
electronics

Article

Design and VLSI Implementation of a
Reduced-Complexity Sorted QR Decomposition for
High-Speed MIMO Systems

Lu Sun 1,2 , Bin Wu 1,* and Tianchun Ye 1

1 The Intelligent Manufacturing Electronics RD Center, the Institute of Microelectronics,
Chinese Academy of Science, Beijing 100029, China; sunlu@ime.ac.cn (L.S.); tcye@ime.ac.cn (T.Y.)

2 School of Electronics, Electrical and Communication Engineering,
the University of Chinese Academy of Sciences, Beijing 100049, China

* Correspondence: wubin@ime.ac.cn; Tel.: +86-010-8299-5566

Received: 24 September 2020; Accepted: 9 October 2020; Published: 12 October 2020
����������
�������

Abstract: In this article, a low-complexity and high-throughput sorted QR decomposition (SQRD)
for multiple-input multiple-output (MIMO) detectors is presented. To reduce the heavy hardware
overhead of SQRD, we propose an efficient SQRD algorithm based on a novel modified real-value
decomposition (RVD). Compared to the latest study, the proposed SQRD algorithm can save the
computational complexity by more than 44.7% with similar bit error rate (BER) performance.
Furthermore, a corresponding deeply pipelined hardware architecture implemented with the
coordinate rotation digital computer (CORDIC)-based Givens rotation (GR) is designed. In the design,
we propose a time-sharing Givens rotation structure utilizing CORDIC modules in idle state to
share the concurrent GR operations of other CORDIC modules, which can further reduce hardware
complexity and improve hardware efficiency. The proposed SQRD processor is implemented in
SMIC 55-nm CMOS technology, which processes 62.5 M SQRD per second at a 250-MHz operating
frequency with only 176.5 kilo-gates. Compared to related studies, the proposed design has the best
normalized hardware efficiency and achieves a 6-Gbps MIMO data rate which can support current
high-speed wireless communication systems such as IEEE 802.11ax.

Keywords: sorted QR decomposition; real-value decomposition; Givens rotation; multiple-input
multiple-output detector

1. Introduction

Multiple-input multiple-output (MIMO) is widely employed in current wireless communication
systems, such as IEEE 802.11ax [1], to achieve high data throughput. A MIMO detector is used to
recover the original signal from the mixed multi-dimensional data streams, which has a great impact
on system performance. In the MIMO detector, QR decomposition (QRD) serves as a preprocessor
dealing with a channel matrix to facilitate subsequent MIMO detection. Thus, QRD needs massive
arithmetic operations and takes up a considerable part of the hardware complexity of the MIMO
detector [2,3]. The sorted QRD (SQRD) can improve the bit error rate (BER) performance of detection
through inserting sorting procedures into the original QRD [4]. Due to the addition of sorting modules,
however, the hardware overhead further increases. In view of this, it is necessary to design an SQRD
processor with high throughput and reduced complexity.

There are three well-known algorithms used for QR decomposition: Householder transformation
(HT) [5], modified Gram–Schmidt (MGS) [6], and Givens rotation (GR) [7]. HT is rarely used in the
QR decomposition because of its huge computational complexity. Compared with GMS, GR can be

Electronics 2020, 9, 1657; doi:10.3390/electronics9101657 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-3450-6977
http://www.mdpi.com/2079-9292/9/10/1657?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9101657
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 1657 2 of 15

realized with a coordinate rotation digital computer (CORDIC), which can simplify the computational
complexity. In addition, GR is performed row-wise and the processing of different rows can be done
at the same time. Thus, GR can achieve high parallelism to improve the throughput. Given this,
many studies adopt CORDIC-based GR to implement SQRD [8,9]. However, all the published studies
are suffering from high computational complexity of SQRD and cost a lot of hardware overhead in
hardware design. On the other hand, in the hardware design of SQRD, the iterative sorting destroys
the original tight and consecutive pipelined GR process and creates a large number of “bubbles”,
which are the idle states of the CORDIC-based GR structure. Therefore, the adopted CORDIC-based
GR structure is underused, which makes the SQRD hardware inefficient.

In this article, we propose an efficient SQRD algorithm with a novel modified real-value
decomposition (RVD), which can greatly reduce the number of CORDIC operations and simplify the
computational complexity compared to previous studies. Furthermore, the corresponding deeply
pipelined hardware architecture with low latency and low hardware overhead is designed and
implemented. In the hardware design, we adopt a time-sharing GR structure utilizing certain CORDIC
modules in idle state to perform the concurrent GR operations of other CORDIC modules, which
can save hardware cost and improve hardware efficiency. The comparisons of the implementation
results show that the proposed SQRD processor overmatches the other related designs in normalized
hardware efficiency and achieves up to 6 Gbps MIMO data throughput. The contributions of this study
are as follows:

• We propose an efficient reduced-complexity SQRD algorithm based on a novel modified RVD.
Compared to the latest related study, the computational complexity of the proposed SQRD
algorithm is greatly reduced by more than 44.7%. In addition, the proposed SQRD algorithm has
a competitive BER performance and is implementation-friendly;

• We design a deeply pipelined SQRD hardware architecture with a time-sharing GR structure for
4 × 4 MIMO systems. The proposed time-sharing GR structure cleverly utilizes the CORDIC
modules in idle state to process certain rotation operations that should have been handled by
additional CORDIC module. Therefore, additional hardware is saved and the hardware efficiency
of the proposed SQRD design is improved.

