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Abstract: A novel technique for estimating the asymptotic stability region of nonlinear autonomous
polynomial systems is established. The key idea consists of examining the optimal Lyapunov function
(LF) level set that is fully included in a region satisfying the negative definiteness of its time derivative.
The minor bound of the biggest achievable region, denoted as Largest Estimation Domain of Attraction
(LEDA), can be calculated through a Generalised Eigenvalue Problem (GEVP) as a quasi-convex
Linear Inequality Matrix (LMI) optimising approach. An iterative procedure is developed to attain the
optimal volume or attraction region. Furthermore, a Chaotic Particular Swarm Optimisation (CPSO)
efficient technique is suggested to compute the LF coefficients. The implementation of the established
scheme was performed using the Matlab software environment. The synthesised methodology is
evaluated throughout several benchmark examples and assessed with other results of peer technique
in the literature.

Keywords: domain of attraction; polynomial system; chaotic particular swarm optimisation; LMI

1. Introduction

It is challenging to ascertain the domain of attraction (DA) for a point in equilibrium in a
non-linear dynamical system. DA represents those initial conditions where the system state converges
to equilibrium asymptotically [1,2]. Incorporating DA in the design specifications is crucial while
working on control synthesis to ensure system stability [3,4]. Specifically, it would be helpful to gauge
the optimal Lyapunov function that maximises the DA [5–7]. Consequently, it is vital to determine the
shape of this region every time one has to scrutinise the system’s stability [7]. For this reason, we use
the fundamental theory regarding Lyapunov stability (see [1,8,9]). As a matter of fact, for a specific
Lyapunov, the biggest estimated area of asymptotic stability may be characterised as the largest set of
the function, which is in the area where the derivate is negative [10,11].

It is widely understood that it is non-trivial to study the DA. Considering the nonlinear system,
several methods have been suggested for calculating inner estimates, see e.g., [12,13]. For instance,
some classical approaches like the Zubov method [14], La Salle method [15] and the trajectory reversing
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method are studied in [16]. Typically, such techniques use Lyapunov functions and yield inner estimates
for the domain of attraction by providing a set of sublevels for a Lyapunov function. These estimates
are confirmed mathematically by validating those sets as invariant.

For nonlinear polynomial systems, several techniques have been suggested to handle this step.
A majority of these may be used only with this category of system, e.g., Sum of Square (SOS)
relaxation-based techniques, which cause a Linear Matrix Inequality (LMI) [17], Bilinear Matrix
Inequality (BMI) techniques [18], SOS programming [19], and methods employing simulations and
those based on Chebychev points [20]. The interest in enlarging the stability and robustness domain
for nonlinear optimal control systems with parametric and structural uncertainties is attractive and
well justified for practical process implementation [21,22].

This paper further assesses the potential benefits of using the stability theory for approximating
DA using a simpler shape for estimation. A Lyapunov function is used to describe the shape, and it
is typically a quadratic function. For a specific Lyapunov function, the calculation of an optimal DA
estimate (which is the biggest estimate for the selected shape) is equivalent to solving a non-convex
distance problem.

Considering this context, a problem of significant importance is the choice of quadratic LF
(QLF). The selected LF for estimating the DA significantly affects the volume of the optimal estimate.
It is obvious that the optimal quadratic LF (OQLF) is that which designates the function that provides
for maximum volume. Discouragingly, the calculation of the OQLF is akin to solving a non-convex
optimisation [23]. The Largest Estimate of DA (LEDA) must be calculated for a given QLF after which
the OQLF may be determined.

Our study uses the enlargement synthesis technique substantiated in [24] and extends it to use an
evolutionary approach in order incorporate an estimator of a candidate Lyapunov function [6].
The problem of optimising the DA is converted to a generalised eigenvalue problem (GEVP).
It is assumed that the Lf describing the form of the largest estimation of the attraction region is
a polynomial. Using identified relaxations that have been established around the polynomial sum of
square, it is revealed that a lower bound of the largest attainable attraction region can be computed
through a generalised eigenvalue problem. This later is considered to be a quasi-convex LMI
optimisation where the solution can be computed efficiently.

In this paper, an original strategy aiming to enlarge domains of attraction of stable equilibriums
based on maximal Lyapunov functions is developed. The key idea consists in searching the coefficients
of the best level set of a Lyapunov function. This latter is supposed to be fully enclosed in the region of
negative definiteness of its time derivative. A heuristic optimisation methodology is established, which
involves a tangency constraint between the level sets and requirements on the sign of the Lyapunov
function. Such constraints help in evading a large number of potential local solutions of the nonlinear
optimisation routine. In a first step, a CPSO [25] algorithm is implemented to estimate the maximal
Lyapunov function coefficients. Subsequently, an iterative technique based on GEVP is set up for the
resultant LF, which provides the maximal estimate for the DA.

The largest varieties of stabilising control methods considered for nonlinear systems are effective
only within a definite domain of the state variables space, titled the attraction domain. The calculation
of this domain is generally a delicate task and is time-consuming. This paper offers an efficient
computational CPSO approach that is validated to estimate the region of stable equilibrium points for
the class of nonlinear polynomial systems.

The main objective of this work consists of designing a swift optimising Lyapunov-based technique
that allows the identification of the Lyapunov function coefficients. Subsequently, it exploits the resultant
function in a heuristic optimising algorithm to maximise the region of attractions for the class of
nonlinear polynomial systems. The synthesised technique is computationally valid and is efficient for
real-time applications. In this technique, after a Lyapunov function candidate is computed, a CPSO
algorithm estimates the maximal sublevel set of the Lyapunov function such that the time derivative
is negative definite through the defined sublevel set. The proposed technique is implemented to
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estimate the attraction region of numerous benchmark nonlinear systems, which have been previously
examined in the related literature, to confirm its aptitude in an analytical study in comparison with
pre-existing approaches.

The motivation of this work is to develop an evolutionary synthesised technique that will be
appropriate for estimating enlarged DAs of polynomial nonlinear systems. Unlike most existing works,
the designed algorithm is running with non-fixed LF. Indeed, the CPSO is currently optimising the LF
coefficients and continuously running a quasi-convex LMI optimisation problem. Moreover, the GEVP
is considered to be the objective function for the CPSO, which is an original technique of estimation
where a meta-heuristic approach is combined with a deterministic technique.

As a matter of fact, it is necessary to synthesise a computationally operative algorithm that
converges to a maximised DA in a significantly reduced time. Regardless of the benefit of contributing
in a better enlarged accurate DA at less time, CPSO can be very useful for real-time control problems.
It is likewise valuable for the control strategies using online sequential composition formalism as
described in the literature. For assessing these algorithms, certain benchmark functions are deployed.
The simulation results highlight that applying the quadratic Lyapunov function rather than using
random sequences enhances the performance of evolutionary algorithms.

