
i —A
f};‘%(x, y) = fG (x=x,y—y,z=zN,2 = 2n)]; j(x, ' )dx'dy’ (22)
S[,]'
flzi};(x, y) = de)(x X, y-y,z=2Nn,7 =z2n)o;(X, Y )dx'dy’ (23)
Sl,j

where dj; ;; are the distance between the centers of BFs hosted in the /th interface and the centers of WFs
hosted in the kth interface (see Figure 1), and S;; is the surface of the pair of adjacent Bézier patches
where jth-BF is defined in the /th interface. Therefore, once the reduced coefficient matrix is available,
the SAI preconditioner is computed as a matrix, which minimizes the following Frobenius’ norm:

Ny,
minHI -M- ZRHIZ_, = Z minHes -m;- ZRHIZ_, (24)
s=1

where I is the identity matrix of Ny, X Ny, size, M is the SAI preconditioner matrix, es is the sth-row
of the identity matrix, and ms is the sth-row of the preconditioner matrix M. In [27] a sophisticated
compartmentalization of the computational space in terms of regions is shown. The description of
this compartmentalization is out of the scope of this section and we recommend [27] for a detailed
description. So, once the SAI preconditioner matrix M is available, the BICGSTAB method [31] can be
implemented for iteratively solving of a modified system of equations with a higher rate of convergence
than the original system of the equation shown in (2):

. T
M- [de + VPt _ Vcap,—] - M- [Vexc]T (25)

where superscript T denotes the transposed matrix. Note that the inductive and capacitive contributions
given in (20) and (21) should be computed when the distances dy, ;; are less than one quarter of the
wavelength. In this case continuous convolutions between Green'’s functions and BFs shown in (22)
and (23) should be computed instead of continuous convolutions between Green’s functions and
surface current and charge densities shown in (5) and (6) (note that the functions fkllrji“d(x,y) and
fr1,/F (x,y) stand for the convolution between Green’s functions and a BF hosted in the /th-interface
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while that, the functions fk,lind (x,y) and fi ;°*P(x,y) stand for the convolution between Green'’s functions
and current and charge densities hosted in the /th-interface). If the computations are directly carried out
by means of (22) and (23), large CPU time is consumed. In order to accelerate the computation of (22)
and (23), again pulse expansion of BFs and EPP can be carried out to lead discrete cyclic convolutions
instead of the continuous convolution [32]. Since matrix elements of ZRkl,i]' are only computed when
di;j < A/4 the domain of required EPP for the efficient computation of (22) and (23) is only one half of
the wavelength (two times one quarter of wavelength) in order to avoid aliasing. This domain is much
less than that required whole size Ly X Ly of the large multilayer medium under study. So, similar
pulse expansion shown in (10) and (11) is carried out but on a new regular mesh samples x;,, g and y,,'r:
{xm/ = Xo,,j + MrAxg = A/4if 0 < mp <2NR 41 26)

Y, = Yo, T pAYR —A/41f0 < nfp <2NY +1

where Axg = A/[2@NR, + 2)] and Ayg = A/[2(2NR; + 2)] being xo,,; and yp,; the minimum values
of the Cartesian coordinates of the pair adjacent Bezier patches where the jth BF is defined in the
Ith-interface with metallizations. In this way, the following discrete functions of (2NR, +2) x (ZNRy +
2) elements for the BFs hosted in the Ith-interface with metallizations were used when 0 < m’g < NR,
and 0 <n'g < NR;:
d
]llj,x/y[m;zr npl = ]I,j,x/y(xm;eryn;?) (27)
Uf}j[mfz/ gl = 01, (X Yur,) (28)
Again, zero padding of the discrete functions is carried out when m’g > NX, and n'g > NR,.
Similar periodic discrete functions for the multilayer Green’s functions defined in (16), (17), and (18)
were used but with NX, and NRy instead of Ny and Ny, Axg, and Ayy instead of Ax and Ay, and
Xmr and y, g instead of x,,, and y,. These new discrete functions lead the following discrete cyclic
convolutions when the functions fi ; ]md( x,y) and fi; /%P (x,y) are evaluated in the samples x;,'g and yy'g:

ONR4+12NK+1
ind ~(x 9. [y, | GYA [mg — iy, ng — 1] (29)
kLjx/y g Yng) Ljjx/y MR RIS MR — MR, IR — 1R

’ ’
mR_O nR—O

2NR+12NR 41
cap d,®
fkl] Xgs Yng) Z Z al] [mg, nRlGey [mr — mip, ng = ng] (30)

m70n70

Again, these discrete cyclic convolutions can be efficiently computed by means of FFT-accelerated
matrix—vector multiplication [24,32]. Once the discrete cyclic convolutions are available, the functions
fr1 And (y x,y) and fi 1 /%P (x,y) defined in (22) and (23), which are required in (20) and (21), are approximated
in the observation points (x,y) from the samples fk,l,jind(xmr RYn'R) and fi 1 €P (X 'R, Yn'r) ON regular
mesh using conventional bilinear interpolation [33].

