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Abstract: Recently, evolutionary algorithms that can efficiently solve decomposable binary optimization
problems have been developed. They are so-called model-based evolutionary algorithms, which build
a model for generating solution candidates by applying a machine learning technique to a population.
Their central procedure is linkage detection that reveals a problem structure, that is, how the entire
problem consists of sub-problems. However, the model-based evolutionary algorithms have been
shown to be ineffective for problems that do not have relevant structures or those whose structures
are hard to identify. Therefore, evolutionary algorithms that can solve both types of problems
quickly, reliably, and accurately are required. The objective of the paper is to investigate whether
the evolutionary algorithm evolving developmental timings (EDT) that we previously proposed can
be the desired one. The EDT makes some variables values more quickly converge than the remains
for any problems, and then, decides values of the remains to obtain a higher fitness value under
the fixation of the variables values. In addition, factors to decide which variable values converge
more quickly, that is, developmental timings are evolution targets. Simulation results reveal that
the EDT has worse performance than the linkage tree genetic algorithm (LTGA), which is one of the
state-of-the-art model-based evolutionary algorithms, for decomposable problems and also that the
difference in the performance between them becomes smaller for problems with overlaps among
linkages and also that the EDT has better performance than the LTGA for problems whose structures
are hard to identify. Those results suggest that an appropriate search strategy is different between
decomposable problems and those hard to decompose.

Keywords: model-based evolutionary algorithm; operator-based evolutionary algorithm;
decomposable problem; non-decomposable problem; developmental timing

1. Introduction

To efficiently solve decomposable binary optimization problems that consist of completely
separated sub-problems by an evolutionary algorithm (EA), the EA first needs to detect linkages
that represent sets of variables forming the sub-problems and then utilize the detected linkages to
produce solution candidates. If EA disrupts linkages during the search frequently, it cannot achieve an
efficient search. For instance, if a fixed-operator-based EA does not have a recombination operator,
matching linkages of a problem, it has exponential scalability in terms of population size required for a
successful search [1].

One such EA to achieve an efficient search is a model-based EA. A model-based EA builds a model
representing linkages using some machine learning techniques and produces solution candidates
using the built model. The model-based EA, using a probabilistic model, is called the probabilistic
model-building GA (PMBGA) [2] or the estimation distribution algorithm (EDA) [3].
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Recently, several efficient model-based EAs have been developed to solve hard decomposable
binary optimization problems. For instance, the hierarchical Bayesian optimization algorithm (hBOA) [4],
the linkage identification with epistasis measure (LIEM) [5], the dependency structure matrix genetic
algorithm (DSMGA) [6], the linkage tree genetic algorithm (LTGA) [7], and the dependency structure
matrix genetic algorithm II (DSMGA-II) [8] have been shown to have high scalability for hard
decomposable problems. However, it is generally time-consuming to detect linkages in a large size of
problem. So, EAs are required to be able to solve problems with less computational time.

Model-based EAs have also been applied to problems with overlaps among linkages and problems
that do not have relevant structures or whose structures are hard to identify. However, it has
been shown that EAs cannot solve those problems as efficiently in terms of the number of function
evaluations as the decomposable problems. So, EAs are required to be able to efficiently solve not only
decomposable problems but other ones.

Meanwhile, to overcome the the problem of fixed-operator-based EAs, we previously proposed a
mutation-based EA [9]. The mutation-based EA evolves timings at which probabilities for generating
phenotypic variables values change, and brings different evolution speed to each phenotypic variable,
so that it can solve a given problem partly and sequentially. In the study, it was shown that the
mutation-based EA sequentially solves sub-problems comprising a hard uniformly-scaled problem in
which there is no prioritized variable. Concretely, the four-bit trap deceptive function [10] was used as
a hard uniformly-scaled problem, and the scale-up of the mutation-based EA in terms of the number
of function evaluations was shown to be sub-exponential experimentally.

In addition, in our most recent paper [11], in order to improve the mutation-based EA,
we proposed a new EA by adding a crossover operator to the mutation-based EA. We referred
to this EA as the evolutionary algorithm evolving developmental timings (EDT). Then, we devised a
new test problem that conventional EAs, such as the population-based incremental learning (PBIL) [12]
and the compact genetic algorithm (cGA) [13], are likely to fail in solving and for which features of the
proposed EA are well utilized. The test problem consists of multiple two-bit functions with a factor
of deception, among which there is hierarchical dependency, and has a feature that the hierarchical
dependency is represented by a graph structure. We applied the EDT and the conventional EAs for
comparison, the PBIL and the cGA, to the new test problem and showed the usefulness of the evolution
of developmental timing.

Both the mutation-based EA and the above-mentioned EDT take the same strategy. That is to
say, they fuse evolutionary operators as conventional EAs conduct and a method for learning the
distribution of population that PMBGA and EDA conduct. Their evolutionary operators and methods
for learning the distribution of population are relatively simple. Especially, the method for learning the
distribution of population basically just observes the appearance frequency of possible values at each
position of a phenotypic variables vector and then changes the appearance probability of each possible
value at each position based on the observed frequency. Then, the mechanism that identifies linkages,
which are close relations among multiple positions on a phenotypic variables vector in terms of
contribution to a fitness value, relies on differences in timings of changing probabilities for determining
phenotypic variables values and evolution of the timings. Thus, the salient feature of the mutation
based EA and the EDT is that they evolve timings of events that a phenotypic variable’s value can be
determined by. Such evolution has not been considered in conventional EAs. In biology, a process
to form a phenotype is called development, and change in timings of events during development is
called heterochrony [14].

By the evolution of timings of changing probabilities for determining phenotypic variable values,
both of the mutation based EA and the EDT can bring different evolution speeds to each phenotypic
variable. In other words, they can fix some variable values prior to others and find appropriate values
of the others under the fixation of the variable values. We can logically think that a problem for
the mutation based EA and the EDT to most efficiently solve is not a decomposable problem that a
model-based EA relying on linkage detection, such as the LTGA, can efficiently solve, but a problem
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in which a phenotypic variable is involved in multiple overlapped linkages and the optimum value
of the variable varies with linkage. In such a problem, it is hard to identify all linkages that are
heavily overlapped and also hard to decide optimum values for the variables even if the linkages are
successfully detected. In this case, we expect that only way to have a progress of searching is to force
some variables to fix their values and find appropriate values for the other variables as the mutation
based EA and the EDT do.

Under this expectation of the performance, in the paper, we investigate the search performance of
the EDT for decomposable problems, problems with some overlaps among linkages, and problems
that do not have relevant structures or whose structures are hard to identify, compared to existing
methods. We use the Hierarchical If-And-Only-If (HIFF) function and the Hierarchical Trap (HTRAP)
function as decomposable problems [4] and the Hierarchically Dependent function (HDEP) [11], which
we previously proposed, and N-K Landscape function (K = 4) (NKL-K4) [15] as problems with some
overlaps among linkages, and the Multidimensional Knapsack Problem (MKP) [16] as a problem
whose structure is hard to identify. As existing methods for comparison, we use the LTGA, which is
expected to yield good search performance for decomposable problems, the extended compact genetic
algorithm (ecGA) [13], which is one of the traditional PMBGAs using a marginal product model as a
probabilistic model, and Chu and Beasley Genetic Algorithm (CBGA) [16], which was shown to have
better performance for MKP than the LTGA [17], and the simple genetic algorithm (SGA) [18], which is
one of the simplest operator-based GAs.

Simulation results in the paper reveal that the EDT has much worse performances than the LTGA
for decomposable problems and also that the difference in the performance between them becomes
smaller for problems with some overlaps among linkages and also that the EDT has better performance
than the LTGA for problems whose structures are hard to identify. In fact, both EDT and the LTGA have
problems that they cannot solve efficiently. In addition, the results basically support our expectation
on search performance mentioned above. In addition, for all problems used in the paper, the EDT
basically has similar search performance to the CBGA. The CBGA does not detect linkages, but is
meant to maintain the diversity of the population well.

The idea of the LTGA mentioned above has been applied to real-valued GAs [19].
Additionally, the DSMGA-II mentioned above has been kept improving since it was developed [20].
However, these model-based GAs tackle mainly with decomposable problems. So, it is worthwhile
investigating the EDT because so far there has been no EA that can solve both decomposable problems
and problems whose structures are hard to identify efficiently, and also it has not yet been revealed if
all-round algorithms that can solve all such problems exist. One example is shown in [17]. We have
to pursuit such all-round algorithms and the contribution of the paper is to empirically answer if
the EDT is the desired algorithm. Although it is not a binary optimization problem but a problem
to appropriately decompose a neural network into modules for higher performance, it has been
shown that when the optimal decomposition is quite obvious, an objective to guide a population
to the optimal structure works well and also that when the optimal decomposition is less obvious,
an objective to bring structural diversity to a population works well [21]. This finding suggests that
a suitable strategy depends on the decomposability of a given problem, and this is similar to the
suggestion from our paper.