After this introduction, the paper is organised as follows. In Section 2, we give a general description
of the class of systems deliberated and recall some fundamental notions. In Section 3, we set up the
LMI-based iterative algorithms to devise the Lyapunov function which maximises the DA estimate.
Section 4 discusses the CPSO-based parameter selection approach. Section 5 presents the simulation
outcomes of a renowned numerical example. A comparative study with other methods and a results
analysis and discussion technique will be established to evaluate the efficiency of the synthesised
strategy in Section 6. A brief conclusion is offered in Section 7.

Standard notation has been used in this paper, where R represents the set of real numbers,
AT denotes the transpose of the real matrix A; A > 0 (A ≥ 0) positive definite (semi-definite) matrix;
In is the identity matrix n× n; det (A) represents the determinant of A; A⊗ B refers to the Kronecker
product of matrices A and B; s.t. is used to denote subject to.

2. Problems Formulation and Fundamentals

2.1. LEDA and Basic Notations

Given a nonlinear system represented by the following state equation:

.
x = F(x) + G(x)U(x) (1)

wherein x ∈ Rn is the state vector U(x) is the control input, F(·) and G(·) are smooth functions
describing the system dynamics.

Model (1) can be described by the autonomous form written as:{ .
x = f (x)
x(0) = x0 (2)

where the system state vector and the components of f (x) are polynomials in x such that f (0) = 0.
The origin should be the equilibrium point under investigation, which is asymptotically locally stable.
This provides a compact description for the systems under study.

Letψ
(
t, x0

)
∈ Rn be the solution for (2) in x(t). The region of asymptotic stability of the equilibrium

point is the set.

Υ =
{
x0
∈ Rn : lim

t→+∞
ψ
(
t, x0

)
= 0n

}
. (3)
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Let V(x) ∈ R represent a positive definite radially unbounded LF, which proves that the system
origin is asymptotically locally stable. Then, the set

ϑ(γ) =
{
x : V(x) ≤ γ

}
. (4)

is an estimation of the region of stability if ϑ(c) ⊂ Φ, where Φ =
{
x :

.
V(x) < 0n

}
∪ {0n} and

.
V(x) =

(
∂V(x)
∂x

)
. f (x) (5)

is the LF V(x) time derivative among the trajectories of (2).

Theorem 1 [26]. A closed set ϑ ∈ Rn, which includes the original as equilibrium, may estimate the DA
for the system (2) origin provided:

1. For system (2); ϑ is an invariant set.

2. V(x) which is a positive definite function can be established such that
·

V(x) is negative definite within ϑ.
ϑ(γ) represents the Largest Estimated Domain of Attraction and

γ = inf
x∈Rn

V(x)

s.t.
.

V(x) = 0.
(6)

In fact, for sufficiently small neighbourhoods around the origin
.

V(x) is negative since V(x)
establishes the asymptotic stability of the equilibrium point. Hence, in the domain such that

.
V(x) is

negative definite, the biggest set ϑ(γ) included is attained for the smallest γ s.t. ϑ(γ) reaches a state x
at which

.
V(x) vanishes.

To obtain the maximal enlarged region of attraction a specific optimisation problem is formulated
in this work. This latter specifically involves a tangency condition between the constraints on the sign
the Lyapunov function and the level sets. Such constraints help in avoiding a big number of potential
false solutions of the nonlinear optimisation model. The key idea consists of searching the optimal
level set of a Lyapunov function which is fully included in the region of negative definiteness of its
time derivative. Performing the optimisation will make it possible to determine the tangent point
between V(x) and its derivative

.
V(x). As can been seen in the sequel of the analytical description of

this paper, this particular point is providing the maximal region of the attraction region which satisfy
the prescribed constraints given the stability Lyapunov theory.

2.2. Representattion of Polynomials with Complete Square Matricial Form

The comprehensive set of polynomial possible representations of expressed in a quadratic form is
provided by the complete square matricial representation (CSMR) (refer to [24], where homogenous
forms have the CSMR similarly defined; the CSMR is also referred to as the Gram matrix). Let the
degree of a polynomial p(x) be less or equal to 2m. This is achieved when avoiding linear terms and
constants. Let x{m} ∈ Rς(n,m) be the vector containing all monomials of degree less or equal to m in x
(i.e., without redundant elements in the mth Kronecker power of vector x):

x{m} =
[
x1, . . . , xn, x2

1, x1x2, . . . , x2
n, . . . , xm

n

]T
(7)

where the dimension ς(n, m) of vector x{m} is given by:

ς(n, m) =
(n + m)!

n!m!
− 1 (8)
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Computing the p(x) complete square matrix form with respect to the vector x{m} leads to:

p(x) = x{m}
T
P(α)x{m} (9)

wherein:
P(α) = P + L(α) (10)

and the constant element P ∈ Rς(n,m)×ς(n,m) is any appropriate symmetric matrix such that
p(x) = x{m}

T
P(α)x{m}, x{m}

T
denotes the transpose of x{m} and α ∈ Rτ(n,m) is a vector of free parameters

and L(α) is a linear parameterisation of the set:

` =
{
L = LT : x{m}

T
L(α)x{m} = 0 ∀ x ∈ Rn

}
(11)

with:
τ(n, m) =

1
2
ς(n, m)(ς(n, m) + 1) − ς(n, 2m) + n (12)

For further details on the coefficients ς(n, m) and τ(n, m) the reader can consult Ref. [24].
The matrices P(α) and P are respectively called complete square matrix form and square matrix

form of the polynomial p(x). It comes out that p(x) is a sum of polynomial squares if and only if there
exists α such that P(α) ≥ 0 or P(α) > 0. Therefore, a sum of polynomial squares p(x) is said to be
definite if p(x) vanishes only for x = 0n.

3. Estimating the Asymptotic Region Using Parametric Lyapunov-Based Techniques

Calculating Lower Bounds Dependent Parameter

The initial step towards determining the domain of attraction is the introduction of a parameterisation
for the square Lyapunov form V(x; G) representing the system origin Equation (2). The conditions
ensuring that V(x; G) is a LF for the system origin can be stated as:

V(x; G) is radially unbounded and positive definite;
.

V(x; G) is negative definite locally.
For a homogenous Lyapunov function, the square matricial representation (SMR) is expressed as

V(x; G) = x{ηv}
T
Gx{ηv}; G = GT (13)

where x{ηv} ∈ Rd is a vectorial function comprising all monomials wherein the degree ηv in x and
G = GT

∈ Rd×d is a symmetric matrix comprising the parametric coefficient of the Lyapunov function.

G =



θ11 θ12 · · · · · · θ1d
θ12 θ22 · · · · · · θ2d

...
... θii · · ·

...
...

...
...

. . .
...

θ1d θ2d . . . . . . θdd


(14)

where θi j; i, j = 1, . . . , d represents the weighting coefficients for the Lyapunov function.
Let the ellipsoidal set associated with the positive definite QLF be defined as

ϑ(G,γ(G)) =
{
x ∈ Rn : x{ηv}

T
Gx{ηv} ≤ γ(G)

}
. (15)

while the negative time derivative region is defined as

Φ(G) =
{
x :

.
V(x; G) < 0

}
∪ {0} (16)
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Then, under that condition that ϑ(P,γ(pG)) ⊆ Φ(G), it can be said that ϑ(G,γ(G)) is an ellipsoidal
estimate of the DA.