Note that the size of the domain of the samples x,,'g and y,,'g is (1/2) X (1/2) while the size domain
of the samples x,, and y, is (2Ly) X (2Ly), which is much larger than (1/2) x (1/2) for large whole
multilayer structures. This fact leads to values of NR, and NRy to be much less than Ny and Ny,. So,
these small values of NX; and N, lead to very fast computation of the reduced coefficient matrix
given in (19) to generate a SAI preconditioner as it is shown in the Section 3.

3. Numerical Results

In this section we will show results of three analyses of whole printed reflectarray antennas: (1) focused
beam reflectarray made of two sets of four parallel dipoles with small rotations, (2) reflectarray made
of two orthogonal sets of four parallel dipoles to generate South-American coverage, and (3) dual band
circular polarized focused beam reflectarray made of dual concentric split rings.
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3.1. Focused Beam Reflectarray Made of Two Sets of Four Parallel Dipoles with Small Rotations

In [34] a 24 cm square focused beam reflectarray was designed at 11.95 GHz under local periodicity
assumption and analyzed with CST commercial software. The square reflectarray was made of two
orthogonal sets of parallel dipoles. Each set of parallel dipoles is displaced half a period from each other
with small rotations in order to reduce cross-polar radiation (see Figure 2 in [34] for details). The cell
size of each reflectarray element is 12 x 12 mm? for each set of parallel dipoles. So, the reflectarray
consists of a 20 x 20 square grid (the electrical size of the reflectarray is 9.6A x 9.6A at 11.95 GHz).
The reflectarray was designed to focus the main beam at 11.95 GHz for the angular spherical coordinates
Obeam = 16.9° @peam = 0° with respect to the coordinate system located at the center of reflectarray.
An upper dielectric layer of Diclad 880 (¢, = 2.17, tand, = 0.0009) of 1.5 mm thick hosts the printed
dipoles and a bottom dielectric layer of Arlon AD255C layer (¢, ; = 2.55, tand;= 0.0014) 2.363 mm
thick was used as a separator with the ground plane. In [23] this reflectarray was analyzed by the
iterative method using pulse expansion and EPP approaches with (2N + 2) X (2N, + 2) = 4096 x 4096
for the computation of normalized error &. In this analysis a model cos!?(0) of the feeder located at
(xr, y£, zr)= (—=85.3, 0, 281) (mm) and 23,548 generalized rooftops in the approximation of the surface
density currents (i.e., the number of unknowns is Ny, = 23,548) was considered. In this work the
reflectarray was analyzed with a SAI preconditioner computed from the reduced coefficient matrix
given in (19) and the proposed discretization given in (26) for the discrete functions of (27) and (28),
and discrete cyclic convolution given in (29) and (30). Different values of the (2NR, +2) x (ZNRy +2)
elements of the discrete functions were considered in the computation of reduced coefficient matrix:
(2NR, +2) x 2NR, +2) =32 x 32, 2NR, + 2) x (2NR, + 2) = 64 x 64, and (2NR, +2) x 2NR, +2) =
128 x 128. Note that these values are much less than (2N + 2) X (2N, + 2) = 4096 x 4096. A total of
528,052 elements from the Ny, X N}, = 23,548 x 23,548 elements of the reduced coefficient matrix satisfy
the condition dj; ;; < A/4. Table 1 shows the CPU time consumption in the computation of the reduced
coefficient matrix given in (19).

Table 1. A total of 528,052 elements of the reduced matrix satisfy the condition dy; ;; < A/4.