2. Related Work

The origin of studies on evolutionary algorithms for binary optimization problems is the study
of the simple genetic algorithm (SGA) [18] that uses binary coding. The schema theory for the SGA
indicates that the number of individuals (binary strings as solution candidates) matching the schema
that has the average fitness value over the population, a low order, and a small definition length,
increases exponentially in the population. Originating from the schema theory, the mainstream
of the binary-coded GA study has been to efficiently solve problems that can be decomposed into
independent sub-problems, and have deceptive structures, which means the optimum solution does
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not match the most promising schema that the schema theory says, and have loci (positions) forming a
sub-problem distant from each other, which means the definition length of the schema representing
the sub-problem is quite large. A set of loci forming a sub-problem is called “linkage”.

Standard operator-based GAs using binary coding cannot achieve efficient searches when their
crossover operators frequently break linkages [1]. Since linkage structures cannot be known in
advance, problems that such operator-based GAs can efficiently solve are limited. Then, genetic
codes that can vary the original linkage structures were proposed for operator-based GAs. Such a
genetic code theoretically enables loosely linked linkages on a phenotype to be tightly linked on a
genotype. As GAs use such a genetic code, the linkage learning GA (LLGA) [22] and the genetic
algorithm using grammatical evolution (GAuGC) [23] were proposed. However, it was experimentally
shown that LLGA is unable to make tightly linked linkages on a genotype for uniformly-scaled
problems [22], in which all sub-problems contribute equally to a fitness value. Additionally, it was
experimentally shown that the population size of the GAuGE required for obtaining a global optimum
of uniformly-scaled deceptive problem increases exponentially as the size of the problem increases [24].

Thus, operator-based GAs using only fitness values of solution candidates were unable to
efficiently solve uniformly-scaled problems with deceptive structures and loosely linked linkages.
The approach that has been attracting attention following this until the present is model-based GAs.
This approach first detects linkages by applying a machine learning technique to a uniformly-scaled
problem and then utilizes a model based on the detected linkages for producing new solution
candidates. If a model to produce new solution candidates with detected linkages is a probabilistic
model, GA using such a model is called PMBGA or EDA as mentioned above. The probabilistic model
provides generation probabilities of values for linkages.

Model-based GAs examine dependencies between variables to detect linkages. Model-based GAs
are classified into two types with respect to a way to examine the dependencies. One type examines
dependencies among multiple variables at one time. The other type always examines pairwise
dependency between two variables or a variable and a cluster or two clusters at one time. The ecGA
and Baysian Optimization Algorithm (BOA) are the former type. The DSMGA, the DSMGA-II, and the
LTGA are the latter type. The DSMGA and the DSMGA-II make groups of variables using a threshold
value after detecting pairwise dependencies. The LTGA represents pairwise dependencies among
variables as a tree structure. Since the tree structure expresses groups of variables, they do not use a
threshold value for grouping variables as the DSMGA and the DSMGA-II do. All those algorithms
conduct a recombination of units of linkage based on the detected linkages. Additionally, the metrics of
dependency among variables for all those algorithms are different in detail but are all entropy-based.

Furthermore, the parameter-less population pyramid (P3) [25] has similarities with the LTGA,
but unlike the LTGA, P3 does not need the tuning of the population size. In the P3, each depth of the tree
structure in the LTGA corresponds to a hierarchy of the pyramid structure. Executable recombination
of unit of linkage differs at each hierarchy, and only when a solution candidate produced by
the recombination has a better fitness value than the best fitness value at the hierarchy of focus,
the produced solution candidate moves up to a higher hierarchy by one. Then, a hill-climbing method
is applied to the solution candidate to obtain better solution candidates around it, which are added to
the same high hierarchy.

The performance of the LTGA for the Multi-dimensional Knapsack Problem (MKP), which is used
as an algorithm for comparison in the paper, was investigated in detail in [17]. The work [17] used all
instances of MKP that can be downloaded from [26]. Chu and Beasley Genetic Algorithm (CBGA) [16]
was used as an algorithm for comparison. In addition, not only the original LTGA but its many variants
that maintain the diversity of the population. The work showed that the mechanisms for the diversity
maintenance always enhance the performance of the original LTGA. However, the performances
of the variant LTGAs are worse than CBGA for all instances. Moreover, the performance of the
original LTGA for MKP is almost equal to that of the LTGA with a randomly produced linkage tree.
Namely, the linkage detection by the LTGA is not effective for MKP. Thus, it has been already shown
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that the LTGA cannot solve MKP efficiently, but as a comparison algorithm for the EDT, the LTGA is
applied to some instances of MKP that can be downloaded from [26] in this paper.

The investigation in this paper is not about detailed performance comparison among multiple
algorithms for decomposable problems but about which approach is suitable for each of the various
problems such as decomposable problems, problems with overlapped linkages, and non-decomposable
problems. Therefore, as a model-based GA which examines dependencies among multiple variables
at one time, the ecGA is used for comparison. As a model-based GA, which examines pairwise
dependencies among variables at one time, the LTGA is used for comparison. Additionally, as an
operator-based GA, the CBGA and the SGA are used for comparison.

The EDT that is a target of investigation in the paper includes a vector of probabilities to
independently decide a value of each variable as a part of individual. However, only use of the
vector of probabilities does not enable recombination of unit of variables forming a sub-problem.
In fact, the EDT does not make groups of variables explicitly, but includes developmental timings that
decide the change speed in a value of variable as a part of individual. Variables to which the same or
similar developmental timing is assigned from a group of variables that have similar evolution speed.
A group of variables that have slow evolution speed can decide their values based on the stabilized
values of variables that have fast evolution speed. In this way, it is expected that sub-problems forming
a decomposable problem are sequentially solved.

3. The Evolutionary Algorithm Evolving Developmental Timings

We investigate the evolutionary algorithm evolving developmental timings (EDT) [11] previously
proposed by us. In this section, we explain the EDT.

3.1. Individual

An individual in conventional EAs is usually equivalent to a genotype. An individual,
which means a genotype, is mapped into a phenotype in a fixed manner. Then, in generational
EAs, each individual is evaluated only once during a generation and proceeds to a selection phase.

Meanwhile, an individual in the EDT consists of two types of vectors. One type is a vector
whose element represents a cycle time of changing a probability to determine a phenotypic value.
This vector is a primary object to which evolutionary operators are applied, and its elements can
be considered to be developmental timings. We refer to this vector and its element as a genotype
and a gene, respectively. The other type is a vector whose element is a probability for determining
a phenotypic value. For example, a probability to generate one at a certain phenotypic position is
an element of the vector. The vector of probabilities varies during a generation, as mentioned later.
Meanwhile, the vector of the cycle times does not vary during a generation.

The lengths of a genotype and a vector of probabilities are the same as the length of a phenotype.
Each position in these two vectors corresponds to the same position in a phenotype.

3.2. Individual Development

As mentioned in the previous section, an individual within a generation has a lifespan and
consists of a genotype and a vector of probabilities. A time in a lifetime of an individual is denoted
by n ∈ [1, N], where N is the algorithm parameter representing the end of the life of the individual.
In addition, let (t1, t2, · · · , t`) and (p1, p2, · · · , p`) be the genotype and the vector of probabilities,
respectively, where ti is an integer number within [1, Tc] and pi is a real number within [0, 1].
Tc (Tc ≤ N) is the algorithm parameter representing the possible maximum cycle time. The genotype
does not vary during the lifetime of the individual, but the vector of probabilities varies during its
lifetime. In this section, we explain how the vector of probabilities varies due to the developmental
timings composing the genotype and how N phenotypes are time-sequentially produced from the
genotype and the vector of probabilities. An overview of the individual development is shown in
Figure 1.
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Figure 1. An overview of the individual development.

The initialization of the individuals is performed as follows. The genotypes are randomly
generated. All elements of the vector of probabilities are set 0.5, which represents the probability with
which zero is generated. A phenotype is generated using the vector of probabilities at each time during
the lifetime of the individual. After every generation of a phenotype, by comparing the current time,
n, and each element of the genotype, t∗, it is determined whether it is time to change the probability to
generate each phenotypic value. If n is a multiple of t∗, then p∗ is modified.

The modification of the elements of the vector of probabilities is performed as follows.
Suppose that the i-th gene is ti ∈ [1, Tc]. The modification of the i-th element of the vector of
probabilities, pi, is carried out every ti time step during the development of the individual. When the
time is a × ti, where a is an integer number, the modification is performed using the phenotypes
generated within (a − 1) × ti to a × ti and their fitness values. For example, when ti is 2, if the
phenotypic values at the i-th position in the phenotypes generated between time of one and time
of two are 1 and 0, and if the phenotypic value at the i-th position in the phenotype with the best
fitness value among these two values, pvb, is 0, then the probability with which 0 is generated on the
i-th position in the phenotype, pi, increases in proportion to the number of 0s in the two phenotypic
values generated, num0. If pvb is 1, then pi decreases in proportion to the number of 1, num1. The new
probability, pnew

i , is determined by Equation (1).

pnew
i =

{
pi + C× num0 if pvb = 0,

pi − C× num1 if pvb = 1,
(1)

where C is the algorithm parameter. This can be considered as a type of learning process, not for
the distribution of all phenotypes in the phenotypic space, but rather for the distribution of pieces of
the phenotypes. Figure 2 also illustrates an example of the modification of the vector of probabilities
during the lifetime of the individual.

