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Abstract: Multi-robot systems (MRSs) are currently being used to perform agricultural tasks.
In this regard, the deployment of heterogeneous MRSs will be essential for achieving more efficient
and innovative farming in the future. In this paper, we propose a multiplicatively weighted (MW)
Voronoi-based task-allocation scheme for heterogeneous agricultural robots. The seed points for area
partitioning using a Voronoi diagram are obtained by performing node clustering using a k-means
clustering algorithm. Heterogeneous robots have different specifications for performing various
tasks. Thus, the proposed MW Voronoi-based area partitioning for heterogeneous robots is applied
by considering various weighting factors. The path for each robot is computed such that the robot
follows the nodes, and the computed paths serve as inputs for the workload distribution strategy
that assigns paths to the robots. Simulations and field experiments were conducted to verify the
effectiveness of the proposed approach.

Keywords: agricultural robot; multi-robot system; task allocation; area partition; unmanned
ground vehicle

1. Introduction

Seeding is a fundamental component of agriculture, and substantial labor is required to seed
wide areas. To effectively carry out the seeding process in large fields, seeding machines have
been developed and distributed to farming households [1–3]. However, human-driven seeding
machines are exceedingly large and heavy, with an elevated center of mass that is prone to
instability; in addition, they are difficult to maneuver in several types of agricultural fields. Therefore,
such heavy seeding robots must be replaced with more intelligent and lightweight robots. In addition,
applying seeding using only one seeding machine in a large field is highly expensive and time
consuming. To overcome this, a multi-robot system can be applied to improve the seeding process
through cooperation among the robots.

As the number of agricultural workers across the world continues to decrease, the use of
multi-robot systems (MRSs) for conducting agricultural tasks is becoming more prevalent in large-scale
farms [4–6]. Dividing work among robots in an MRS will improve the productivity of farming
households and the yield per unit area. Agricultural MRSs have provided productivity gains, but to
achieve more innovative farming in the future, heterogeneous MRSs must be introduced for agricultural
use [7].

Heterogeneous agricultural field robots are gaining significant attention with regard to their use
for efficiently accomplishing a variety of agricultural tasks [8,9]. In [10], systems were developed
to determine the optimal paths for allowing heterogeneous vehicles to conduct agricultural tasks.

Electronics 2020, 9, 1813; doi:10.3390/electronics9111813 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-0891-538X
https://orcid.org/0000-0001-9848-6819
https://orcid.org/0000-0002-7249-907X
http://www.mdpi.com/2079-9292/9/11/1813?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9111813
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 1813 2 of 15

The paths were determined based on variables including the number of vehicles, speed, turning radii,
field geometry, tank capacity, and fuel consumption. The problem was expressed mathematically as a
combinatorial optimization problem, in which the optimal order was used to cover the tracks of the
field and the optimal transitions for refilling were found. In a previous study [11], the application
of heterogeneous robots to monitor the environmental variables of a greenhouse was studied.
This multi-heterogeneous-robot system involves the use of both ground and aerial vehicles to provide
flexibility and improve the performance. In [12], heterogeneous robots were used to perform spraying
tasks based on the cooperation of at least two mobile robots that moved from either side of a vine row.
These robots applied this task in the form of followers following a lead robot.

To utilize MRSs for conducting agricultural tasks, a multi-robot task allocation (MRTA) must be
applied to allocate tasks to the robots. MRTA is one of the most challenging problems presented by an
MRS; a set of tasks must be assigned to a set of robots in a manner that optimizes the overall system
performance, subject to a set of constraints [13]. This problem varies over time with events such as
environmental changes; therefore, task allocation is dynamic and must be applied iteratively [14].
There are many more considerations, particularly in the case of a heterogeneous MRTA, given that
robots incur different costs depending on their model [15].

MRTA problems can be taxonomized along three axes [16], and such a taxonomy can help organize
MRTA problems and identify theoretical foundations [17].

• Single-task (ST) robots versus multi-task (MT) robots.
• Single-robot (SR) tasks versus multi-robot (MR) tasks.
• Instantaneous assignment (IA) versus time-extended assignment (TA).