To handle the estimation problem, it should first be converted to an optimisation problem, where
the LEDA should be minimised and is represented by γ(G) where

γ(G) = inf
x∈Rn

V(x; G)

s.t.
.

V(x; G) = 0.
(17)

This note considers that the problem is the calculation of the largest achievable LEDA in the
considered matrix G.

Definition 1 Considering a feasible positive definite QLF V(x; G) for system (2), the corresponding LEDA of
the origin is stated by

γ∗ = supγ(G) (18)

The optimal positive definite QLF is described as the QLF that maximises the DA volume.

Definition 2 [17] For system (2), V(x; G∗) = x{ηv}
T
G∗x{ηv} specifies the optimal positive definite QLF where

G∗ = argmaxΩ(G) (19)

and

Ω(G) =

√
(γ(G))n

det(G)
(20)

It may be observed that the calculation of optimal positive definite QLF is akin to solving a double
non-convex optimisation problem. In fact, Ω(G), which represents the volume function, reveals not only
the local maxima, but also the global, which is represented by Ω(G∗). Additionally, even the evaluation
of Ω(G) necessitates the computation of γ(G), which refers to the solution for the non-convex distance
problem (17).

To be able to address (19), it is evident that a specified scalar γ is a lower bound of γ∗, i.e., γ < γ∗ is
easily provable if

·

V(x; G) + (γ−V(x; G)) < 0 (21)

This condition can also be outlined in the following lemma.

Lemma 1: Let γ ∈ R be a given scalar and define the polynomial

r(x,γ, e(x), V(x; G)) =
·

V(x; G) + (γ−V(x; G))e(x) < 0 (22)

where e(x) is any positive definite polynomial, then γ ≤ γ∗

To check the condition in Lemma 1, the following polynomials are introduced

d f (x) =
∂V(x; G)

∂x
f (x) (23)

The polynomial degrees of V(x; G) and
·

V(x; G) = d f (x) are 2ηv and ηd respectively. If we choose
e(x) degree to be 2ηe such that

ηe ≥
ηd

2
− ηv (24)
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Then the polynomial r(x,γ, e(x), V(x; G)) =
·

V(x; G) + (γ−V(x; G))e(x) has a degree of 2ηr, which
is also the degree of V(x; G)e(x), where ηr = ηv + ηe.

To get an appropriate form of the optimisation problem, we use the complete square matricial
representation (CSMR) and the square matricial representation (SMR) of the polynomials [24].
This implies that V(x; G) , e(x) and r(x,γ, e(x), V(x; G)) may be written using the SMR with regards to
the vectors x{ηv}, x{ηe}, and x{ηr}, that do not have the constant term, that is

V(x; G) = x{ηv}
T
Gx{ηv} (25)

e(x) = x{ηe}
T
Ex{ηe} (26)

r(x,γ, e(x), V(x; G)) = x{ηr}
T
R(α,γ, E, G)x{ηr} (27)

where G, E and R(α,γ, E, G) denote symmetric matrices having suitable dimensions. The matrix
R(α,γ, E, G) is specified as

R(α,γ, E, G) = D f (α, G) + γQ(E, G) − Q̃(E, G) (28)

where D f (α, G) denotes the CSMR matrix for d f (x), while E and Q(E, G) represent any SMR matrices
of, e(x) and V(x; G)e(x), respectively

Proposition 1: If γ̂∗ is defined as
γ̂∗ = sup γ

s.t. R(α,γ, E, G) < 0
(29)

Then γ̂∗ ≤ γ∗

Since in R(α,γ, E, G), γ multiplies the parameters of E, (28) leads to a non-convex problem.
To move past this difficulty, (29) is reformulated in a GEVP. To proceed, the following preliminary
result is required.

Lemma 2 [24]. Suppose that there exists a polynomial

Q(x, e(x), G) = (1 + µV(x; G))e(x) (30)

where µ is a scalar and the SMR matrix is specified below:

Q(E, G) = KT
([

1
µG

]
⊗ E

)
K (31)

Kx{ηr} =

[
1

x{ηv}

]
⊗ x{ηs} (32)

Theorem 2 [24]. Let V(x; G) = x{ηv}
T
Gx{ηv} denote a specified Lyapunov Function having G > 0 and let µ

denote any scalar. The lower bound γ∗ in (29) is specified as

γ∗ =
−t

1 + µt
(33)

where t is the solution of the GEVP.
t = inf

α,t,E,G
t (34)

s.t.
{

1 + µt > 0
tQ(E, G) > D f (α, G) − Q̃(E, G)

(35)
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Using this GEVP technique, we can establish a domain of attraction. Nevertheless, this technique
is usually limited to systems and arbitrary Lyapunov functions that can be expressed by polynomial
equations. This paper presents an alternative by employing the evolutionary approach to estimate the
optimal Lyapunov function.

4. Main Results

This section presents a strategy for choosing good parameters for the optimal positive definite
QLF. The fundamental idea is to determine the matrix G, which maximises the volume of an ellipsoid
having a fixed shape and is included in Φ(G) in (16), which denotes the negative time derivative area.
It is reasoned that to maximise the size of the LEDA, an appropriate strategy is to broaden the set Φ(G),
which itself contains the LEDA.

4.1. Computation of Optimal Positive Definite QLF: Evolutionary Approach

Let ϑ(G,γ(G)) =
{
x ∈ Rn : x{ηv}

T
Gx{ηv} ≤ γ(G)

}
denote a specified ellipsoid domain. The volume

of the ellipsoid specified by ϑ(G,γ(G)) is proportional to

√
(γ(G))n

det(G)
, and therefore the optimisation

problem (17) searches for the biggest ellipsoid inside the region Φ(G) for some feasible QLF matrix G.
The coefficients for parameters G of the Lyapunov function are evaluated using evolutionary

techniques. The user-defined candidate Lyapunov function, as well as the corresponding domain

and the condition specified by Theorem 1, are validated for V(x; G) being positive and
·

V(x; G) being
negative. In the case that these conditions are not met, GEVP (34) optimisation is not feasible; hence,
we estimate repeatedly the coefficients for the Lyapunov function until the GEVP optimisation has a
solution. The basis for this criterion is that to obtain a large optimal estimate of the parameters G using

Evolutionary Algorithms, the volume

√
(γ(G))n

det(G)
should be maximal. Considering the evolutionary

algorithms, we specifically used swarm optimisation and chaotic particle swarm optimisation.
The algorithm begins with V(x; G) being initialised as the V(x; G) = V0(x; G0) = γ0 initial domain.
Our algorithm relies on determining the matrix G that maximises the volume of a fixed-shape

ellipsoid whose boundary falls inside the negative time derivative region (16).