2N, + 2 CPU Time (s)
32 19
64 47
128 278

Once the reduced coefficient matrix is available, the SAI preconditioner matrix M is computed
according to the minimization problems shown in (24). When this SAI preconditioner matrix M is
known, the BICGSTAB method [31] can be implemented as the iterative solver for solving a modified
system of equations shown in (25). Figure 3a shows a comparison between the normalized error ¢
with respect to of the index of iteration when the SAI preconditioner is not used and when the SAI
preconditioner is computed using the different values of (2NR, +2) x (ZNRy + 2). We would like to point
out that 90 s are required per iteration. According to Figure 3a, CPU time consumptions to reach the
threshold &y, = 0.01 were 61.5 min when SAI was not used (i.e., 41 iterations were required), 25.5 min
when SAI was used with (2NR, +2) x (ZNRy +2) =32 x 32 (i.e., 17 iterations were required), and 7.5 min
when SAI was used with (2NR, + 2) x 2NR, + 2) = 64 x 64 and 2NR; + 2) x 2NR, +2) =128 x 128
(i.e., 5 iterations were required). All these results were obtained in a laptop computer with an Intel
processor Core i7-6700HQ, 2.6 GHz of clock frequency with 32 GBytes of RAM memory. Note that
when 2NR, +2) x (ZNRy + 2) = 64 X 64 a maximum reduction of required iterations was produced
to reach the threshold &y, = 0.01 with respect to those required iterations when SAI preconditioner
was not used (i.e., the iterative method with SAI preconditioner was 8.2 times faster than the iterative
method without preconditioner). Moreover, when (2NR, +2) x (ZNRy + 2) = 64 X 64 the CPU time
consumption for the computation of the reduced coefficient matrix was 47 s (see Table 1). This CPU
time consumption was not significant with respect to the 7.5 min consumed by the iterative process
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to reach the threshold &, = 0.01 (less than 11% of the full time). Figure 3b shows numerical copolar
and cross-polar radiation patterns in the azimuth plane for X polarization at 11.95 GHz. These results
were compared with results obtained in [23] when a SAI preconditioner was not used and with results
obtained by full-wave simulation of the whole antenna with CST shown in Figure 5b of [34]. We can see
that identical results were obtained by means SAI preconditioner with respect to those shown in [23]
when SAI preconditioner was not used. We can see that acceptable agreements were found with results
provided by CST in [34]. However, the cross-polar radiation levels obtained by CST were higher than
the cross-polar radiation obtained by the proposed method. As it is explained in [23], this is expected
since the full-wave model of the feed horn was carried out by CST (we remind that a cos'9(0) model of
the feeder was used in our analysis). According with [34], the analysis of the whole antenna provided
by CST took 8 h in a computer with 2 Intel Xeon Processors (6 cores per processor), 2.1 GHz of clock
frequency, and 128 GBytes of RAM memory. Note that our simulations with a SAI preconditioner is
roughly 64 times faster than the CST simulations using a laptop with lower performances than the
computer used in [34].

10°F & ! — . u 30— ! K |—CP | without SAI from [23]
s = Without SAI from [23] %H\\ ~ =XP | without SAI from [23]
SAI with (2NR+2)=32 L\ [+ cpisawin (2NR42)=64
» ' S 201 | || % xP 1 5A1witn 2N +2)-84
5 —--SAl with (2N, '+2)=64 | \ CP|CSTin [34]
S —SAl with (2NR+2)=128 5 | --++ XP | CST in [34]
° % © 10
o z
N =
™ )
E o
5 of
>4
-10f
10 20 30 40 -40 -20
Index of iteration Azimuth angle (deg)

(@) (b)

Figure 3. (a) Normalized error & with respect to the index of iterations to reach the threshold &y, = 0.01.
(b) Copolar and cross-polar radiation patterns in azimuth plane for X-polarization at 11.95 GHz.
Numerical results are obtained with a sparse approximate inverse (SAI) preconditioner using (2NR + 2)
= (ZNRy + 2) = 64. Comparison with numerical results given in [23] and CST results given in [34] are
also shown.