The best fitness value among all of the phenotypes generated during the lifespan of the
individual is set as the fitness value of the individual, and the individual proceeds to the selection,
crossover, and mutation phases.
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Figure 2. An example of the modification of the vector of probabilities.

3.3. Crossover Operator

The EDT cannot rearrange phenotypic variables on a phenotype. Therefore, if the EDT uses a
fixed crossover (recombination) operator, for example, one-point crossover, it depends on optimization
problems to be solved whether it can efficiently solve the problems. So, the crossover operator designed
for the EDT does not break good linkages between phenotypic variables that the EDT has identified so
far but brings them to the next generation.

The crossover operator estimates the dependency between phenotypic variables from element
values of the vector of probabilities of the individual. When the i-th element value of the vector of
probabilities of some parent individual, pi, is close to 0 (or 1), the i-th phenotypic value becomes 1 (or 0)
mostly. That is to say, it can be said that the i-th phenotypic variable’s value has almost converged.
We consider that multiple phenotypic variables whose values have almost converged at some moment
depend on each other. Then, the crossover operator copies the i-th gene of that parent individual,
ti, onto the genotype of another parent individual. The reason for not copying element values of
the vector of probabilities but genes of the genotype to decide the developmental timings is that
phenotypic values might have converged incorrectly.

Before applying the crossover operator, the EDT does not conduct selection for reproduction
but just randomly divides all individuals of the present population into pairs thoroughly. When the
population size is P, the number of the parent pairs is P/2, where P is an even number. Each pair of
parent individuals produces two new individuals, so that the total number of individuals produced is
P. The condition in which the i-th gene of a parent individual of focus, ti, is copied onto the genotype
of another parent individual is that the i-th element value of the vector of probabilities of the parent
individual of focus, pi, satisfies pi < TL or pi > TH (TL < TH), where TL and TH are the algorithm
parameters. An application example of the crossover is shown in Figure 3.
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Figure 3. An application example of the crossover operator of the evolutionary algorithm evolving
developmental timing (EDT).

3.4. Mutation and Selection Operators

A mutation operator is applied to each element of the genotype and the vector of probabilities.
The mutation rates for the i-th element of the genotype and the vector of probabilities, pmi, are the
same, and the rate is determined using the i-th element of the genotype, ti ∈ [1, Tc]. The mutation rate,
pmi, is determined by Equation (2).

pmi = 1− ti
N + 1

(2)

This equation indicates that the smaller the cycle time, the larger the mutation rate. In addition,
the mutation rate is always greater than zero.

The mutation to the genotype randomly changes its element value. The mutation to the vector of
probabilities sets its element value as 0.5. Using this mutation operator, a parent-individual generates
R child-individuals. When the population size is P, R × P child-individuals are generated in one
generation. P and R are the algorithm parameters.

A selection operator for survival selects P individuals with better fitness values from among
R× P child-individuals plus P parent-individuals as the population of the next generation.

4. Simulations for Performance Evaluation

In this section, we investigate the search performance of the EDT for decomposable binary
optimization problems, problems with overlaps among linkages, and problems that do not have
relevant structures or whose structures are hard to identify.

4.1. Test Problems

All test problems used in the simulations are shuffled versions. In the shuffled version all variables
of the problem are randomly positioned on the string of a solution candidates. The shuffled versions of
the problems are generally hard for conventional operator-based evolutionary algorithms to optimize,
because the algorithms do not have a mechanism for arranging variables for their operators to
work effectively.

4.1.1. Hierarchical If-And-Only-If Function (HIFF)

The structure of the Hierarchical If-And-Only-If function is represented as a balanced binary tree.
Each leaf node of the tree takes a value of 0 or 1 and a set of leaf nodes is equal to a solution candidate.
The fitness value of each leaf node is 1, no matter what its value is. The value of a parent node in
the tree is 0 when all its children nodes have a value of 0 and the value of a parent node is 1 when
all its children nodes have a value of 1. In all other cases, a parent node is not assigned any value.
The internal and parent nodes have the fitness 2height(X), where X is a node and height(X) is a distance
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from its leaf nodes, if and only if all their children nodes have either 0 or 1. Otherwise, they have the
fitness value of 0. The entire fitness value of a solution candidate is the sum of the fitness values of all
nodes in the tree and each level of the tree contributes to the entire fitness value at the same magnitude.

We call this problem HIFF hereinafter. HIFF is a hierarchically decomposable problem. As the
problem size of `, we use 32, 64, and 128 here.

4.1.2. Hierarchical Trap Function (HTRAP)

The structure of the Hierarchical Trap function is represented as a balanced k-ary tree with k = 3.
Each leaf node of the tree takes a value of 0 or 1 and a set of leaf nodes is equal to a solution candidate.
The bit length of a solution candidate is k to the a-th power, where a is a positive integer number.
The value of a parent node in the tree is 0 when all its children nodes have a value of 0 and the value
of a parent node is 1 when all its children nodes have a value of 1. In all other cases, a parent node
is not assigned any value. In the tree, k nodes in every level of the tree is regarded as k-bit deceptive
problem and the fitness value of a parent node of the k nodes is given by f (u(X))× kheight(X), where X
is a parent node of focus and f (u(X)) is the fitness value of the k-bit deceptive problem represented by
Equation (3).

f (u) =

{
fhigh if u = k,

flow − u× flow
k−1 otherwise.

(3)

At the root node fhigh = 1 and flow = 0.9, while for all other internal nodes fhigh = flow = 1.
The global optimal solution is thus the string of all ones. However, HTRAP biases the search to the
solution of all zeroes on each but the top level. In addition, the top level is fully deceptive with
the all-zeroes solution as a deceptive attractor. We call this problem HTRAP hereafter. HTRAP is a
hierarchically decomposable problem. As the problem size of `, we use 9, 27, and 81 here.

4.1.3. Hierarchically Dependent Function (HDEP)

We devised this test problem previously. The problem includes hierarchical dependency among
variables in terms of fitness values, and it is hard to determine values of variables at higher hierarchies
correctly, and this leads to the incorrect determination of values of variables at lower hierarchies if the
determination at higher hierarchies is incorrect.

The general procedure to produce an instance of the problem is as follows.

1. Generate a connected graph with some topology. The number of nodes in the graph is equal to
the number of variables, that is, the length of a binary string as a solution candidate, `.

2. Assign position numbers of a binary string as a solution candidate, 1, 2, . . . , `, to each of the `

nodes on the generated graph.
3. Define L m-bit problems with a factor of deception on the generated graph. In the graph, nodes

of higher degree form higher hierarchies. Degree means the number of edges. If multiple nodes
of the same degree are included in an m-bit problem, the nodes with smaller position numbers
become those of higher degree.

The general procedure to calculate a fitness value of a solution candidate is as follows. It is a
maximization problem.

a. Assign bits of a solution candidate to corresponding nodes in the graph of the problem instance.
b. Calculate the sum of fitness values of L m-bit problems defined on the graph and then divide

the sum by L. A solution candidate of an m-bit problem consists of m bits that the m nodes
sequentially connected by edges have. More concretely, the solution candidate is formed by
arranging m bits that the m nodes have from higher to lower in terms of hierarchy.

c. Set the value obtained by the division to be a fitness value of a solution candidate of the entire
problem instance.
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In the simulations, we concretely determine the general procedures above as follows.
We generate the topology of the connected graph with the algorithm described in [27].

The topology follows a power law [28] with respect to the distribution of degree. We use two-bit
problems with the factor of deception. One two-bit problem consists of two nodes connected by an
edge. The dependency between two two-bit problems is introduced by setting a node of the lower
hierarchy in one two-bit problem to be a node of the higher hierarchy in another two-bit problem. The
total number of the two-bit problems defined on the generated graph is equal to the number of the
edges of the graph.

Figure 4a shows an example graph representing a problem instance and Figure 4b shows a way to
determine a fitness value of the two-bit problem with the factor of deception. As shown in Figure 4b,
the optimum solution for the two-bit problem is “11”, and the global optimum of the entire problem is
obtained when all bits that all nodes have are 1. The second best solution for the two-bit problem is
“00”. Then, comparing the average fitness value of solution candidates matching the schema of 0* and
that matching the schema of 1*, the schema of 0* is better than that of 1*. So, we can say that HDEP
includes the factor of deception. Due to the factor of deception of the problem, it is likely that the
local optimum in which all bits are 0 is obtained. We call this problem HDEP hereinafter. HDEP is a
problem with overlaps among linkages in which two sub-problems share just one variable. As the
problem size of `, we use 20, 30, and 40 here. Figure 5 shows the degree distributions of the graphs
representing the problem instances used here.

phenotypic position (pp) 1 2 3 4 5 6

pp=3
degree=5

pp=1

pp=2

pp=4

pp=6

pp=5degree=1
degree=1

degree=1
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(a) An example graph representing the problem.
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(b) A fitness value of the 2-bit problem
with the factor of deception.