4.2. Particle Swarm Optimisation

4.2.1. Motivation on PSO Methods

Swarm intelligence is a crucial subject of evolutionary computing research. It investigates the
mutual natural behaviour of distributed, self-organised processes. The stimulation often originates
from natural, biological organisms [27]. An interesting example of swarm intelligence is the PSO.

This latter is a meta-heuristic global optimisation technique that is now one of the most commonly
used optimisation methods.

In this paragraph, a short comprehensive exploration of PSO is presented. As an efficient optimising
technique, PSO has seen several rapid advances, such as fuzzy PSO, chaotic PSO, hybridisation with
genetic algorithm, artificial bee colony, discrete optimisation, extensions to multi-objective optimisation,
etc. [27].

One of the most promising fields in which PSO has been implemented is in automation and
controlled systems. The PSO algorithm has been adopted by each research domain that follows a
definite scheme and has approved swarm intelligence methods for attaining optimal performance.
Several proposed control schemes have been based on linear matrix inequalities with parameters that
are tuned by PSO [28].

Numerous research subjects have been fully addressed in the literature [29], including supply
chain management, floor planning design, weapon target assignment issues, strategic industrial
coordination and symbolic regression analysis.
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Many other works investigate analytical analysis problems in control theory. It is essentially
a matter of solving nonlinear problems that are difficult to address with conventional analytical
techniques. The objective of the remaining part of this paper is to pave the way in order to implement
a hybrid estimating technique merging between CPSO and an LMI technique.

4.2.2. Definition

PSO optimisation is a population-based technique. The method’s computational efficiency
and simplicity are the reason it has seen widespread use in several fields, especially for parameter
optimisation [30]. In PSO, the individual agents are referred to as “particles”. “Position” refers to
a vector of the candidate solutions and is associated with every particle. Additionally, a “velocity”
operator regulates the approach to a globally optimal solution [31]. The literature shows that PSO
is one of the most efficient methods for solving non-smooth global optimisation problems. The key
advantages of such a method can be summarised as follows:

It is a derivative-free technique, unlike comparable meta-heuristic optimisation methods.
It is simple in its coding implementation and fundamental concept compared to other heuristic

optimisation methods.
It is less sensitive to the features of the objective function when compared to the conventional

analytical techniques and other heuristic approaches.
Compared with other heuristic optimisation techniques, PSO has a limited number of parameters:

the acceleration coefficients and the inertia weight factor. Equally importantly, the sensitivity
of parameters to the optimal solutions is considered to be less delicate compared to other
heuristic algorithms.

PSO appears to be less dependent on a set of initial points when evaluated with other evolutionary
methods, including that the algorithm convergence is robust.

PSO methods can engender high-quality solutions within a shorter calculation time and with
more stable convergence features than other stochastic techniques.

Based on the above characteristics, we opted to merge CPSO technique with an LMI-based
method to obtain more accurate DA in less time. This can be very beneficial for real-time control
problems. It is similarly constructive for control techniques using online sequential composition
concepts. A comprehensive presentation of the PSO algorithm, variants of the algorithm, algorithm
convergence analysis, and parameter tuning is specified in the references [32–35], and references cited
therein. “Position” refers to a vector of the candidate solutions and is associated with every particle.
Additionally, a “velocity” operator regulates the approach to the globally optimal solution.

In the case pertaining to this study, it is only necessary to ensure that a connection exists between
the “Stability world” and the "PSO world” using the position of a particle [36]. The decision variables
that represent the parameters to be evaluated are specified as the position vector of the ith particle,
as presented below:

G(i) =



θ
(i)
11 θ

(i)
12 · · · · · · θ

(i)
1d

θ
(i)
12 θ

(i)
22 · · · · · · θ

(i)
2d

...
... θ

(i)
j j · · ·

...
...

...
...

. . .
...

θ
(i)
1d θ

(i)
2d . . . . . . θ

(i)
dd


, i ∈

{
1, . . . , p

}
(36)

where p is the swarm size (number of particles).
In every iteration k, the velocity for every particle in the swarm is updated, and the positions are

calculated using the following equations:

v(i)k+1 = wk.v(i)k + c1.r1.
(
G(i)

pk −G(i)
k

)
+ c2.r2.

(
G(i)

gk −G(i)
k

)
(37)
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G(i)
k+1 = G(i)

k + v(i)k+1 (38)

G(i)
k denotes the current candidate solution encoded using the position of the ith particle during

iteration k and G(i)
k+1 denotes the updated particle position. G(i)

k ∈ [Lk, Uk], 1 ≤ k ≤ N where Lk and Uk

denote the lower and upper bounds for the nth dimension, respectively. v(i)k+1 and v(i)k are the velocities

possessed by the new and old particles, respectively. G(i)
pk denotes the best position, also called the

“personal best”, which the ith particle attained in the past. G(i)
gk denotes the best position between the

neighbours of every particle and is also referred to as the “global best”. r1 and r2 denote two random
numbers in the range (0, 1) and c1 and c2 denote the coefficients of acceleration, which regulate how
far a particle will reach during a single generation. The inertia weight wk determines the effects of
the previous particle velocity on its current velocity. kmax defines the maximum number of iterations.
Generally, the weight of inertia is decreased in a linear sense from 0.9 to 0.4 during the progression of
the exploration. This is done to appropriately balance the global and local searching of the swarm
capabilities. The corresponding equation for inertia weight wk can be specified as:

wk = (wmax −wmin) ×
kmax − k

kmax
+ wmin (39)

In Equation (39), wmax and wmin have values of 0.9 and 0.4, respectively. Iteration max refers to
the maximum iterations permitted.

4.2.3. PSO Stability

The conditions necessary and sufficient for swarm stability were derived in [34] and are stated below

c1 + c2 < 4 (40)

and
c1 + c2

2
− 1 < wk < 1 (41)

Such conditions ensure that the system converges to a stable equilibrium. Nevertheless, it cannot
be said with absolute certainty that the proposed solution would be the global optimum.

4.2.4. Computation of Fitness Function

The fitness function computation is the primary operation that needs to be conducted while
executing a PSO algorithm. Accordingly, the evaluation of the particle quality is done using the

volume of the domain of attraction. Ω
(
G(i)

)
=

√
(γ(G(i)))

n

det(G(i))
is the objective function that needs to

be maximised. Given the position G(i) for the ith particle, the domain of attraction γ
(
G(i)

)
, and the

matrix G(i), the process specified in Algorithm 1 may be used to evaluate the fitness function for the
ith particle.
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Algorithm 1 Evaluation of the fitness function

Require: V(x; G) = x{ηv}
T
Gx{ηv}, p, n, Ω(G) =

√
(γ(G))n

det(G)

1. Initialise: G = G0, Ω(G0) =

√
(γ(G0))

n

det(G0)
, ε = {0}

2. For i = 1 : p do
3. Form the CSMR matrix R

(
α,γi, E, G(i)

)
of the homogeneous form r

(
x,γi, e(x), V

(
x; G(i)

))
in (27);

4. Run an GEVP feasibility test to compute the domain of attraction γi
(
G(i)

)
.