The first axis distinguishes between problems in which each robot is capable of performing only
one task at once and problems in which the robot can perform more than one task simultaneously.
This means that a robot can perform different tasks in sequence. For example, some robots can sense
the environment using a camera at the same time that they apply the seeding. In the second axis,
the single-robot (SR) system can be expressed as exhibiting a weak cooperation [18], which indicates
that the completion of each task requires exactly one robot. In this case, the robots do not know
the states of the other robots and only perform their own tasks as assigned by the central control
system. The multi-robot (MR) system can be expressed as one with strong cooperation [19–21],
indicating that some tasks can require multiple robots. These tasks include carrying a large item that
a single robot cannot handle on its own. In this case, the robots communicate with each other to
exchange their locations and statuses. In the third axis, “instantaneous assignment (IA)” indicates
that the instantaneous allocation of the tasks to the robots is performed without planning for future
allocations. In this case, the robots are unaware of the states of the other robots and only accomplish
their own tasks, which are assigned by the central control system. Here, “time-extended assignment
(TA)” indicates that each robot is allocated several tasks that must be executed according to a given
plan. In this case, the robots should maintain connectivity with each other and remain aware of their
mutual locations and statuses.

In this study, a single-task (ST)–SR-=IA-type MRTA system was developed. Considering the
seeding process, it is not necessary for several robots to collaboratively apply the seeding. Therefore,
there is no need for communication between robots, and each robot only needs to receive commands
from the central control system pertaining to its own driving path for achieving the seeding.
Our approach for MRTA involves partitioning the workspaces according to the number of robots,
signing each sub-area to a robot, and controlling the robot to allow it to conduct the seeding in its
allocated zone. A workspace partition is applied using a Voronoi diagram [22,23]. Voronoi diagrams
are typically used to allocate multi-robot paths or workspaces, and a variety of recent studies have
been conducted on this topic [24–26].

In a recent study [27], we developed a task allocation system based on a Voronoi diagram for a
multi-robot spray system in an orchard. However, there is a limitation in that the area partitioning
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of a multi-robot is not optimized or balanced. To partition the workspace for heterogeneous robots,
not only the location, but also various mechanical specifications should be considered. To improve the
feasibility and practicality of the developed task allocation system for heterogeneous robots, this study
used a multiplicatively weighted (MW) Voronoi diagram to delineate the workspace by assigning
different weights to different types of robots. Thus, an MW Voronoi diagram was used to allocate
workspaces equally to a multi-robot system [28].

In this study, task allocation for heterogeneous agricultural robots conducting a seeding task
is considered. The focus of this approach is to apply a task allocation and coordination using
various factors according to the specifications of the robots. As the objective function of the MRTA
system, we have suggested that a multi-robot efficiently assigns a workspace for the seeding tasks.
The efficiency means that each robot has similar working hours.

The main contributions of this study are as follows:

• An MW Voronoi-based approach for workspace partitioning for a heterogeneous MRS was applied
to conduct seeding tasks.

• The heterogeneous MRTA applied in this study was optimized by considering various weighting
factors associated with the heterogeneous robots.

• An experiment and evaluation were used to demonstrate the applicability of our approach.

The remainder of this paper is organized as follows: In Section 2, seeding robot modeling and
a control algorithm comprising obstacle avoidance control and path-following control systems are
introduced. In Section 3, the heterogeneous MRTA for the seeding task is described. In Sections 4 and 5,
our implementation of this robotic system and related experiments are presented. Finally, Section 6
concludes this paper with a summary of our contributions and a brief discussion of future research.

2. Seeding Robot Control

2.1. Kinematic and Dynamic Modeling

The kinematic and dynamic equations for unmanned ground vehicles (UGVs) (i.e., seeding robots)
are described as follows. We consider n UGVs with defined positions when the coordinate frame is
{U} and the body frame is {D}. The kinematic and dynamic equations of the UGV are as follows:

ẋi = νi cos(ψi)

ẏi = νi sin(ψi)

ψ̇i = ωi

(1)

D(xi)

(
ν̇i
ω̇i

)
+ Q(xi, wi)

(
νi
ψ̇i

)
= µi + $i, (2)

where xi and yi are the coordinates of the UGV with respect to the coordinate frame {U}, and νi and ωi
are the linear and angular speeds, respectively, of the ith robot expressed in {D}, where ψi denotes the
heading angle. Furthermore, µi = [µν

i , µω
i ]

T and $i = [$ν
i , $ω

i ]
T are the control input and the external

force and torque, respectively. In addition, D(xi) ∈ <3 is the positive-definite symmetric inertia matrix,
and Q(xi, ωi) ∈ <3×3 is the Coriolis matrix.