3.2. Reflectarray Made of Two Orthogonal Sets of Four Parallel Dipoles to Generate South American Coverage

A reflectarray of 1.1 m of diameter designed to generate a South American coverage at 11.95 GHz
(i.e., the electrical size of the reflectarray was roughly 44A x 44) was analyzed in this subsection.
This reflectarray was designed in [35] with the stringent coverage requirements of minimum gain
given in [36,37]. The reflectarray was made of the same reflectarray element of the previous subsection
(again Diclad 880 and Arlon AD255C layers of 1.5 and 2.363 mm thick were used) but, in this case
the cell size of each reflectarray element was 10 x 12 mm? for each set of parallel dipoles. Unlike the
previous case the dipoles were not rotated. So, the reflectarray consists of 7772 elements arranged in a
110 x 90 rectangular grid (see Figure 4a,b). In [35] the reflectarray is fed by a corrugated circular horn
with phase center located at the point of coordinates (xr, yr, zr) = (=366, 0, 1451) (mm) with respect to
the system coordinate system located at the center of the reflectarray. In our analysis we considered
the cos?®(0) model of the feeder. This reflectarray was analyzed by an iterative method using pulse
expansion and EPP approaches with (2N, + 2) X (2Ny + 2) = 16,384 X 16,384 for the computation of
normalized error &. Note that these values were much higher than those used in the previous subsection.
This is due to the large electrical size of the reflectarray. Since the vacuum wavelength was equal to
that used in the previous subsection, values of (2NR, +2) x (2NRy + 2) = 64 X 64 were considered in the
computation of reduced coefficient matrix. In this case 493,190 generalized rooftops were considered
in the approximation of the surface currents (i.e., the number of unknowns was Ny, = 493,190). A total
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of 14,299,768 elements from the N X N = 493,190 x 493,190 elements of the reduced coefficient
matrix satisfied the condition dj; ;; < A/4 The CPU time consumption in the computation of the reduced
coefficient matrix was roughly 39 min. This CPU time consumption was much larger than shown in
Table 1 when 2NR, + 2 = 64. This fact is because the number of elements that satisfy the condition
diij < M4 was roughly 27 times larger than those obtained in the previous subsection. Analysis of the
reflectarray antenna was carried out by the iterative method when the SAI preconditioner was not used
and when the SAI preconditioner was computed using the values of (2NR, +2) x (ZNRy +2) =64 X 64.
All simulations were carried out in a computer of high performances with processor Intel Xeon Silver
4110 2.10 GHz of clock frequency with 192 GBytes of RAM memory. We would like to point out that 19
iterations were required to reach the threshold &g, = 0.01 when the SAI preconditioner was used but 87
iterations were required when the SAI preconditioner was not used. In these analyses 6.5 min were
required per iteration. So, a total CPU time consumption of 2.7 h (including the computation of the
reduced coefficient matrix) were required to reach the threshold when the SAI preconditioner was
used while a total CPU time consumption of 9.4 h were required when the SAI preconditioner was not
used. Figure 4c shows contour lines of radiation patterns for X-polarization at 11.95 GHz obtained
by the iterative method with the SAI preconditioner. Identical results were obtained by the iterative
method when the SAI preconditioner was not used (not shown). Comparison with numerical results
given in [35] and templates for South American coverage with requirements of minimum gains are
also shown. We can see that the requirements of minimum gains were roughly satisfied. There were
some discrepancies between contour lines provided by the iterative method and results given in [35].
The results given in [35] were obtained under local periodicity assumption while our results were
obtained by a full-wave analysis of the structure. So, these discrepancies were expected.

Illmm
=

@) (b)

—28.82dBi
—28.81 dBi
-25.81 dBi
22.81dBi
0.15 —20.66 dBi
19.81 dBi
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Figure 4. Reflectarray layouts printed (a) on the bottom side and (b) on the upper side of Diclad 880
layer. (c) Contour lines of copolar radiation patterns for X-polarization at 11.95 GHz. Numerical
results obtained with using the SAI preconditioner using (2NR, + 2) = (ZNRy + 2) = 64. Comparison
with numerical results given in [35] and templates for South American coverage with requirements of
minimum gains are also shown.
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3.3. Dual Band Circular Polarized Focused Beam Reflectarray Made of Dual Concentric Split Rings