5. if γi
(
G(i)

)
> 0 then

6. ϑ
(
G(i),γi

(
G(i)

))
=

{
x ∈ Rn : x{δv}

T
G(i)x{δv} ≤ γi

(
G(i)

)}
7. Ωi

(
G(i)

)
=

√
(γi(G(i)))

n

det(G(i))

8. Store Ωi
(
G(i)

)
in ε

9. end if
10. i = i + 1
11. end for

12. return: Ω(G∗) = argmax
Ωi ∈ ε : Ωi

(
G(i)

)
=

√
(γ(G(i)))

n

det(G(i))


4.3. Fundamentals of Chaotic PSO (C-PSO)

In the PSO technique, the varying parameters wk, r1 and r2 are the crucial features influencing
the characteristics of the algorithm convergence [37]. The weight of inertia regulates the steadiness
between local searchability and global examination. While a larger inertia weight favours global
exploration, a smaller weight of inertia favours local searchability. Therefore, the search process
typically involves decreasing linearly the weight of inertia, starting at 0.9 and ending at 0.4. Given
the fact that the logistic maps are the often-used chaotic behaviour maps, chaotic sequences may be
rapidly created and easily saved. Additionally, there is no requirement to store long sequences [38].
The CPSO technique comprises sequences produced by the logistic maps which update randomised
parameters r1 and r2 in PSO.

The logistic map modifies the parameters r1 and r2 as per the specified Equation (37), such that r1

will be substituted by Crk where:

Crk+1 = α ·Crk × (1−Crk) (42)

r2 will be substituted by:
1−Crk (43)

At the value of α = 4, Equation (42) outputs a chaotic sequence, having a value between 0 and 1.
In Equation (42), for every independent run, Cr0 is generated randomly. Figure 1 depicts the chaotic
value Cr generated through a logistic map with Cr0 = 0.001 and 300 iterations.

For CPSO, the velocity update formula may be specified as:

v(i)k+1 = wk.v(i)k + c1.Crk.
(
G(i)

pk −G(i)
k

)
+ c2.(1−Crk).

(
G(i)

gk −G(i)
k

)
(44)
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Figure 1. Chaotic Cr value using a logic map.

The following pseudo-code describes the computational process for calculating the domain of
attraction in a polynomial system by using the proposed Chaotic-PSO-based algorithm.

Algorithm 2 Pseudo-code of the Chaotic-PSO

01: Start
02: Initialise the particles swarm in a random way
03: Create Cr0 randomly
04: while (the ending criterion is not obtained or iteration number is performed)
05: Assess the particle swarm fitness criterion
06: for p = 1 to particles’ number

07: Determine G(i)
pk

08: Determine G(i)
gk

09: for k = 1 till particle dimension number
10: Refresh the chaotic Cr value as described by Equation (42)
11: Refresh the particles position as defined by Equations (37) and (38)
12: Increment k
13: Increment p
14: Refresh the value of the inertia weight given by Equation (39)
15: Increment generation till stopping criterion is satisfied
16: end
17: end
18: end

The flowchart describing the developed strategy is described by Figure 2.
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Figure 2. Flowchart of the CPSO method for estimating the attraction domain.
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5. Numerical Examples

In this section, we consider certain examples from previous research for which DA has been
determined using Lyapunov quadratic functions to illustrate the effectiveness of the presented
approach [10,26,39,40].

5.1. Example 1

Consider the Van der Pol equation’s state-space representation, given below [26].{ .
x1 = −x2
.
x2 = x1 − x2 + x2

1x2
(45)

The state vector here is represented by x = [x1 x2]
T. We employ the GEVP optimisation technique

to estimate the initial DA of the steady equilibrium.
It is necessary to obtain a quadratic approximation of the asymptotic stability area around the

origin. To achieve this, we examine the GEVP structure in (34) when the assigned Lyapunov function
with degree ηv = 1, which defines that the LEDA shape is chosen as

V(x) = θ11x2
1 + 2θ12x1x2 + θ22x2

2 (46)

This implies that V(x; G) can be written using the SMR with regards to the vectors x{ηv} = [x1, x2]
T

V(x; G) = x{ηv}
T
Gx{ηv} = x{ηv}

T
[
θ11 θ12

θ12 θ22

]
x{ηv} (47)

To verify Theorem (2), let us use the polynomial

.
V(x; G) = d f (x) =

∂V(x; G)

∂x
f (x) (48)

d f (x) = 2θ12x2
1 + 2(θ22 − θ12 − θ11)x1x2 − 2(θ12 + θ22)x2

2 + 2θ12x3
1x2 + 2θ22x2

1x2
2 (49)

It is noteworthy that D f (α, G), indicating that the CSMR matrix of d f (x) is the corresponding
vector of free variables.

D f (α; G) =


2θ12 (θ22 − θ12 − θ11) 0 α1 α2

(θ22 − θ12 − θ11) −2(θ12 + θ11) −α1 −α2 0
0 −α1 0 θ12 α3

α1 −α2 θ12 θ22 − 2α3 0
α2 0 α3 0 0


(50)

where the free variables are computed with the values (8) and (12).
Let us note that the degree of

.
V(x; G) is ηd = 4. We can choose the degree of e(x) as

ηe ≥
ηd

2
− ηV (51)

We select ηe = 1
e(x) = e11x2

1 + 2e12x1x2 + e22x2
2 (52)

This implies that e(x) can be written using the SMR with regards to the vectors x{ηe} = [x1, x2]
T

e(x) = x{ηe}
T
Ex{ηe} = x{ηe}

T
[

e11 e12

e12 e22

]
x{ηe} (53)
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which implies ηr = ηv + ηs = 2. Vector x{ηr} is selected as x{ηr} =
[
x1, x2, x2

1, x1x2, x2
2

]T
.

To calculate Q(E, G) (Equation (31)) the SMR of the polynomial Q(x, e(x), V(x; G)) , we choose
the matrix K as

K =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1


(54)

we obtain

Q(E, G) =


e11 e12 0 0 0
e12 e22 0 0 0
0 0 µθ11e11 µ(θ11e12 − θ12e11) 0
0 0 µ(θ11e12 − θ12e11) µ(θ11e22 + 4θ12e12 + θ22e11) µ(θ22e12 + θ12e22)

0 0 0 µ(θ22e12 + θ12e22) µθ22e22


(55)

Lastly, we compute the Q̃(E, G) SMR of the product V(x; G)e(x)

Q̃(E, G) =


0 0 0 0 0
0 0 0 0 0
0 0 θ11e11 (θ11e12 − θ12e11) 0
0 0 (θ11e12 − θ12e11) (θ11e22 + 4θ12e12 + θ22e11) (θ22e12 + θ12e22)

0 0 0 (θ22e12 + θ12e22) θ22e22


(56)

For this purpose, we begin by encoding the variables to be determined as a position of every
particle as per following matrix:

G(i) =

 θ(i)11 θ
(i)
12

θ
(i)
12 θ

(i)
22

, i = 1, . . . , p (57)

The fitness value can be given by the maximum γ∗ for which there is a viable solution of the GEVP
optimisation method as explained in the pseudo-code in Section 4.