Figure 4. The hierarchically dependent function (HDEP).
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Figure 5. The degree distributions of three graphs used in the HDEP. The numbers of nodes in the
three graphs, which are equivalent to the problem size, `, are 20, 30, and 40. They are all power-law
distribution.
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4.1.4. N-K Landscape Function (K = 4) (NKL-K4)

This problem is a problem with overlaps among linkages. N represents the size of the problem
and is equivalent to ` that is used as the notation of the problem size in this paper. Each variable of
the problem takes 0 or 1 and the fitness value of each variable depends on its K neighboring variables.
In this paper we use K = 4. We call this problem NKL-K4 hereafter. NKL-K4 is a problem with overlaps
among linkages in which two sub-problems shares four variables. As the problem size of `, we use
20, 30, and 40 here. In NKL-K4, as presented in Figure 6, the fitness value of g in the sequential five
bits, (gr1, gr2, g, g`1, g`2), is determined by referring to Table 1, in which all possible combinations
of values of (gr1, gr2, g, g`1, g`2) and their corresponding fitness values are presented. In addition,
the most-right bit (the most-left bit) is connected to the most-left bit (the most-right bit). The fitness of
a solution candidate is obtained by dividing the sum of fitness values of all variables by N(= `).

ggr2gr1 gl2gl1

0 1 1 0 0 1 0

g gr2gr1 gl2gl1

1 10 0 1

The fitness of 0

is obtained by referring to 
the fitness of "01101" in the table

reordering

Figure 6. The fitness value of g in the sequential five bits, (gr1, gr2, g, g`1, g`2), in NKL-K4.

Table 1. The fitness of g in the sequential five bits, (gr1, gr2, g, g`1, g`2), in NKL-K4. The five-bit string
in the table represents (g, gr1, gr2, g`1, g`2).

5-Bit Fitness 5-Bit Fitness 5-Bit Fitness 5-Bit Fitness

00000 0.036486 01000 0.258027 10000 0.315626 11000 0.101828
00001 0.833081 01001 0.467604 10001 0.575035 11001 0.533017
00010 0.267900 01010 0.243886 10010 0.704985 11010 0.118997
00011 0.011235 01011 0.040266 10011 0.283613 11011 0.546785
00100 0.882766 01100 0.178573 10100 0.661520 11100 0.516638
00101 0.213545 01101 0.803215 10101 0.175868 11101 0.707389
00110 0.778439 01110 0.903812 10110 0.979191 11110 0.038014
00111 0.537816 01111 0.262323 10111 0.886160 11111 0.452097

4.1.5. Multidimensional Knapsack Problem (MKP)

The multidimensional knapsack problem is a problem that does not have relevant structures or
whose structures are hard to identify. The problem is represented by Equation (4).

maximization f (x) =
`

∑
j=1

pjxj,

subject to
`

∑
j=1

wijxj 5 ci, i = 1, . . . , m,

xj ∈ {0, 1}, j = 1, . . . , `,

ci = α
`

∑
j

wij,

(4)
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where ` is the number of items, and m is the number of knapsacks (constraints), and xj is a value of
the j-the variable of a solution candidate, and pj represents a value (price) of the j-th item and wij
represents a cost of the j-th item for the i-th knapsack and ci is the capacity of the i-th knapsack and α

is a tightness ratio. We call this problem MKP hereinafter. The problem instances can be downloaded
from [26] and we use the 10th, 20th, and 30th problem instances that have α of 0.25, 0.50, and 0.75,
respectively, described in “mknapcb1.txt”. The smaller the value of α, the harder the problem. In those
problem instances used here, the number of items (the problem size), `, is 100, and the number of
knapsacks, m, is 5.

When solving MKP, infeasible solution candidates can be generated. Infeasible solution candidates
are repaired to feasible ones by a method a little different from that introduced in [17]. The method for
repair firstly represents the utility of the j-th item as ej =

pj

∑m
i

wij
ci

, and secondly, arranges all items in

ascending order with respect to the utility, and thirdly, removes an item one by one in the order until
the solution candidate becomes feasible, where pj represents a value of the j-th item and wij represents
a cost of the j-th item for the i-th knapsack and ci is the capacity of the i-th knapsack. Larger values of
ej are better. In Reference [17], after removing an item one by one in ascending order of utility from the
present infeasible solution candidate until it becomes feasible, an item not contained in the feasible
solution candidate is added in it one by one in descending order of utility unless it becomes infeasible.
However, in this paper, we execute not the latter addition but the former, removing only.

4.2. Algorithm for Comparison

We used the simple genetic algorithm (SGA) [18], Chu and Beasley Genetic Algorithm (CBGA) [16],
the extended compact genetic algorithm (ecGA) [13], and the linkage tree genetic algorithm (LTGA) [29]
as algorithms for comparison. We made the program of the SGA, the CBGA, and the ecGA by ourselves,
but downloaded the program of the LTGA from the web page of the first author of [29].

The SGA is one of the most basic and traditional operator-based genetic algorithms. It uses a
roulette selection operator, a one-point crossover operator, and a bit-flip mutation operator.

The CBGA is one of the most effective GA for MKP. The CBGA was used as a method for
comparison with the LTGA in [17] and was shown to be far superior to the LTGA for MKP. The CBGA
uses binary representation, binary tournament selection, uniform crossover, and mutation of two
bits. It avoids inserting duplicated solution candidates in the population to maintain the diversity of
the population.

The ecGA is PMBGA. The ecGA uses a marginal product model (MPM) as a probabilistic model
for generating solution candidates. The ecGA builds MPM for generating a next generation of solution
candidates based on the minimum description length (MDL) metric. MPM consists of independent
and non-overlapping sub-groups of the variables, and the ecGA decides the MPM as its MDL becomes
the minimum. To find the MDM with the minimum MDL, the ecGA uses a greedy algorithm.
The algorithm first makes each of the ` variables form a sub-group, and then merges two sub-groups
to maximize the improvement of the MDL of the model at every iteration of the model building. If the
improvement does not occur at some iteration, the model building is finished and the current model
is used for generating a next generation of solution candidates. The sub-groups of the variables in
the eventually obtained MPM are considered to be a single variable and the probability distribution
with respect to the single variable is calculated and solution candidates are generated according to the
probability distribution.

The LTGA is a model building genetic algorithm, but not PMBGA. The LTGA, as the ecGA does,
deals with each variable as a sub-group. Then, it repeats making a pair of sub-groups with the highest
similarity among any pairs a new sub-group, and that results in independent and non-overlapped
sub-groups of variables. The grouping, that is, the clustering, is done by the algorithm called UPGMA.
The similarity between two sub-groups of variables is measured based on the normalized variation of
information. The process of the grouping can be represented by a tree structure, having all variables as
leaf nodes, and the tree is referred to as the linkage tree. The LTGA produces new solution candidates
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with the crossover operator utilizing the linkage tree. The crossover operator is applied between each
solution candidate in the population and one randomly selected from among the population. It copies
values of a sub-group in the linkage tree from the randomly selected solution candidate to the solution
candidate of focus, and only if the solution candidate produced by receiving the values is better than
the solution candidate of focus in terms of a fitness value, the solution candidate of focus is replaced
by the newly produced one. The crossover operator is applied to the solution candidate of focus for
every sub-group in the linkage tree in the same manner.

4.3. Configurations

The stop condition of all algorithms used here is 4× 106 function evaluations.
The population sizes of the EDT are 4, 6, 8, 10, 20, 40, 60, 80, or 100 for all test problems.

The lifetime of the individual, Tc, is d`/2e, d`/4e, or d`/8e, where ` is the problem size as mentioned
before. The parameter of C, which is used for updating probability for determining phenotypic values,
is set to be 0.05. The number of child-individuals generated from a parent-individual, M, is set to be
5. The values of the parameters of the crossover operator of the EDT, TL and TH , are 0.08 and 0.92,
respectively.

The population size P of the CBGA and the SBGA is 2000. The population size P of the ecGA is
5000 for all test problems and that of the LTGA is 200, 300, or 400 for all problems except HIFF and
HTRAP. The population size of the LTGA is 40, 50, or 60 for HIFF with ` = 32, ` = 64, or ` = 128,
respectively, and is 100 or 110 for HTRAP with ` = 27 or ` = 81, respectively.

The SGA uses the crossover rate of 0.9 and the mutation rate of 0.01. The CBGA does not have any
parameter to be set a value except the population size. The ecGA uses the tournament selection with
the tournament size of 2 and the crossover rate is 100% and the mutation rate is 0%. The ecGA builds
the probabilistic model by the greedy algorithm, as mentioned above, and stops running when the
probabilistic model converges. The convergence of the probabilistic model means that the probability
of generating 0 at every position of a solution candidate becomes less than 0.000001 or more than
0.999999. The LTGA stops running when the deviation of the fitness values of all solution candidates
in the population becomes zero.