In [38] a dual band circular polarized focused beam reflectarray made of dual concentric split
rings was designed using the procedure given in [39] following the variable rotation technique (VRT).
The VRT requires that the reflection coefficients of the two orthogonal linear components of the
impinging wave electric field are of equal magnitude and 180° out of phase in order to keep the sense of
CP after reflection [40,41]. The designed reflectarray was made to focus the main beam in the direction
given by angular spherical coordinates Opeam = 30° @peam = 0° with respect to the coordinate system
located at the center of reflectarray at 19.95 GHz for left-handed circular polarization (LHCP) and at
29.75 GHz for right-handed circular polarization (RHCP). In this way, the outer split-rings work at
19.95 GHz (i.e., the arc lengths and rotations of outer split-rings were adjusted at 19.95 GHz) while
the inner split-rings work at 29.75 GHz (i.e., the arc lengths and rotations of inner split-rings were
adjusted at 29.75 GHz). The adjustments of arc lengths and rotations of split rings were carried out
with a fixed outer radius of 2.05 mm for outer split-rings and 1.40 mm for inner split rings. The width
of the split rings was also fixed at 0.2 mm. These fixed dimensions provide a 0.45 mm of separation
between outer and inner split rings. So, strong couplings between outer and inner split rings were
expected. The designed antenna was circular and consists of 5024 elements arranged in 80 x 80 grid
with cell size 5 mm X 5 mm (see Figure 5a for layout). Note that the electrical size of the reflectarray
was roughly 27A X 27A at 19.95 GHz and 40A x 40\ at 29.75 GHz. The split rings were printed on
single layer Roger Duroid 5880 (e,; = 2.2, tand; = 0.0009) 0.787 mm thick, which was bottom limited
by a ground plane. Since the use of Bézier patches of NURBS surfaces for the discretization of the
geometry is an important feature of the proposed technique, the meshing of dual concentric split-rings
is shown in Figure 5b. It would be interesting to see how NURBS were used in the discretization of the
examples The reflectarray was illuminated by a corrugated circular feed horn with its phase center
located at the coordinates x = =150 mm, y = 0 mm, and z = 259.8 mm with respect to a coordinate
system with the origin at the center of the reflectarray. The horn was assumed to radiate LHCP
waves at 19.95 GHz and RHCP waves at 29.75 GHz. The radiation pattern of the horn was modeled
as a function cos’(0), which provides an illumination level at the reflectarray edges 12 dB below
the maximum. This reflectarray was analyzed by the iterative method using pulse expansion and
EPP approaches with (2N, + 2) X (2N, + 2) = 8192 x 8192 for the computation of normalized error &,
In this case values of 2NRy + 2) x (2NR, + 2) = 256 x 256 were considered at each frequency for
the computation of reduced coefficient matrix. In the approximation of the surface density currents,
180,886 generalized rooftops were considered. In the case of the analysis at 19.95 GHz a total of
5,221,352 elements from the N}, X N}, = 180,886 x 180,886 elements of the reduced coefficient matrix
satisfied the condition dy;;; < A/4 while a total of 2,536,966 elements satisfied the same condition at
29.75 GHz. The CPU time consumption in the computation of the reduced coefficient matrix was
roughly 24.3 min at 19.95 GHz and 17.8 min at 29.75 GHz. The analysis of the reflectarray antenna at
both frequencies were carried out by the iterative method when SAI preconditioner was not used and
when the SAI preconditioner was computed using the values of (2NR, +2) x (ZNRy + 2) =256 x 256.
These all simulations were carried out in a laptop computer with processor Intel Core i7-6700HQ),
2.6 GHz of clock frequency with 32 GBytes of RAM memory. We would like to point out that when
the analysis was carried out at 19.95 GHz, four iterations were only required to reach the threshold
& = 0.01 when the SAI preconditioner was used while 170 iterations were required when the SAI
preconditioner was not used. In the case of analysis at 29.75 GHz, 10 iterations were only required
when the SAI preconditioner was used while 415 iterations were required when the SAI preconditioner
was not used. These large amounts of 170 and 415 iterations were attributed the strong couplings
between outer and inner split rings. Since strong coupling between outer and inner split rings was
expected, high sensitivity of the surface current densities was also expected. This sensitivity obstructed
the reduction of normalized error & by the iterative process. Moreover, the outer split rings produced a
stronger effect on the electrical behavior of inner split rings at 29.75 GHz than the effect produced by the
inner split ring on the electrical behavior of outer split rings at 19.95 GHz. So, it is expected that more
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iterations were required at 29.75 GHz than those required at 19.95 GHz. In these analyses 2.15 min
were required per iteration at both frequencies 19.95 and 29.75 GHz. So, a total CPU time consumption
of 32.9 min and 39.3 min at 19.95 and 29.75 GHz respectively (including the CPU time consumptions
of the computation of the reduced coefficient matrix) were required to reach the threshold when
the SAI preconditioner was used. Total CPU time consumptions of 6.1 and 14.9 h were required at
19.95 and 29.75 GHz when the SAI preconditioner was not used. So, the reflectarray analysis with
the SAI preconditioner was between 11.1 and 22.7 faster than the reflectarray analysis when the SAI
preconditioner was not used. Figure 4b,c shows the elevation cut of the radiation pattern at 19.95 GHz
for LHCP and the elevation cut of the radiation pattern at 27.95 GHz for RHCP obtained by the iterative
method with the SAI preconditioner. Identical results were obtained by iterative method when the SAI
preconditioner was not used (not shown). Comparison with numerical results obtained by CST and
HFSS commercial software obtained in [38] under local periodicity assumption are also shown. We can
see that acceptable agreements were found between the sets of numerical results. Note that the results
given in [38] were obtained under local periodicity assumption while our results were obtained by
full-wave analysis of the structure. So, some discrepancies between numerical results were expected.
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Figure 5. (a) Reflectarray layout made of dual concentric split-rings. The outer split-rings work at
19.95 GHz and the inner split-rings work at 29.75 GHz. (b) Meshing of dual concentric split-rings in
terms of Bézier patches. Radiation patterns in elevation plane for (c) left-handed circular polarization
(LHCP) at 19.95 GHz and for (d) right-handed circular polarization (RHCP) at 29.75 GHz. Numerical
results obtained with using SAI preconditioner using (2N, + 2) = (2NR, + 2) = 256. The comparison
with results from CST and HFSS analysis under local periodicity assumption given in [38] is also shown.