2.2. Distributed Control

We define the following distributed UGV control system for the low-level control of heterogeneous
field robots. The heterogeneous field robots consist of a group of n UGVs, and we denoteRi ∈ <3 as
the position of the ith robot, i = 1, . . . , n. Here, we define the virtual point (VP) λi : t ∈ < 7→ bi(t) ∈ <3

as follows: Ri.
We define the dynamic undirected connectivity graph C := {V , E} by the vertex set V :=

{1, 2, . . . , n}, representing the heterogeneous robots, and the edge set E := {eij : i = 1, 2, . . . , n, j ∈ ni},



Electronics 2020, 9, 1813 4 of 15

representing the connectivity among heterogeneous robots. The dynamic neighbor set Yi of the i robot
is defined as follows:

Si := {j ∈ V : i receives information from j, i 6= j}. (3)

Consequently, the kinematic evolution of the VP λi generated by a distributed UGV control
scheme for the ith robot is as follows:

λ̇i(t) := uo
i + uu

i , λi(0) = Ri(0), (4)

where the two control inputs uo
i ∈ <3 and uu

i ∈ <3 represent the velocity terms.

2.2.1. Obstacle Avoidance

The value of uo
i ∈ <3 is expressed through the following equation as a control input based

on a potential field that allows heterogeneous robots to avoid obstacles through a certain distance
threshold Λo ∈ <+:

uo
i := − ∑

j∈Oi

∂Φo
ij(‖λi − λo

j ‖)T

∂λi
. (5)

Here, Oi denotes the set of obstacles of the ith VP with an obstacle point λo
j that corresponds

to the position of the rth obstacle in the environment. In addition, Φo
ij denotes a specific artificial

potential function that produces a repulsive behavior if ‖λi − λo
j ‖ < Λo and a null behavior if

‖λi − λ
j
r‖ ≥ Λo. When the distance between the VP and the obstacles approaches Λo, the repulsive

behavior infinitely increases. However, if ‖λi − λo
j ‖ → Λo, Φo

ij gradually converges to zero.

2.2.2. Path Following

Here, uu
i ∈ <3 represents the desired velocity input of the VP that is controlled by the planning

algorithm, which is defined as follows:

uu
i = KP(t)ei(t) + KI

∫
ei(t)dt + KD

d
dt

ei(t), (6)

where Ti ∈ <3 denotes the target velocity, and ei(t) = Ti − λ̇i indicates the velocity error between the
target trajectory and the VP. A traditional proportional-integral-derivative (PID) controller widely used
to solve nonlinear control problems was used for path following [29,30]. In addition, KP, KI , and KD
are the parameters of the desired velocity controller.

3. Task Allocation

In this section, we present a method for allocating tasks to heterogeneous seeding robots.
Our MRTA system involves five steps:

1. Creating a node for the seeding task from the agricultural field;
2. Node clustering using a k-means algorithm;
3. MW Voronoi-based area partitioning;
4. Path planning;
5. Seeding.

The agricultural field is designated as the “workspace.” The positions of the nodes are designated
with respect to the agricultural field. The nodes are clustered using the k-means clustering algorithm,
and each workspace is partitioned into sub-areas based on the MW Voronoi diagram. Path planning
for the agricultural task is then executed for each sub-area. Finally, each path plan is sent to the
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robots to be implemented. A robot follows an assigned path, whereas a real-time kinematic (RTK)
global navigation satellite system (GNSS) is used for localization. Figure 1 shows the global MRTA
system flowchart.

Figure 1. Global system flowchart of multi-robot task allocation (MRTA) for heterogeneous
seeding robots.

Our MRTA system is only applicable when the workspace is two-dimensional. Robots are treated
as points in the workspace, but kinematic and dynamic constraints can be considered. To conduct the
task, the robot needs information regarding its location in the workspace. Location information of the
robot must continue to be sent to the central supervisor, which is why the connection of the network
between the robot and central supervisor is essential. Therefore, every robot must be equipped with a
high-accuracy positioning system (RTK-GNSS) to inform about its location, as well as a communication
system with a long communication distance to cover all wide areas.