4.4. Results

The simulation results for HIFF, HTRAP, HDEP, NKL-K4, and MKP are shown in Tables 2–6,
respectively. Then, we did not obtain a result of the ecGA for a problem with the problem size of `
larger than or equal to 100 because it takes an enormous amount of time to obtain a result. In addition,
the results of the LTGA for HIFF and HTRAP are extracted from [7]. In all tables, P represents a
population size of each algorithm and Tc represents a period of lifetime of an individual of the
EDT. Nr represents the number of success runs out of 30 runs. Ne represents the average number of
evaluations for Nr success runs. SDe represents the standard deviation of the number of evaluations
used for calculating Ne. Fa stands for the average of the best fitness values ever-obtained at the end.
SD f stands for the standard deviation of the fitness values used for calculating Fa. In order to decide
the best result for each algorithm, we prioritize Nr, Fa, and Ne as this order, which means Nr has the
highest priority. The best result of each algorithm for each problem of each size is shown by coloring
the value of Nr in red in all tables. In each table, only results for P = 4, 60, 80, 100 are shown for the
EDT and only the best result is shown for the LTGA.
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Table 2. The simulation results for HIFF.

EDT SGA CBGA ecGA LTGA

HIFF (` = 32)

P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 5000 P = 40

Tc=d`/2e Nr 4 18 23 20 9 30 30 30
Ne 5.8×103 4.3×103 5.3×103 6.3×103 1.3×105 1.5×105 5.4×104 2.0×103

SDe 2.5×103 0.6×104 1.1×104 1.2×104 3.0×103 1.2× 105 0.7×104 -
Fa 1.5×102 1.8×102 1.8×102 1.8×102 164.2 192 192 192

SD f 0.2×102 0.2×102 0.2×102 0.2×102 19.3 0 0 0

Tc=d`/4e Nr 2 11 17 20
Ne 6.2×103 3.4×104 4.6×104 5.6×104

SDe 0.9×102 0.5×104 0.7×104 0.9×104

Fa 1.5×102 1.7×102 1.8×102 1.8×102

SD f 0.1×102 0.2×102 0.2×102 0.2×102

Tc=d`/8e Nr 14 10 12 16
Ne 5.2×105 1.7×105 2.6×105 3.3×105

SDe 3.2×105 0.6×105 1.3×105 1.4×105

Fa 1.7×102 1.7×102 1.7×102 1.8×102

SD f 0.2×102 0.2×102 0.2×102 0.2×102

HIFF (` = 64)

P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 5000 P = 50

Tc=d`/2e Nr 0 5 8 8 3 15 1 30
Ne - 2.8×105 3.8×105 4.2×105 1.5×106 1.5×106 1.3×105 9.0×103

SDe - 0.3×105 0.8×105 0.8×105 9.6×105 1.1×106 0.0 -
Fa 3.2×102 3.6×102 3.8×102 3.8×102 332.8 416.0 338.4 448

SD f 0.2×102 0.2×102 0.2×102 0.2×102 49.6 32.0 29.3 0

Tc=d`/4e Nr 1 6 7 5
Ne 8.9×105 4.2×105 2.3×105 2.5×105

SDe - 5.8×105 0.9×105 0.4×105

Fa 3.2×102 3.6×102 3.6×102 3.6×102

SD f 0.4×102 0.5×102 0.5×102 0.4×102

Tc=d`/8e Nr 0 0 3 2
Ne - - 3.2×105 3.5×102

SDe - - 0.4×105 0.2×105

Fa 3.2×102 3.4×102 3.5×102 3.5×102

SD f 0.3×102 0.3×102 0.4×102 0.3×102

HIFF (` = 128)

P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 5000 P = 60
Tc=d`/2e Nr 0 0 0 0 0 0 - 30

Ne - - - - - - - 2.5×104

SDe - - - - - - - -
Fa 5.8×102 6.8×102 7.0×102 6.7×102 471.8 706.0 - 1024

SD f 0.4×102 0.5×102 0.5×102 0.5×102 23.4 71.2 - 0

Tc=d`/4e Nr 0 0 0 0
Ne - - - -

SDe - - - -
Fa 6.2×102 7.3×102 7.3×102 7.4×102

SD f 0.5×102 0.8×102 0.5×102 0.7×102

Tc=d`/8e Nr 0 0 0 0
Ne - - - -

SDe - - - -
Fa 5.8×102 6.7×102 6.9×102 7.0×102

SD f 0.5×102 0.6×102 0.5×102 0.6×102
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Table 3. The simulation results for HTRAP.

EDT SGA CBGA ecGA LTGA

HTRAP (` = 9)
P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 5000 -

Tc=d`/2e Nr 30 30 30 30 30 30 30 -
Ne 1.2×105 4.9×102 4.5×102 6.0×102 3.3×102 2.0×103 4.0×102 -

SDe 1.8×105 4.2×102 3.3×102 6.3×102 3.6×102 1.7×101 4.0×102 -
Fa 6 6 6 6 6 6 6 -

SD f 0 0 0 0 0 0 0 -

Tc=d`/4e Nr 30 30 30 30
Ne 2.3×103 5.5×102 4.9×102 4.1×102

SDe 5.2×103 4.4×102 4.5×102 3.0×102

Fa 6 6 6 6
SD f 0 0 0 0

Tc=d`/8e Nr 30 30 30 30
Ne 6.9×102 6.7×102 5.1×102 4.8×102

SDe 6.3×102 6.2×102 4.5×102 4.0×102

Fa 6 6 6 6
SD f 0 0 0 0

HTRAP (` = 27)

P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 5000 P = 100

Tc=d`/2e Nr 0 3 3 7 0 30 27 30
Ne - 3.3×104 4.3×104 4.3×104 - 2.4×106 3.7×104 1.0×104

SDe - 0.9×104 0.2×104 1.0×104 - 4.2×105 0.9×104 -
Fa 2.3×10 2.5×10 2.6×10 2.6×10 26.1 27 26.9 27

SD f 3.0 1.7 1.7 1.4 0.0 0 0.3 0

Tc=d`/4e Nr 0 2 1 3
Ne - 2.7×104 2.7×104 4.3×104

SDe - 0.2×104 - 0.4×104

Fa 2.3×10 2.5×10 2.6×10 2.5×10
SD f 3.1 2.2 1.2 1.5

Tc=d`/8e Nr 0 1 1 0
Ne - 1.1×105 1.7×105 -

SDe - - - -
Fa 2.3×10 2.5×10 2.5×10 2.5×10

SD f 2.6 1.8 1.4 1.7

HTRAP (` = 81)

P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 5000 P = 110

Tc=d`/2e Nr 0 0 0 1 0 0 0 30
Ne - - - 1.0×106 - - - 6.0×104

SDe - - - - - - - -
Fa 7.3×10 7.7×10 8.3×10 8.5×10 105.3 105.3 105.3 108

SD f 7.3 1.0×10 1.2×10 1.5×10 0.0 0.0 0.0 0

Tc=d`/4e Nr 0 0 0 0
Ne - - - -

SDe - - - -
Fa 7.4×10 7.9×10 8.1×10 7.8×10

SD f 7.2 1.3×10 1.2×10 9.7

Tc=d`/8e Nr 0 0 0 0
Ne - - - -

SDe - - - -
Fa 6.2×10 7.7×10 7.7×10 8.0×10

SD f 6.3 1.0×10 1.2×10 1.2×10
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Table 4. The simulation results for HDEP.

EDT SGA CBGA ecGA LTGA

HDEP (` = 20)

P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 5000 P = 200

Tc=d`/2e Nr 27 30 30 30 8 30 17 30
Ne 5.4×105 3.5×104 2.1×104 3.2×104 4.7×104 8.4×104 2.8×104 3.8×103

SDe 8.6×105 9.5×104 0.7×104 3.3×104 2.8×104 5.0×104 0.8×104 2.1×103

Fa 9.92 10 10 10 9.60 10 9.79 10
SD f 0.27 0 0 0 0.24 0 0.24 0

Tc=d`/4e Nr 30 30 30 30
Ne 4.7×104 4.0×104 4.3×104 6.2×104

SDe 7.1×104 3.5×104 1.4×104 6.8×104

Fa 10 10 10 10
SD f 0 0 0 0

Tc=d`/8e Nr 30 30 30 30
Ne 1.2×105 1.2×105 1.5×105 1.6×105

SDe 1.0×105 0.8×105 0.8×105 0.8×105

Fa 10 10 10 10
SD f 0 0 0 0

HDEP (` = 30)
P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 5000 P = 200

Tc=d`/2e Nr 6 27 28 30 0 30 0 30
Ne 4.7×105 3.0×105 1.1×105 6.1×104 - 1.4×105 - 7.4×103