The variables’ global optimisation G(i)
k is carried out by the CPSO operators, the location and

the velocities.
The size of swarm is p = 50 and the stopping condition is the highest number of iterations,

kmax = 100.
To finish this step, by solving (34) with µ = 0.1 we get:

G∗ =
[

1.1839 −0.4003
−0.4003 0.8026

]
(58)

V(x) = 1.1839x2
1 − 0.8006x1x2 + 0.8026x2

2 (59)

After solving this optimisation issue with G∗, we get the optimum domain of attraction as given
below:

ϑ(G∗;γ(G∗)) =
{
x ∈ Rn : V(x) = 1.1839x2

1 − 0.8006x1x2 + 0.8026x2
2 = 1.8770

}
(60)

The real value of the volume is:
Ω(G∗) = 2.1118 (61)
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Figure 3 depicts the evolution of the CPSO process for 100 iterations. It can be clearly seen that the
convergence of the algorithm takes place in less than 10 iterations. This shows the high performance of
the developed method in computing the exact theoretical volume value Ω(G∗) = 2.1118.

Figure 3. Evolution of Ω(G) using CPSO method for the Van der Pol example.

The above result, which provides the volume value Ω(G∗) = 2.1118, helps obtain the largest
estimated DA. This result is given by Figure 3. The approximated DA of the equilibrium with
γ(G∗) = 1.8770 is represented by the blue ellipsoid in Figure 4. However, the dashed red line,
determines the boundary of the region where

.
V(x, G∗) < 0.

Figure 4. Approximated DA for the Van der Pol model in the CPSO method; the blue ellipsoid
characterises the estimated stability domain, the (the boundary of the light blue area) dashed red line

denotes the region in which
·

V(x) < 0.
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Herein, one can accurately check the validity of the computed domain throughout the Lyapunov
theory and its specified conditions.

5.2. Example 2

This instance is taken from Hahn [39]. It is necessary to find the "best" quadratic approximation of
the stability area around the system’s origin. The system is as follows:{ .

x1 = −x1 + 2x2
1x2

.
x2 = −x2

(62)

The precise stability area is known to be x1x2 < 1. In this area, the origin is depicted asymptotically.
The LF describing the LEDA shape is chosen as

V(x; G) = x{ηv}
T
Gx{ηv} = x{ηv}

T
[
θ11 θ12

θ12 θ22

]
x{ηv} (63)

As the degree ηd of
.

V(x; G) amounts to 4, we can choose ηe = 1 which entails ηr = 2. Vectors
x{ηe}, x{ηv} and x{ηr} are chosen as

x{ηe} = x{ηV} = [x1, x2]
T, x{ηr} =

[
x1, x2, x2

1, x1x2, x2
2

]T
(64)

Thus,

D f (α; G) =


−2θ11 −2θ12 0 α1 α2

−2θ12 2θ22 −α1 −α2 0
0 −α1 0 2θ11 α3

α1 −α2 2θ11 4θ12 0
α2 0 α3 0 0


(65)

e(x) can be written using the SMR with regards to the vectors x{ηe} = [x1, x2]
T.

e(x) = x{ηe}
T
Ex{ηe} = x{ηe}

T
[

e11 e12

e12 e22

]
x{ηe} (66)

To compute Q(E, G) (Equation (31)), the SMR of the polynomial Q(x, e(x), V(x; G)). We select the
matrix K as

K =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1


(67)

We obtain

Q(E, G) =


e11 e12 0 0 0
e12 e22 0 0 0
0 0 µθ11e11 µ(θ11e12 − θ12e11) 0
0 0 µ(θ11e12 − θ12e11) µ(θ11e22 + 4θ12e12 + θ22e11) µ(θ22e12 + θ12e22)

0 0 0 µ(θ22e12 + θ12e22) µθ22e22


(68)
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Finally, we compute the Q̃(E, G) SMR of the product V(x; G)e(x).

Q̃(E, G) =


0 0 0 0 0
0 0 0 0 0
0 0 θ11e11 (θ11e12 − θ12e11) 0
0 0 (θ11e12 − θ12e11) (θ11e22 + 4θ12e12 + θ22e11) (θ22e12 + θ12e22)

0 0 0 (θ22e12 + θ12e22) θ22e22


(69)

The dynamics of the synthesised optimisation algorithm is showed in Figure 5. Compared to
the results presented in [39], this demonstrates the accuracy and swiftness of the CPSO technique
established in this paper. Figure 6 describes the maximised DA of the equilibrium. The blue ellipsoid
represents the DA estimate with γ(G∗) = 5.5715, the dashed red line determines the boundary of

the light blue area and represents the region in where
·

V(x) < 0. A high accuracy can be concluded
regarding the obtained performance.

Figure 5. Evolution of Ω(G) using CPSO method for the Hahn model.

Figure 6. Approximated DA for the Hahn model with CPSO method. Blue ellipsoid represents the DA

estimate, red dashed line (the boundary of the DA estimate) represents the region in which
·

V(x) < 0.
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5.3. Example 3

The system in question is [40]: 
.
x1 = −2x1 + x3 − x3

2.
x2 = x1 − x2 − 0.5x3

1.
x3 = x2 − 2x3 + 0.5x2

1

(70)

Let us select V(x; G) as

V(x; G) = θ11x2
1 + 2θ12x1x2 + θ22x2

2 + 2θ13x1x3 + 2θ23x2x3 + θ33x2
3 (71)

To consider the variables of concern for the matrix G, we reformulate the polynomial with its
SMR as

V(x; G) = x{ηv}
T
Gx{ηv} (72)

where

G =


θ11 θ12 θ13

θ12 θ22 θ23

θ13 θ23 θ33

 (73)

As the degree ηd of
.

V(x; G) amounts to 4, we can choose ηe = 1 which entails ηr = 2. Vectors
x{ηe}, x{ηv} and x{ηr} are chosen as

x{ηe} = x{ηv} = [x1, x2, x3]
T, x{ηr} =

[
x1, x2, x3, x2

1, x1x2, x1x3, x2
2, x2x3, x2

3

]T
(74)

To verify Theorem (2), we introduce the drive Lyapunov function polynomial as

.
V(x; G) = d f (x) =

∂V(x; G)

∂x
f (x) (75)

d f (x) = 2θ12x2
1 + 2(θ22 − θ12 − θ11)x1x2 − 2(θ12 + θ22)x2

2 + 2θ12x3
1x2 + 2θ22x2

1x2
2 (76)

Then, the family of matrices D f (α, G) defining d f (x) can be configured affinely as

D f (α, G) = D(G) + L(α) (77)

where α represents a vector of free variables and L(α) represents a linear parameterisation of L:
Thus, the CSMR (complete SMR) of d f (x) is defined as

d f (x) = x{ηv}
T
D f (α, G)x{ηv} (78)

and D f (α, G) is known as CSMR matrix of d f (x). The quantities ς(n, ηr) and τ(n, ηr) are given, in that
order, by (8) and (12).