3.1. Node Creation

Node creation is the prior step necessary for finding the center node for Voronoi-based area
partitioning. The nodes are used to indicate spots where the seeds are to be planted. The robot
must pass over the nodes corresponding to the assigned area and apply the seeding on the nodes.
Thus, the nodes form the basis for the path that the robot must follow during the execution of the
planned path. Therefore, it is crucial to specify the (x, y) coordinates for these nodes.

The nodes are placed at a specific distance (from one another) in the agricultural field (Figure 2).
To create the nodes, aerial images of the agricultural field are obtained using unmanned aerial vehicles.
After the aerial images are obtained, the specific distance (density and pattern) of each node is chosen.
Determining the proper planting pattern and spacing is vital for increasing the yield and decreasing
the interference from the weeds [31]. A specified planting pattern for a specific crop may provide an
optimal space to maximize the vegetative regions, which may subsequently receive a high amount
of solar energy and result in the maximum yield [32]. Therefore, the specific distance of the planting
distance depends on the type of crop. The chosen row and column spacing can affect the crop growth,
weed competition, grain yield, and farm profitability.

Figure 2. Example of specific row/column planting distances. The row and column spacing are
selected based on the type of crop.
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3.2. Node Clustering

To partition an area using a Voronoi diagram, a center node is required. Node clustering using
the k-means clustering algorithm must first be applied to designate the center nodes. The k-means
clustering algorithm is a well-known clustering method that has been studied over recent decades
owing to its simplicity [33]. A k-means clustering approach involves partitioning the gathered data into
n groups of data. Furthermore, the k-means clustering algorithm searches for partitions to minimize
the square error between the empirical mean of the cluster and the node point of the cluster.

Consider a collection of node points P = {xi}, (i = 1, 2, . . . , m) and a collection of points belonging
to a cluster, C = {cj}, (j = 1, 2, . . . , n). Here, µj is the average of cluster cj. The objective of the k-means
algorithm is to minimize the sum of the squared errors for all n clusters. The square error between the
points inside x and µj is determined using Equations (7) and (8).

J(Cj) = ∑
xεCj

∥∥∥x− µj

∥∥∥2
(7)

J(C) =
n

∑
j=1

∑
xεCj

∥∥∥x− µj

∥∥∥2
, (8)

where n is defined as the number of multiple robots required for the seeding task. The k-means
clustering algorithm is a series of processes consisting of four states. First, the number of cluster heads
n and each centroid are initialized. Second, all nodes are assigned to the nearest cluster head. Third,
the location of the new cluster head is calculated such that the distance between the node assigned to
each cluster head and the new head is minimal. Finally, states 2 and 3 are repeated until there are no
changes in any of the cluster heads.

3.3. Area Partitioning

Once the cluster heads of the nodes have been defined, they are designated as the center nodes,
and the workspaces are divided using a Voronoi diagram. A Voronoi diagram is a geometric structure
that assumes the proximity (nearest neighbor) rule when associating each point in the <2 space to
the site point that is closest to it [22]. The Voronoi diagram is an algorithm that divides the space
according to the points belonging to each seed point in the plane space. The entire area is divided into
n sub-areas.

Let the location of facility gi be indicated by Xi = (xi, yi). In addition, let p be an arbitrary
location in the plane indicated by X = (x1, y2). We define G = {g1, g2, . . . , gi} as a collection of
non-overlapping areas in the plane, and define d(p, gi) as the Euclidean distance between points p and
gi, as defined in Equation (3).

d(p, gi) =
∥∥∥X− Xi

∥∥∥ (9)

Here, point p exists within the area gi. The ordinary Voronoi diagram area V(gi) is defined
as follows:

V(gi) =
{

p ∈ <2 | d(p, gi) ≤ d(p, gj), ∀j 6= i.
}

. (10)

To partition the workspace for a heterogeneous MRS, the various specifications of each robot
should be considered. Therefore, we suggest the use of an MW Voronoi diagram to divide the
workspace for different types of robots. To employ an MW Voronoi diagram for the aforementioned
application, the distance between points is multiplied by the positive weights. Based on the above



Electronics 2020, 9, 1813 7 of 15

concept, we now add weight wi to the ordinary Voronoi diagram. The weight wi applied to the robot
ri is determined as follows:

wi = σwl
i + ϕwmv

i + ζwc
i , (11)

where σ, ϕ, and ζ are the gain coefficients, and setting these values to zero leads to the removal of the
effect of the corresponding weight.