SDe 5.1×105 9.1×105 2.6×105 1.4×104 - 6.5×104 - 2.0×103

Fa 9.74 9.97 9.97 10 9.46 10 9.69 10
SD f 0.13 0.08 0.07 0 0.20 0 0.01 0

Tc=d`/4e Nr 8 22 25 26
Ne 9.3×105 1.5×105 2.1×105 1.1×105

SDe 5.1×105 3.0×105 5.2×105 2.2×105

Fa 9.77 9.91 9.94 9.95
SD f 0.13 0.13 0.11 0.10

Tc=d`/8e Nr 21 28 26 30
Ne 9.1×105 3.0×105 4.3×105 3.3×105

SDe 11.0×105 2.7×105 5.4×105 1.6×105

Fa 9.91 9.97 9.95 10
SD f 0.13 0.07 0.10 0

HDEP (` = 40)

P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 5000 P = 200

Tc=d`/2e Nr 4 17 19 16 0 19 0 30
Ne 9.4×105 7.4×104 2.1×105 1.5×105 - 2.5×106 - 1.1×104

SDe 7.1×105 2.1×104 4.7×105 1.0×105 - 4.5×105 - 0.03×104

Fa 9.26 9.75 9.82 9.81 9.02 9.72 9.15 10
SD f 0.30 0.29 0.24 0.21 0.04 0.37 0.04 0

Tc=d`/4e Nr 5 11 10 11
Ne 2.3×106 1.4×106 3.9×105 4.1×105

SDe 0.7×106 1.4×106 9.0×105 5.9×105

Fa 9.32 9.55 9.61 9.65
SD f 0.34 0.37 0.31 0.31

Tc=d`/8e Nr 4 3 6 7
Ne 2.7×106 4.5×105 1.2×106 1.8×106

SDe 1.3×106 3.9×105 1.3×106 1.0×106

Fa 9.37 9.42 9.43 9.43
SD f 0.30 0.26 0.33 0.35
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Table 5. The simulation results for NKL-K4.

EDT SGA CBGA ecGA LTGA

NKL-K4 (` = 20)

P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 5000 P = 300
Tc=d`/2e Nr 22 28 30 30 28 30 30 30

Ne 1.4×106 1.2×104 1.5×104 2.4×104 1.2×105 2.7×104 5.7×104 2.2×103

SDe 1.4×106 0.5×104 0.7×104 0.8×104 1.1×105 1.8×104 3.4×104 1.7×103

Fa 0.6552 0.6585 0.6591 0.6591 0.6585 0.6591 0.6591 0.6591
SD f 0.0079 0.0035 0 0 0.0035 0 0 0

Tc=d`/4e Nr 30 30 30 30
Ne 2.5×105 1.1×105 8.9×104 8.2×104

SDe 6.0×105 3.9×105 18.5×104 23.5×104

Fa 0.6591 0.6591 0.6591 0.6591
SD f 0 0 0 0

Tc=d`/8e Nr 30 30 30 30
Ne 1.1×105 8.6×104 9.8×104 7.0×104

SDe 0.9×105 8.2×104 9.3×104 6.8×104

Fa 0.6591 0.6591 0.6591 0.6591
SD f 0 0 0 0

NKL-K4 (` = 30)

P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 5000 P = 300

Tc=d`/2e Nr 9 16 15 19 1 26 4 19
Ne 1.0×106 4.1×104 5.3×104 6.2×104 1.5×106 1.7×106 1.6×105 1.6×104

SDe 1.4×106 1.1×104 0.8×104 1.1×104 - 1.2×106 0.4×105 0.4×104

Fa 0.6498 0.6530 0.6526 0.6543 0.6456 0.6574 0.6422 0.6543
SD f 0.0061 0.0065 0.0065 0.0063 0.0032 0.0044 0.0088 0.0063

Tc=d`/4e Nr 21 17 20 17
Ne 1.2×106 5.6×105 1.2×106 6.8×105

SDe 1.4×106 9.5×105 1.2×106 8.9×105

Fa 0.6552 0.6585 0.6591 0.6591
SD f 0.0059 0.0064 0.0061 0.0064

Tc=d`/8e Nr 12 24 24 23
Ne 2.0×106 1.3×106 1.6×106 1.3×106

SDe 1.0×106 1.1×106 1.3×106 1.0×106

Fa 0.6505 0.6565 0.6565 0.6561
SD f 0.0076 0.0052 0.0052 0.0055

NKL-K4 (` = 40)

P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 5000 P = 200

Tc=d`/2e Nr 2 4 6 6 0 11 0 1
Ne 5.0×105 9.4×104 1.1×105 1.1×105 - 1.9×106 - 1.6×104

SDe 2.2×105 2.5×104 0.3×105 0.3×105 - 1.3×103 - -
Fa 0.6495 0.6503 0.6507 0.6513 0.6366 0.6529 0.6354 0.6447

SD f 0.0031 0.0035 0.0044 0.0039 0.0084 0.0047 0.0080 0.0049

Tc=d`/4e Nr 5 2 5 4
Ne 1.3×106 6.8×104 6.3×105 1.1×106

SDe 1.2×106 0.1×104 11.3×105 1.4×106

Fa 0.6503 0.6489 0.6505 0.6501
SD f 0.0046 0.0032 0.0040 0.0038

Tc=d`/8e Nr 2 5 4 5
Ne 2.8×106 1.9×106 1.1×106 7.9×105

SDe 0.05×106 1.4×106 1.4×106 8.8×105

Fa 0.6456 0.6499 0.6493 0.6495
SD f 0.0071 0.0044 0.0044 0.0048
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Table 6. The simulation results for MKP.

EDT SGA CBGA LTGA

MKP (α = 0.75) (` = 100)

P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 400

Tc=d`/2e Nr 1 0 0 0 0 1 0
Ne 3.2×106 - - - - 9.6×104 -

SDe - - - - - - -
Fa 59,878 59,895 59,912 59,916 58,888 59,960 58,709

SD f 70 40 37 44 170 0.89 198

Tc=d`/4e Nr 2 0 1 1
Ne 2.0×106 - 1.3×106 3.7×105

SDe 0.8×106 - - -
Fa 59,665 59,901 59,911 59,912

SD f 78 62 52 55

Tc=d`/8e Nr 0 0 1 0
Ne - - 8.9×105 -

SDe - - - -
Fa 59,665 59,901 59,911 59,912

SD f 138 51 55 41

MKP (α = 0.50) (` = 100)

P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 400

Tc=d`/2e Nr 0 1 1 0 0 0 0
Ne - 6.6×105 2.7×106 - - - -

SDe - - - - - - -
Fa 44,454 44,474 44,466 44,467 43,717 44,509 43,385

SD f 51 54 46 46 150 18 205

Tc=d`/4e Nr 1 0 0 1
Ne 2.1×106 - - 3.0×106

SDe - - - -
Fa 44,464 44,468 44,472 44,466

SD f 54 54 47 53

Tc=d`/8e Nr 0 1 0 0
Ne - 2.8×106 - -

SDe - - - -
Fa 44,420 44,477 44,463 44,484

SD f 77 54 49 43

MKP (α = 0.25) (` = 100)

P = 4 P = 60 P = 80 P = 100 P = 2000 P = 2000 P = 300

Tc=d`/2e Nr 2 1 2 4 0 0 0
Ne 1.6×106 3.7×106 2.3×105 2.6×105 - - -

SDe 1.3×106 - 0.1×105 0.5×105 - - -
Fa 24,309 24,323 24,331 24,340 24,316 24,343 23,984

SD f 52 44 47 46 33 4 123

Tc=d`/4e Nr 1 1 1 1
Ne 3.3×105 8.2×104 1.6×105 3.1×105

SDe - - - -
Fa 24,315 24,323 24,317 24,334

SD f 44 49 43 41

Tc=d`/8e Nr 1 0 1 0
Ne 3.2×106 - 2.1×106 -

SDe - - - -
Fa 24,314 24,326 24,324 24,310

SD f 48 46 43 42
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Furthermore, we relatively compare the values of Nr, Fa, and Ne among the EDT, the SGA,
the CBGA, and the LTGA. Then, we give the rankings to each algorithm for each problem of each
size—for example, as (1,2,3)—which means that the algorithm has the first ranking regarding the value
of Nr, the second ranking regarding the value of Fa, and the third ranking regarding the value of Ne.
We describe the rankings in Table 7. To simplify the rankings, we also describe the average ranking of
each algorithm for each problem of each size in Table 7.

We summarize all results shown in Tables 2–6 in consideration of the rankings shown in
Table 7 below.

Table 7. Summary of the results of the EDT, the SGA, the CBGA, and the LTGA.