Values of ς(n, ηr) and τ(n, ηr) for n = 3 and ηr = 2 are 14 and 20.
Thus,

D(G) =



−(2θ11 − θ12) −(2θ12 − θ12 + θ13) −(4θ13 − θ11 − θ23) 0.5θ13 0.5θ23 0 0.5θ33 0 0
−(2θ12 − θ12 + θ13) −2(θ22 − θ23) −(3θ23 − θ12 + θ33) 0 0 0 0 0 0
−(4θ13 − θ11 − θ23) −(3θ23 − θ12 + θ33) 2(θ13 − 2θ33) 0 0 0 0 0 0

0.5θ13 0 0 −θ12 −0.5θ22 0 −0.5θ23 0 0
0.5θ23 0 0 −0.5θ22 0 θ11 0 0 0

0 0 0 0 θ11 −2θ12 0 −θ13 0
0.5θ33 0 0 −0.5θ23 0 0 0 0 0

0 0 0 0 0 −θ13 0 0 0
0 0 0 0 0 0 0 0 0


(79)
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L(α) =



0 0 0 α1 α2 α3 α4 α5 (α6 + α18)

0 0 −α1 −α2 0 −(α4 + α7) (α17 + α20) −α6 α19

0 −α1 2α3 α7 −α20 0 α8 (α9 + α11) (α10 + α12)

α1 −α2 α7 −2(α5 + α17) −α18 −α8 −α9 −α10 α13

α2 0 −α20 −α18 −2α19 −α11 −α12 −α13 0
α3 −(α4 + α7) 0 −α8 −α11 0 0 α14 α15

α4 (α17 + α20) α8 −α9 −α12 0 −2α14 −α15 α16

α5 −α6 (α9 + α11) −α10 −α13 α14 −α15 −2α16 0
(α6 + α18) α19 (α10 + α12) α13 0 α15 α16 0 0


(80)

To compute the SMR Q(E, G) (Equation (31)) we calculate the polynomial Q(x, e(x), V(x; G))

Q(x, e(x), G) = (1 + µV(x, G))e(x) (81)

with
e(x) = e1x2

1 + 2e2x1x2 + e3x2
2 + 2e4x1x3 + 2e5x2x3 + e6x2

3 (82)

This implies that e(x) can be written using the SMR with regard to the vectors x{ηe} = [x1, x2, x3]
T

e(x) = x{ηe}
T
Ex{ηe} = x{ηe}

T


e1 e2 e4

e2 e3 e5

e4 e5 e6

x{ηe} (83)

We obtain

Q(x, e(x), G) = e1x2
1 + 2e2x1x2 + e3x2

2 + 2e4x1x3 + 2e5x2x3 + e6x2
3 + µθ11e1x4

1 + 2µ(θ11e2 + θ12e1)x3
1x2

+µ(θ11e3 + 4θ12e2 + θ22e1)x2
1x2

2 + 2µ(θ12e3 + θ22e2)x1x3
2 + µθ22e2x4

2 + 2µ(θ11e4 + θ13e1)x3
1x3

+µ(4θ13e4 + θ33e1 + θ11e6)x2
1x3

2 + 2µ(θ12e3 + θ22e2 + θ13e6 + θ33e4)x1x3
3 + µθ33e6x4

3
+2µ(θ11e5 + 2θ12e4 + 2θ13e2 + θ23e1)x2

1x2x3 + 2µ(2θ12e5 + θ22e4 + θ13e3 + 2θ23e2)x1x2
2x3

+2µ(θ12e6 + 2θ13e5 + θ23e4 + θ33e2)x1x2x2
3 + µ(2θ22e5 + 2θ23e3 + θ33e2)x3

2x3

+µ(θ22e6 + 2θ23e3 + θ33e3)x2
2x2

3 + 2µ(θ23e6 + θ33e5)x2x3
3

(84)

The SMR of the polynomial Q(x, e(x), G)

Q(E, G) =



e1 e2 e4 0 0 0 0 0 0
e2 e3 e5 0 0 0 0 0 0
e4 e5 e6 0 0 0 0 0 0
0 0 0 µθ11e1 µ(θ11e2 + θ12e1) 0 µ(θ11e4 + θ13e1) m1 0
0 0 0 µ(θ11e2 + θ12e1) m4 µ(θ12e3 + θ22e2) 0 m2 m3

0 0 0 0 µ(θ12e3 + θ22e2) µθ22e2 0 m5 0
0 0 0 µ(θ11e4 + θ13e1) 0 0 m6 0 m7

0 0 0 m1 m2 m5 0 m8 µ(θ23e6 + θ33e5)

0 0 0 0 m3 0 m7 µ(θ23e6 + θ33e5) µθ33e6


(85)

with

m1 = µ(θ11e5 + 2θ12e4 + 2θ13e2 + θ23e1), m2 = µ(2θ12e5 + θ22e4 + θ13e3 + 2θ23e2), m3 = µ(θ12e6 + 2θ13e5 + θ23e4 + θ33e2)

m4 = µ(θ11e3 + 4θ12e2 + θ22e1), m5 = 0.5µ(2θ22e5 + 2θ23e3 + θ33e2), m6 = µ(4θ13e4 + θ33e1 + θ11e6)

m7 = µ(θ12e3 + θ22e2 + θ13e6 + θ33e4), m8 = µ(θ22e6 + 2θ23e3 + θ33e3)

(86)

Finally, we compute the polynomial Q̃(x, e(x), G) = V(x; G)e(x).

Q̃(x, e(x), G) = θ11e1x4
1 + 2(θ11e2 + θ12e1)x3

1x2 + (θ11e3 + 4θ12e2 + θ22e1)x2
1x2

2
+2(θ12e3 + θ22e2)x1x3

2 + θ22e2x4
2 + 2(θ11e4 + θ13e1)x3

1x3 + (4θ13e4 + θ33e1 + θ11e6)x2
1x3

2
+2(θ12e3 + θ22e2 + θ13e6 + θ33e4)x1x3

3 + θ33e6x4
3

+2(θ11e5 + 2θ12e4 + 2θ13e2 + θ23e1)x2
1x2x3 + 2(2θ12e5 + θ22e4 + θ13e3 + 2θ23e2)x1x2

2x3

+2(θ12e6 + 2θ13e5 + θ23e4 + θ33e2)x1x2x2
3 + (2θ22e5 + 2θ23e3 + θ33e2)x3

2x3

+(θ22e6 + 2θ23e3 + θ33e3)x2
2x2

3 + 2(θ23e6 + θ33e5)x2x3
3

(87)
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The SMR of the product Q̃(E, G)

Q̃(E, G) =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 θ11e1 (θ11e2 + θ12e1) 0 µ(θ11e4 + θ13e1)

1
µm1 0

0 0 0 (θ11e2 + θ12e1)
1
µm4 (θ12e3 + θ22e2) 0 1

µm2
1
µm3

0 0 0 0 (θ12e3 + θ22e2) θ22e2 0 1
µm5 0

0 0 0 (θ11e4 + θ13e1) 0 0 m6 0 m7

0 0 0 1
µm1

1
µm2

1
µm5 0 m8 (θ23e6 + θ33e5)

0 0 0 0 m3 0 m7 (θ23e6 + θ33e5) θ33e6



(88)

In Figures 7 and 8, it is straightforward to check the direct convergence of the algorithm. Indeed,
no further fluctuation can be observed, which makes it possible to minimise the convergence time.
The steady-state dynamic of the estimated volume is therefore reached after around 65 iterations.
A small number of approaches in the literature have studied this kind of system. The technique
developed in this paper shows its superiority in providing the maximal volume value in shorter
computation time.