Here, wI
i represents the weight from li, which is the distance between the initial location of the

robot and the starting point of the task, which is defined as follows:

wl
i = 1− (

li
∑n

i=1 li
) (12)

li =
∥∥∥Xil

i − Xst
i

∥∥∥ . (13)

Here, Xil = {Xil
1 , . . . , Xil

n} denotes a set of the initial locations of the robots, and Xst =

{Xst
1 , . . . , Xst

n } denotes a set of robot starting points for the tasks.
Furthermore, wmv

i represents the weight derived from mvi, which is the maximum velocity of
the robot, which is defined as follows:

wmv
i =

mvi

∑n
i=1 mvi

. (14)

Here, wc
i represents the weight derived from ci, which is the seed tank capacity as determined by

the robot’s payload, which is defined as follows:

wc
i =

ci

∑n
i=1 ci

. (15)

The elements of the weights li, mvi, and ci are all constants. The units of the distance, velocity,
and payload are unimportant if all units of the robots are unified. In this study, m, m/s, and kg are
used. The weights are multiplied by the corresponding gain coefficients σ, ϕ, and ζ.

Subsequently, the functional form of the weighted distance dMW(p, gi) is defined as follows:

dMW(p, gi) =
1
wi

∥∥∥X− Xi

∥∥∥ , wi > 0. (16)

Thus, the MW Voronoi area VMW(gi) and MW Voronoi diagram VMW(G) are defined as follows:

VMW(gi) =
{

p ∈ <2 | dMW(p, gi) ≤ dMW(p, gj) , ∀j 6= i
}

, (17)

VMW(G) =
{

VMW(g1), . . . , VMW(gn)
}

. (18)

Each of the n robots is assigned to a sub-area, and the seeding task is carried out in each area by
the establishment of a path plan. In Figures 3 and 4, we present the application of VMW(gi).
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Figure 3. The area partition based on a multiplicatively weighted (MW) Voronoi diagram in three robot
cases: (a) the area divided into three sub-areas by the same weights and (b) the area divided into three
sub-areas by the weight of 1.4 for one sub-area.

Figure 4. The area partition based on an MW Voronoi diagram in four robot cases: (a) the area divided
into four sub-areas with the same weights and (b) the area divided into four sub-areas by a weight of
1.3 for one sub-area.

3.4. Path Planning

3.4.1. Agricultural Routing Planning

After a sub-area is assigned to the robot, path planning for the seeding task is applied within the
assigned area. To plan the path, paths are computed through the previously determined node locations
such that the robot follows the nodes. The computed paths serve as inputs for the workload-distribution
strategy, which assigns the paths to the robots. The paths are formed in a straight line along the nodes
in a row. A path is computed by connecting the endpoint node of a row and the node that serves as
the starting point of the next row with a straight line (Figure 5a). The paths are also computed by
considering the initial position of the robot. The path has initial and final points, and the node closest
to the robot’s initial position is the initial point.

However, depending on the rotation radius of the mechanical structure of the robot, it may not be
possible to drive on this path. Therefore, a method for connecting the end-point node of the line with
the node that serves as the starting point of the next row differs depending on the rotation radius of
the robot.

3.4.2. Refill Planning

Each robot possesses a seed tank capacity that is determined based on the payload. Accordingly,
when the seeds in the seed tank are exhausted, the robot has to go to a refill point and recharge its
tank with seeds. The robot moves to the refill point nearest its current location to receive seed refills,
and the path used to achieve this is computed by avoiding nodes that are already seeded. When the
seed refill is complete, the robot returns to the node that was last reached, and resumes the seeding
task (Figure 5b).
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(a) (b)

Figure 5. (a) Example of computing the path. The paths are computed in a straight line along the nodes
in a row. (b) Example of computing refill planning. When the tank is exhausted, the robot moves to the
closest refill point, charges the seeds, and then returns to the next node to resume the task.