EDT SGA CBGA LTGA

HIFF (` = 32) (3,3,2) (4,4,3) (1,1,4) (1,1,1)
HIFF (` = 64) (3,3,2) (4,4,3) (2,2,3) (1,1,1)
HIFF (` = 128) (2,2,2) (2,4,2) (2,3,2) (1,1,1)

Average 2.444 3.333 2.222 1

HTRAP (` = 27) (2,3,2) (3,2,4) (1,1,3) (1,1,1)
HTRAP (` = 81) (2,4,2) (3,2,3) (3,2,3) (1,1,1)

Average 2.5 2.833 2.166 1

HDEP (` = 20) (1,1,2) (4,4,3) (1,1,4) (1,1,1)
HDEP (` = 30) (1,1,2) (4,4,4) (1,1,3) (1,1,1)
HDEP (` = 40) (2,2,2) (4,4,4) (2,3,3) (1,1,1)

Average 1.555 3.888 2.111 1

NKL-K4 (` = 20) (1,1,2) (4,4,4) (1,1,3) (1,1,1)
NKL-K4 (` = 30) (2,2,2) (4,4,3) (1,1,4) (3,3,1)
NKL-K4 (` = 40) (2,2,2) (4,4,4) (1,1,3) (3,3,1)

Average 1.777 3.888 1.777 1.888

MKP (` = 100, α = 0.75) (1,2,2) (3,3,3) (2,1,1) (3,4,3)
MKP (` = 100, α = 0.50) (1,2,1) (2,3,2) (2,1,2) (2,4,2)
MKP (` = 100, α = 0.25) (1,2,1) (2,3,2) (2,1,2) (2,4,2)

Average 1.444 2.555 1.555 2.888

First, we focus on the EDT and the SGA. For all problems except the fitness values for HTRAP,
the EDT is better than the SGA. The EDT does not seem to be able to overcome the deception.

Next, we focus on the EDT and the CBGA. Their performances are basically similar. For the
two decomposable problems, HIFF and HTRAP, the EDT is slightly worse than the CBGA. For the
two problems with overlaps among the linkages, HDEP and NKL-K4, the EDT is slightly better than
the CBGA for HDEP, but their performances are almost equal for NKL-K4. For the problem whose
structure is hard to identify, MKP, the EDT is slightly better than the CBGA.

Next, we focus on the EDT and the ecGA. For the two decomposable problems, HIFF and HTRAP,
the EDT is worse or equal to the ecGA. Especially for HTRAP, the EDT has much worse performance than
the ecGA. However, the performance of the ecGA becomes worse as the problem size increases.
So, probably, for HIFF that does not include the factor of the deception, the EDT yields better
performance for a HIFF of larger size. For the two problems with overlaps among the linkages,
HDEP and NKL-K4, the EDT is better than the ecGA. For the problem whose structure is hard to
identify, MKP, we do not execute the ecGA due to its high computational cost. So, we do not compare
their results.

Next, we focus on the EDT and the LTGA. For the two decomposable problems, HIFF and HTRAP,
the EDT is worse than the LTGA. Especially for HTRAP, the EDT has much worse performance than
the EDT. For one of the two problems with overlaps among the linkages, HDEP, the EDT is worse than
the LTGA. However, the difference in the performance among them is not as large as that for HIFF or
HTRAP. For another problem with overlaps among the linkages, NKL-K4, the EDT is almost equal to
the LTGA. For the problem whose structure is hard to identify, MKP, the EDT is better than the LTGA.
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Finally, we focus on the SGA, the CBGA, the ecGA, and the LTGA. The ecGA and the LTGA takes
the same basic strategy to solve problems, that is, the strategy that decomposes the entire problem into
independent sub-problems using a machine learning technique. However, for all problems, the LTGA
is better than the ecGA. So, hereafter, we focus only on the LTGA among the ecGA and the LTGA and
discuss the observations mentioned above in the next section. In addition, interestingly, the CBGA is
better than the LTGA for NKL-K4 and MKP, as the EDT and the SGA are better than the LTGA with
respect only to the fitness values for MKP.

4.5. Discussion

4.5.1. Why the EDT Solves MKP Better than the LTGA

Each knapsack in MKP can be considered to be a sub-problem, that is, a linkage. So, a linkage in
MKP is equal to a set of all variables. The size of the linkage in MKP is quite long compared to other
problems used in the paper. In MKP, the value of each item is the same for all multiple knapsacks,
but the cost to put the item in each knapsack is different. Therefore, an optimal set of items that meets
the constraint and yields the maximum sum of values is different in each knapsack. More concretely,
the optimal value of a variable, which represents whether the corresponding item is included in all
knapsacks and takes a value of either 0 or 1, is not the same for all knapsacks. In such a situation,
it would be generally hard to identify variables that highly contribute to better fitness values and
decide values of the identified variables. In this situation, it would be better to decide whether to put
some items in all knapsacks in advance of other items sometimes by force and then under the fixation
of the items, consider some of remaining items, and repeat this until all items are given decisions.
Otherwise, even local optimum is unlikely to be obtained.

As we revealed in our previous studies [9,11], the EDT partially sequentially decides values of
variables even for uniform-scaled problem. That is to say, the EDT brings different evolution speeds to
variables of a problem. So, we first confirm if the EDT exposes the characteristics to the problems used
in the paper. Figure 7 shows the time-variation of the ratio of 1 for each variable and the convergence
curves of fitness values. Note that the horizontal axis representing the number of fitness evaluations
is log-scaled.

We can observe from Figure 7 that the EDT partially sequentially converges values of variables
over the entire search period of time for HDEP, NKL-K4, and MKP. For HIFF and HTRAP, the EDT did
so until the middle phase of the search, but converged them all together in the last phase. This fact is
related to the reason why the EDT cannot solve HIFF and HTRAP better than the LTGA, and discuss
that in the next section.

To reveal what induces the characteristics of the EDT shown in Figure 7, we focus on the
development of an individual. Figure 8 shows the time variation of a ratio of a dominant value
of each variable, 0 or 1, in the development of an individual at the first and the last generations for
each problem. At the time of 1 in the development of an individual, only one phenotype is generated,
so that the ratio of the dominant value is 1.0. After that, the ratio varies at each time.

We can observe from Figure 8 that, for all test problems used in the development of the individual
at the first generation, values of the variables partially sequentially converge. Meanwhile, we can also
observe that in the development of the individual at the last generation, values of almost all variables
converge at the beginning. Thus, we can say that the characteristics of the EDT that it determines
values of variables partially sequentially is induced by the partial sequential convergence of values of
variables in the development of individuals.
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Figure 7. The convergence of the phenotypic values when the problem was successfully solved,
and fitness convergence curves for the runs.
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(a) The first generation when solving
HIFF (` = 128), where the population
size, P, is 100 and the life time, Tc, is
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(b) The last generation when solving
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size, P, is 100 and the life time, Tc, is
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(c) The first generation when solving
HTRAP (` = 81), where the
population size, P, is 100 and the life
time, Tc, is d`/4e.
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(d) The last generation when solving
HTRAP (` = 81), where the
population size, P, is 100 and the life
time, Tc, is d`/4e.
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(e) The first generation when solving
HDEP(` = 40), where the population
size, P, is 100 and the life time, Tc, is
d`/4e.
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(f) The last generation when solving
HDEP(` = 40), where the population
size, P, is 100 and the life time, Tc, is
d`/4e.
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(g) The first generation when solving
NK-LAND (` = 40), where the
population size, P, is 100 and the life
time, Tc, is d`/4e.
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(h) The last generation when solving
NK-LAND (` = 40), where the
population size, P, is 100 and the life
time, Tc, is d`/4e.
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(i) The first generation when solving
MKP (` = 100, α = 0.5), where the
population size, P, is 100 and the life
time, Tc, is d`/4e.
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(j) The last generation when solving
MKP (` = 100, α = 0.5), where the
population size, P, is 100 and the life
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Figure 8. Examples of the time variation of a dominant of each variable, 0 or 1, in the development
of an individual at the first and the last generations. The black bold line in each figure represents the
average of the ratios of all variables.

The characteristics of the EDT confirmed above must be suitable for solving MKP. To understand
how the EDT actually solves MKP, we look at the results of MKP shown in Figure 7i,j. Then, we can
observe that values of the variables converge partially sequentially until the time at which the global
optimum is found. However, after finding the global optimum, some variables’ values do not converge
but keep fluctuating. One of the reasons for that would be that infeasible solution candidates are
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repaired to feasible ones this time. That is to say, multiple infeasible solution candidates with different
values for a few variables can be repaired to the same solution candidate, so that the target variables
for repair would never converge.

Meanwhile, since MKP would have multiple linkages (sub-problems), which is a set of all
variables, and the best variables’ values depend on the linkages, the LTGA is likely to identify the
linkage incorrectly. In addition, the crossover based on the incorrect linkage information is not expected
to yield better solutions. In fact, the fitness values of the LTGA for MKP are worse than those of the
SGA. Since MKP is the shuffled version as mentioned above, the one-point crossover of the SGA is not
expected to work well to the problem. However, the one-point crossover might not be so disruptive.
In addition, the population size of the SGA is larger than the LTGA and it helps the SGA maintain the
diversity of the population.