Finally, in order to quantify how much the properties of the coefficient matrix are improved,
results of condition numbers of the coefficient matrix are shown when any SAI preconditioner was
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not used and when SAI preconditioner was used. The computation of condition number of system of
equations unavoidably involves the computation of coefficient matrix of the system of equations given
in (2). This computation is similar to the computation of reduced coefficient matrix given in (19) but,
unlike (19), all elements of the coefficient matrix should be computed considering far field and near
field regions. This computation was accelerated by means of (16)—(18), (20), (21), and (27)—(30) applied
on the samples with x,," = xo + m'Ax, y,» = yo + n'Ay, Ax = 2Ly/(2Ny + 1), Ay = 2L,/(2Ny + 1), and
0<m’< 2Ny +1),0 <n" < (2Ny + 1) (i.e., using in (16)—(18), (20), (21), and (27)—~(30) Ny and N, instead
of NR, and NRy, Ax and Ay instead of Axg and Ayg, and x,,, and y, instead of x,,’g and y,,'r). However,
this acceleration was not sufficient for the cases shown in Sections 3.2 and 3.3 where coefficient matrix
of Np X Np = 493,190 x 493,190 and Np, x Np, = 180,886 x 180,886 elements have to be computed.
This fact shows that the iterative solver with preconditioner SAI shown in our work was very suitable
for the electromagnetic analysis of very large multilayer structures. Fortunately, the coefficient matrix
of the case shown in the Section 3.1 of N}, X N}, = 23,548 X 23,548 was suitable for this acceleration.
For consistency with results shown in that subsection the values of (2N + 2) X (2N, + 2) = 4096 x 4096
were considered. The CPU time consumption for computation of all elements of the coefficient matrix
was roughly 4 h. The condition number without any preconditioner (i.e., condition number of the
coefficient matrix of the system of equations given in (2)) obtained for this case was 65,325 while the
condition number with the SAI preconditioner (i.e., condition number of the coefficient matrix of the
system of equations given in (25)) was 42,910. These condition numbers were obtained using ‘zgecon’
of linear algebra package [42]. In order to show a reference of the condition number, we would like to
point out that a 5 X 5 Vandermonde matrix A with the element of the mth-row and nth column defined
as A= m=1 provides 26,170 condition number. Since the Vandermonde matrix is a type of matrix
notoriously ill-conditioned [43], these results show us the types of the ill-conditioned system of the
equation that are suitable for our proposed method.

4. Conclusions

Fast computation of the reduced coefficient matrix that leads the SAI preconditioner for iterative
version of the MM was proposed using pulse expansion and EPP approaches for large multilayer
structures. This reduced coefficient matrix only considered the interactions between BFs and WFs
whose distances were less than one quarter of the wavelength. So, small sizes of required discrete
functions, which lead to discrete cyclic convolutions being obtained. Since the resultant discrete cyclic
convolutions were efficiently computed by the FFT procedure, small CPU time consumption of this
reduced coefficient matrix was expected.

Printed reflectarray antennas of medium and large sizes described in the literature were analyzed
using the iterative method with the SAI preconditioner: the focused beam reflectarray made of two sets
of four parallel dipoles with small rotations (electrical size of 9.6A X 9.6A and 23,548 unknowns) and a
reflectarray made of the similar reflectarray element designed to generate South American coverage
(electrical size of 44A X 44 and 493,190 unknowns). In these analyses less than 25% of the full CPU time
were consumed to compute the reduced coefficient matrix, which generated the SAI preconditioner.
Comparisons between the required number of iterations when the SAI preconditioner was not used
and when the SAI preconditioner was used were shown. These comparisons show that the uses of
SAI preconditioner