4. Simulations

4.1. Experimental Setup

To evaluate the performance of our heterogeneous MRTA system, a simulation was conducted
using a physics-based simulator for a heterogeneous seeding system comprising multiple robots,
as shown in Figure 6. A Pioneer 3-AT model of Adept Inc. and Summit_XL model of Robotnik Inc. were
adopted as the tasking UGVs, which have dynamic characteristics in this simulator. The workspace,
as shown in Figure 6, was approximately 1225 m2 (35 m × 35 m) in the area. Each robot drives at its
maximum speed to the starting point of its corresponding path. After the robot reaches the starting
point, it conducts the seeding by driving at a velocity of 0.6 m/s. The specifications of the robots and
gain coefficients used in the simulations are shown in Table 1. The maximum seed tanks of the Pioneer
3-AT and SummitXL were defined with 300 and 600 seeds based on their payload. An RTK-GNSS
attached to each robot sends data to the control system during the simulation. Experiments were
conducted according to the number of robots, from 3 to 5. The row spacing and column spacing
settings were 2 and 4. Two refill points were placed on each side, with one up and one down.

Table 1. Specifications of heterogeneous robots and gain coefficients used in the simulation.

n Robot l (m) mv (m/s) c (kg) σ ϕ ζ

3
UGV 1 (Pioneer 3-AT) 0.2 0.7 10

1 2 3

UGV 2 (Pioneer 3-AT) 0.25 0.7 10
UGV 3 (Summit_XL) 1.5 3 20

4

UGV 1 (Pioneer 3-AT) 0.2 0.7 10
UGV 2 (Pioneer 3-AT) 0.25 0.7 10
UGV 3 (Pioneer 3-AT) 1.25 0.7 10
UGV 4 (Summit_XL) 2.5 3 20

5

UGV 1 (Pioneer 3-AT) 0.2 0.7 10
UGV 2 (Pioneer 3-AT) 0.25 0.7 10
UGV 3 (Pioneer 3-AT) 1.25 0.7 10
UGV 4 (Pioneer 3-AT) 2.25 0.7 10
UGV 5 (Summit_XL) 3.5 3 20
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Figure 6. Simulator environments for heterogeneous seeding robots.

4.2. Results and Discussion

Figure 7 and Table 2 show the simulation results based on the proposed MRTA system for
heterogeneous seeding robots. When the seeds in the tank are exhausted, the robot has to go to a refill
point and recharge its tank. Because of that, as shown in results, we can see that refill times occurred.
In Figure 7c, UGV 5 did not take time to refill the seeds because the number of seeds that could be
planted by its payload was more than the number of nodes assigned to it. The results show that the task
times of the robots are similar, reducing the overall task time, because the numbers of nodes assigned
to each robot have different weights depending on the robot specifications, despite the differences.
As shown in Table 2, the numbers of nodes in UGVs 1 and 4 differ by approximately 29.38% (114 nodes),
although the difference in task time is not much different at 2.24% (4.91 s). The results confirm that
the proposed MRTA method is efficient because the tasking time is not significant compared to the
difference in the number of nodes. Therefore, we verified that our MRTA approach is applicable to
heterogeneous seeding robots.

Table 2. Results of the simulation.

Metric
n

3 4 5

The number of nodes assigned
Individual values

673 594 502
634 520 424
909 541 417

665 388
589

Mean (±SD) 738.67 (±148.8) 580 (±64.66) 464 (±81.63)

Tasking time (s)
Individual values

346.11 259.8 219.11
346.12 258.16 211.19
344.7 252.15 210.86

264.4 214.2
199.14

Mean (±SD) 345.64 (±0.82) 258.63 (±5.06) 210.9 (±7.36)
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(a) (b)

(c)

Figure 7. Results of simulation. Coverage ratio and number of coverage nodes over time for (a) three,
(b) four, and (c) five robots.