Similar to MKP, NKL-K4 also have multiple linkages overlapped and the optimal values for the
linkages can be different. However, in NKL-K4, a linkage consists of five variables and the maximum
number of variables overlapped in two linkages is four. The size of the linkage is quite significantly
smaller than MKP’s. Therefore, NKL-K4 seems to be easier for the EDT than MKP. To understand how
the EDT actually solves NKL-K4, we look at the results of NKL-K4, shown in Figure 7g,h. Then, we can
observe that the EDT converges values of the variables partially sequentially by the middle phase of the
search and then takes a long time to find optimal values for very few variables. The average number of
evaluations required for a successful search, shown in Table 5, also supports this observation. That is
to say, we can see that the global optimum is found at the number of evaluations close to the maximum
number allowed.

Meanwhile, the NKL-K4 would basically be easier than MKP for the LTGA because the size of the
linkage is smaller. However, as the problem size of the NKL-K4 becomes larger, the total number of
variables overlapped among linkages simply increases and the total number of overlapped variables
that take different optimal values in the linkages also simply increases, and therefore, the LTGA would
degrade its performance with the increasing size of problem. In fact, the LTGA is inferior to the EDT
with respect to the number of times it finds the global optimum when the problem size becomes larger.

HDEP also has multiple linkages and shares variables among the linkages. However, the linkage
consists of two variables, and the number of overlapped variables between any two linkages is just
one, and the optimal value for the overlapped variable is the same among the linkages. In addition,
the sub-problems that are hierarchically overlapped have the factor of deception. HDEP seems easy
for the LTGA because the number of overlapped variables among the linkages is small and the optimal
value for the overlapped variable among them is the same. In addition, there is a factor of deception
that is hard for the EDT to overcome. Therefore, the LTGA has better search performance than the EDT.

When solving HDEP by the EDT, if a few number of variables cannot obtain appropriate values
prior to others, the EDT cannot yield good fitness values. Those variables correspond to vertexes of
high degree in the graph where vertexes are equivalent to variables. To confirm that the EDT indeed
determines appropriate values for those variables prior to others, convergence of the values of the
variables corresponding to the vertexes of high degree is shown in Figure 9. This result suggests that
for non-uniformly scaled problems in which variables have different contributions to a fitness value,
the EDT can converge values of variables in the order of priorities of the variables.

4.5.2. Why the EDT Solves HIFF and HTRAP Worse than the LTGA

HIFF and HTRAP are decomposable problems. If all sub-problems at a lower hierarchy in HIFF
and HTRAP are not solved correctly, another sub-problem at a higher hierarchy that consist of the
sub-problems at the lower hierarchy do not give any fitness value. The LTGA first decomposes
the whole problem into sub-problems, that is linkages—correctly—and then efficiently create better
solution candidates by the crossover using the linkage information. Although the LTGA would take
more evaluations to solve HTRAP than HIFF due to the deception of HTRAP, the LTGA solves both
problems very efficiently.
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Figure 9. The convergence curve of phenotypic values corresponding to the nodes with the three larger
degrees when solving HDEP.

Meanwhile, the EDT cannot identify linkages in decomposable problems well. In addition, the EDT
increases the appearance frequency of values of variables that yielded better fitness values during the
lifetime of an individual in newly produced solution candidates. This way would not suitable for
solving a deceptive function because its global optimum does not match a schema with higher average
fitness values than other schemas. In fact, we can see from Table 4 that the EDT is much worse than
the LTGA for HTRAP. Furthermore, to find the global optimum of HTRAP, all variables values have
to be set correctly and simultaneously due to the deception existing at the top hierarchy. Therefore,
as shown in Figure 7, even the EDT cannot realize partial and sequential convergence of variables
values right before the global optimum is found, and all variables values converge simultaneously.
Meanwhile, HDEP has not only overlaps among linkages, which the EDT overcomes well, but also the
factor of deception, which the EDT does not overcome well, so that the EDT would not be able to yield
better performance than the LTGA.

4.5.3. Why the Performances of the EDT and the CBGA Are Similar

The EDT has the main search strategy in that it forces us to temporarily fix some variables’ values
first and then determines the remaining variables’ values under the fixation of those variables’ values.
In addition, the EDT has the mutation that guarantees not to fix any variable values. That is to say,
the EDT has a method to maintain the diversity of produced solution candidates. Meanwhile, the
CBGA uses a uniform crossover operator, which mixes variables values randomly and maximally
among two solution candidates, a tournament selection operator with tournament size of two, which
gives very weak selection pressure to existing solution candidates, a bit-flip mutation operator, which
certainly changes values of two randomly selected variables of a produced solution candidate, and
a particular steady-state generation gap model, which replaces the worst solution candidate in a
population by a newly produced solution candidate and does not allow a population to hold duplicated
solution candidates. Thus, the main strategy of CBGA is just the maintenance of diversity of solution
candidates in a population. So, the common element of the EDT and the CBGA is that they are good
at maintaining the diversity of produced solution candidates. That is the basic reason for the similar
search performances among the two.

However, there are small differences in the search performances among them.
For HIFF and HTRAP, the CBGA is superior to the EDT. HIFF and HTRAP require optimization

algorithms to simultaneously correctly solve all sub-problems to obtain their global optima.
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However, as mentioned before, the EDT fixes some variable values prior to others for any problem,
although it is not completely impossible for all variable values to converge at almost same timing, and
therefore, it is hard to achieve the efficient improvement of the solution candidates for those problems.
The CBGA does not have any special procedure suitable for those problems but all variables have
the same evolution speed theoretically, so that it would be easier for the CBGA to improve solution
candidates for those problems compared to the EDT.

For HDEP, the EDT is superior to the CBGA. HDEP requires optimization algorithms to correctly
determine some variables values prior to others to efficiently solve, the main search strategy of the
EDT matches the characteristics of HDEP, and therefore, the EDT would be more effective.

For NKL-K4, the search performances of the EDT and the CBGA are almost the same, but there
are small differences. The EDT obtains the global optimum faster and the CBGA obtains it more
frequently. The CBGA takes a larger number of fitness evaluations to obtain the global optimum not
only for NKL-K4 but also for all other problems used here. That would be because the main search
strategy of the CBGA is just maintenance of the diversity of a population. In addition, it is suggested
that NKL-K4 requires quite high randomness to obtain the global optimum.

Finally, for MKP, the EDT is superior to the CBGA. In MKP, the importance of an item is decided
depending on what items are included together in all multiple knapsacks. That is, the contribution
of each variable to a fitness value depends on other variables. Furthermore, just a few variables’
values can affect the optimal values of many other variables. The EDT, which has not only the main
strategy mentioned above but the ability in maintaining diversity of produced solution candidate,
would handle this problem effectively.

4.5.4. What Configurations Are Better for the EDT

The parameters of the EDT are the population size, P, the length of the lifetime of an individual,
Tc, the degree of change in the vector of probabilities, C, the number of offspring individuals by the
mutation of one parent individual, R, and the threshold values for execution of the crossover, TL and
TH . In the simulations of this section, only P and Tc are changed. Although there are a few exceptions,
the best settings of the parameters of P and Tc are values close to 100 and `/2, respectively, which are
the largest population size and the longest life time. A larger population size yields more diverse
solution candidates, that is, contribution to exploration, and a longer lifetime facilitates local search,
that is, contribution to exploitation. We need further investigation on how to balance the exploration
and the exploitation within the limited number of evaluations, but we can say from the simulation
results here that the maximum number of times of fitness evaluations is large enough, so that maximally
conducting both exploration and exploitation yields better results.

However, one feature of the EDT is that it does not cause very bad search performance even with
very small population size like four. Relying on this feature, the EDT might be able to adaptively adjust
the population size with an initial small population size. The adaptive adjustment of a population size
is one direction for future work of the EDT.

As for the population size of the LTGA, P, the larger the population size is, the search performance
becomes worse for HDEP, NKL-K4, and MKP. The reason for that is unclear at the present. We need
further investigation on this.

5. Conclusions

Evolutionary computation is required to efficiently find good solutions for decomposable binary
problems, binary problems with overlapped linkages, and binary problems that are hard to decompose
or do not have relevant structures. In the paper, we investigated the performance of the evolutionary
algorithm evolving developmental timings (EDT) that we previously developed for such three types of
problems. The unique point of the EDT is that it has both features of probabilistic model-building and
operator-based evolutionary algorithms (EAs) and evolves developmental timings. The investigation
results revealed that the EDT was inferior to one of the state-of-the-art EAs, the linkage tree genetic
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algorithm (LTGA), for the decomposable problems. Especially, the EDT had much worse performance
than the LTGA for the deceptive problems. The investigation results also revealed that, as linkage
detection became harder and harder, due to the increasing number of variables overlapped among
linkages, the performance of the EDT became better than the LTGA. Those results suggest that an
appropriate search strategy is different between decomposable problems and those hard to decompose.
For the decomposable problems, an appropriate search strategy would be to conduct linkage detection
and determination of values for detected linkages independently in this order. For the problems hard
to decompose, an appropriate search strategy would be to fix values of some variables earlier and
under the fixation of some variables’ values, adjust other variables’ values and to conduct such fixation
and adjustment of values repeatedly for various variables. The EDT takes the latter search strategy.
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