Figure 8 shows the validity of the obtained DA. Nevertheless, it is theoretically possible to further
increase the estimated DA. As a direct explanation for this fact, it can be noted that the obtained domain
is not maximal due to the selected LF. The optimal computing of the LF constitutes one of the most
advantageous aspects of this work.

Figure 7. Evolution of Ω(G) using CPSO method for the three-dimension example.
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Figure 8. Approximated DA for the CPSO method; the blue ellipsoid represents the DA estimate,

the blue surface (the boundary of the light red area) represents the region in which
·

V(x) < 0.

6. Results Analysis and Discussion

This section is dedicated to an evaluative comparative analysis between the synthesised CPSO
estimation strategy in this paper and another peer reviewed technique [26].

Table 1 provides the estimated DA features for three dynamical nonlinear systems with quadratic
LF(s) taken from the literature [39,40]. The selected examples are presented in their nonlinear
polynomial form. Examples E1 [39] and E2 [40] are second-order systems. However, example E3 [39]
is a third-order nonlinear polynomial model. Please note that the main evaluation criterion is the
domain volume. The obtained results are quite satisfactory in terms of the value of the domain volume.
Moreover, the designed strategy provides a complete solution starting from defining the optimal LF
and finishing with providing the maximal domain volume. This result is achieved for all studied
examples with an easy implementation concept and low consuming time.

A second step was performed to evaluate the performance of the CPSO strategy, consisting of
investigating the domain volume for the three examples based on the same LF that was reported
in [26,39,40].

For each example, the maximum possible value of Ω(G∗) is computed by the CPSO method
and compared with the outcomes obtained by a peer optimisation-based technique, reported in the
literature [26]. It appears obvious in Table 2 that for the three investigated examples, the estimated
volumes of the DA(s) attained by the CPSO technique are significantly better than the estimates
resulting from optimisation-based approaches. For the case of example E3, the performance of the
CPSO scheme is even larger and more accurate.
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Table 1. Benchmark nonlinear systems using defined quadratic LF calculated with the proposed CSPO algorithm in this paper.

Example Systems Dynamic Lyapunov Function CPSO Domain Radius CPSO
γ(G*)

Domain Volume CPSO√
(γ(G*))

n

det(G*)

E1 [39,40]
{ .

x1 = −x2.
x2 = x1 − x2 + x2

1x2
V(x) = 1.1839x2

1 − 0.8006x1x2 + 0.8026x2
2 1.8770 2.1118

E2 [39,40]
{ .

x1 = −x1 + 2x2
1x2.

x2 = −x2
V(x) = 1.6024x2

1 + 2.7862x1x2 + 2.4222x2
2 5.5715 4.000

E3 [39]


.
x1 = −2x1 + x3 − x3

2.
x2 = x1 − x2 −

1
2 x3

1.
x3 = x2 − 2x3 +

1
2 x2

1

V(x; G) = 0.8349x2
1 + 0.178x1x2 + x2

2
+0.2588x1x3 + 0.0477x2x3
+0.1610x2

3

4.4916 36.9241

Table 2. Comparative analysis with benchmark nonlinear systems using a defined quadratic LF as described in [39,40].

Example. Systems Dynamic Lyapunov Function Domain Radius [26]
γ(G*)

Domain Volume [26]√
(γ(G*))

n

det(G*)

Domain Radius
CPSO
γ(G*)

Domain Volume
CPSO√

(γ(G*))
n

det(G*)

E1 [39,40]
{ .

x1 = −x2.
x2 = x1 − x2 + x2

1x2
V(x) = 1.5x2

1 − 0.5x1x2 + x2
2 2.3180 2.0733 2.4197 2.1642

E2 [39,40]
{ .

x1 = −x1 + 2x2
1x2.

x2 = −x2
V(x) = 0.33x2

1 + 0.249x1x2 + 0.376x2
2 1.000 4.000 1.000 4.000

E3 [39,40]


.
x1 = −2x1 + x3 − x3

2.
x2 = x1 − x2 −

1
2 x3

1.
x3 = x2 − 2x3 +

1
2 x2

1

V(x; G) = 0.2742x2
1 + 0.3634x1x2

+0.4578x2
2 + 0.1820x1x3

+0.1892x2x3 + 0.1077x2
3

≤ 1 ≤ 12.0849 1.0246 12.5328
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Likewise, it can be concluded that the developed CPSO procedure is appropriate for estimating
enlarged DA of polynomial nonlinear systems. As a matter of fact, it is computationally operational
and converges to the optimal DA estimate in a significantly reduced time. Despite the benefit of
offering more accurate DA in less time, CPSO can be very useful for real-time control problems. It is
likewise valuable for control strategies that use online sequential composition formalism as described
in [26]. Finally, we should emphasise the fact that the work presented in [26] is based on a random
procedure that characterises the evolution of the designed algorithm. This means that an intensive
simulation study should be performed each time to obtain the optimal solutions. This fact is the main
disadvantage for the described approach. For the CPSO strategy, the final estimated domain is the
same independent of the simulation settings.

7. Conclusions

This paper studies the quadratic Lyapunov function calculation, which expands the DA volume
estimate for systems with polynomials. The designed scheme presented in this paper has the main
objective of computing an optimal LF so as to search the largest sublevel set of the DA. Iterative
methods based on CPSO were established to obtain the LEDA lower bound. By leveraging CPSO
capacity, a new enhanced PSO by using chaotic maps for global optimisation and encoding the variables
of the quadratic Lyapunov function to be determined as particle positions was presented. The main
advantage of the established algorithm is that one can evaluate the necessary and sufficient conditions
as stated in Lyapunov theory with respect to initial conditions selected for the system state variables.
The outcomes of the simulations substantiated that the parameters chosen using CPSO possibly leads
to the biggest DA. Moreover, no trade-off between the algorithm computational cost and convergence
speed is imposed. The convergence rate is therefore reduced, favouring the online implementation for
trajectory tracking purposes of complex nonlinear dynamical systems or hybrid nonlinear systems.

Motivated by the excellent outcomes obtained for the instances that were employed, the designed
methodology can be considered for other kinds of nonlinear systems and for real processes, which by
definition possess nonlinearities. Consideration of the case of rational LF is also a beneficial aspect to
this work.
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