5. Real-world Implementation277

We used two types of UGVs (two Jackal robots and one Husky robot) to implement the proposed278

MRTA system (Fig. 8). An RTK-GNSS, attached to the UGVs, sent data to the controller during the279

experiments. The controller sent the GPS waypoint data to each robot to indicate their required paths.280

During the experiments, communication between the robots and controller was achieved using the281

ZigBee protocol. The settings for the row spacing and column spacing were 0.3 and 0.6 m. The282

workspace area, as shown in Fig. 8 was approximately 360 m2 (12 m × 30 m). Because the workspace283

was small, corresponding to the use of three robots, and the payloads of each robot were adequate284

such that robots did not need to refill the seeds (Table 3). Therefore, in the real-world experiments,285

the weight parameter wc
i was not used because the number of nodes to be seeded was small and the286

payloads of each robot were sufficient and thus the robots did not need to consider the refill time. The287

specifications of the robots and gain coefficients used in the experiments are shown in Table 3. Because288

of wc
i was not considered, gain coefficient ζ was zero.289

Table 3. Specifications of heterogeneous robots and gain coefficients used in the experiment.

l (m) mv (m/s) c (kg) σ ϕ ζ

UGV 1 (Husky) 0.3 1 75
1 2 0UGV 2 (Jackal) 2.2 2 20

UGV 3 (Jackal) 1.4 2 20

Figure 7. Results of the simulation. Coverage ratio and number of coverage nodes over time for
(a) three, (b) four, and (c) five robots.

5. Real-World Implementation

We used two types of UGVs (two Jackal robots and one Husky robot) to implement the proposed
MRTA system (Figure 8). An RTK-GNSS attached to the UGVs sent data to the controller during
the experiments. The controller sent the GPS waypoint data to each robot to indicate their required
paths. During the experiments, communication between the robots and controller was achieved
using the ZigBee protocol. The settings for the row spacing and column spacing were 0.3 and 0.6 m.
The workspace area, as shown in Figure 8, was approximately 360 m2 (12 m × 30 m). The workspace
was small, corresponding to the use of three robots, and the payloads of each robot were adequate
such that robots did not need to refill the seeds (Table 3). Therefore, in the real-world experiments,
the weight parameter wc

i was not used because the number of nodes to be seeded was small and
the payloads of each robot were sufficient; thus, the robots did not need to consider the refill time.
The specifications of the robots and gain coefficients used in the experiments are shown in Table 3.
Because wc

i was not considered, the gain coefficient ζ was zero.
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Figure 8. Experiment conducted in a real-world environment. Three heterogeneous robots (two Jackal
robots and one Husky robot) were used in the experiment.

Table 3. Specifications of heterogeneous robots and gain coefficients used in the experiment.

l (m) mv (m/s) c (kg) σ ϕ ζ

UGV 1 (Husky) 0.3 1 75
1 2 0UGV 2 (Jackal) 2.2 2 20

UGV 3 (Jackal) 1.4 2 20

Figure 9 and Table 4 show the experiment results, which show the time required for the completion
of the task and the coverage ratio. As shown in Table 4, the number of nodes in UGVs 1 and 3 differs
by approximately 9.72% (41 nodes), and the task time differs by approximately 10.88% (14.23 s).
The results confirmed that our MRTA system is applicable to real agricultural fields.

Figure 9. Results of the experiment. Coverage ratio and number of coverage nodes over time.
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Table 4. Results of the experiment.

Metric
n
3

The number of nodes assigned
Individual values

381
397
422

Mean (±SD) 400 (±20.66)

Tasking time (s)
Individual values

117.24
116.52
130.75

Mean (±SD) 121.5 (±8.02)

6. Conclusions

In this study, we developed an MW Voronoi-based workspace partitioning system for the weak
cooperation of heterogeneous seeding robots. The seed points for area partitioning were obtained
through node clustering using a k-means clustering algorithm. MW Voronoi-based area partitioning
for heterogeneous robots was conducted using various weighting factors. The path for each robot
was computed such that the robot followed the nodes, and the computed paths served as an input
for the workload-distribution strategy assigning the paths to the robots. Simulations and real-world
experiments were carried out to evaluate the proposed MRTA system.

There are several possible directions for future research concerning these heterogeneous robots
with regard to improving the efficiency of the agricultural seeding task, including (1) optimization
of the gains used for weighting, (2) connectivity maintenance for immediate responses when a robot
failure event occurs, and (3) more thorough field experimentation.
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