Notations: <(·) and =(·) denote the real and imaginary parts of the argument, respectively. Ai, j
denotes the element in the ith row and jth column of a matrix A. Ai,: and A:, j denote the ith row and jth
column of a matrix A, respectively. vi denotes the ith element of a vector v. (·)T denotes the transpose
of the argument. (·)H denotes the Hermitian transpose of the argument. aI and aR denote the real and
imaginary parts of a complex number a, respectively.

The rest of this article is organized as follows. Section 2 presents the background of this study
by reviewing the MIMO detection model and related studies about SQRD. Section 3 describes the
proposed SQRD algorithm based on a novel modified RVD. The proposed SQRD hardware architecture
with time-sharing GR structure for 4 × 4 MIMO detectors is introduced in Section 4. In Section 5,
the implementation results of the proposed SQRD processor and other related studies are discussed
and compared. Finally, conclusive remarks are presented in Section 6.

2. Background

2.1. MIMO Detection Model

The MIMO system under consideration consists of N transmit antennas and N receive antennas.
The complex-valued matrix H of size N ×N represents the MIMO channel; the complex-valued N × 1
vector s = [s1, s2, · · · , sN]

T and the complex-valued N × 1 vector y = [y1, y2, · · · , yN]
T denote the

transmit signal and the receive signal, respectively; the N × 1 vector n = [n1, n2, · · · , nN]
T describes

Electronics 2020, 9, 1657 3 of 15

the zero-mean i.i.d. complex additive Gaussian noise, where ni ∼ N
(
0, δ2

)
and i = 1, 2, · · · , N.

The complex-valued MIMO system model is given by

y = Hs + n. (1)

The purpose of MIMO detection is to recover the transmit signal s from the receive signal
y. According to reference [10,11], this can be realized by the maximum likelihood (ML) principle.
Therefore, the optimum solution of MIMO detection can be obtained by

^
sML = argmin

s∈Ω
‖y−Hs‖2, (2)

where Ω is the solution space. The derivation process of Equation (2) is given in Appendix A. To solve
the least square problem like Equation (2), QR decomposition [12] and Cholescky factorization [13]
can be performed on the matrix H to simplify the solution procedure. However, the detection
procedure based on Cholesky factorization consists of successive forward substitution and backward
substitution [14], which is incompatible with column iterative sorting. Whereas, when performed with
QR decomposition, the detection procedure can be executed with only backward substitution, which
is suitable for column iterative sorting. On the other hand, performing QR decomposition on H can
obtain a unitary matrix Q and an upper triangular matrix R, i.e., H = QR and pre-multiplying y−Hs
by a unitary matrix QH(QH = QT) does not change its norm and thereby has no impact on the MIMO
detection. Thus, Equation (2) can be reformulated as

^
sML = argmin

s∈Ω
‖QHy−Rs‖

2
. (3)

Therefore, QR decomposition is preferred in MIMO detection. With SQRD performed on the
channel matrix, the columns of R are rearranged by iterative sorting to try to ensure that the detection
of the signals in different layers of s is conducted in the order of signal-to-noise ratio (SNR) from large
to small. In this way, the error propagation in the detection process is alleviated, which could improve
the detection performance.

2.2. Related Studies

In recent years, there were many studies focusing on the implementation of SQRD. In reference [15–21],
the SQRD is performed directly on the complex-valued matrix H for the complex-valued MIMO
detection model. However, the subsequent MIMO detection in a complex-valued model is more
complicated than the one in a real-valued model [22]. Thus, many studies [3,8] develop SQRD based
on conventional RVD [23], with which the complex-valued model in Equation (1) is converted into a
real-valued model as follows[

<(y)
=(y)

]
=

[
<(H) −=(H)

=(H) <(H)

]
·

[
<(s)
=(s)

]
+

[
<(n)
=(n)

]
. (4)

Before performing iterative sorting and GR operations, the N ×N complex channel matrix is firstly
converted into its real counterpart of size 2N× 2N with conventional RVD [23]. As the size of the matrix
is enlarged by four times, the number of sorting procedures and operations of GR both dramatically
increase, which leads to huge hardware overhead and lengthy processing latency. The design in
reference [9] adopts a SQRD algorithm based on a modified RVD and utilizes the symmetry of adjacent
columns of the RVD matrix to reduce the number of CORDIC operations as well as sorting procedures.
However, the computational complexity of this scheme still stays at a relatively high level and thereby
brings about considerable hardware cost. To alleviate this problem, we propose an efficient SQRD
algorithm, which can significantly reduce the computational complexity.

Electronics 2020, 9, 1657 4 of 15

3. Proposed SQRD Algorithm with a Novel Modified RVD

3.1. Proposed Modified RVD

With the proposed modified RVD, the complex-valued system model in Equation (1) can be
reformulated as



<(y1)

<(y2)

=(y1)

=(y2)
...

<(yN−1)

<(yN)

=(yN−1)

=(yN)



=



<

(
h1,1 h1,2

h2,1 h2,2

)
−=

(
h1,1 h1,2

h2,1 h2,2

)
· · · <

(
h1,N−1 h1,N
h2,N−1 h2,N

)
−=

(
h1,N−1 h1,N
h2,N−1 h2,N

)
=

(
h1,1 h1,2

h2,1 h2,2

)
<

(
h1,1 h1,2

h2,1 h2,2

)
· · · =

(
h1,N−1 h1,N
h2,N−1 h2,N

)
<

(
h1,N−1 h1,N
h2,N−1 h2,N

)
...

...
. . .

...
...

<

(
hN−1,1 hN−1,2

hN,1 hN,2

)
−=

(
hN−1,1 hN−1,2

hN,1 hN,2

)
· · · <

(
hN−1,N−1 hN−1,N
hN,N−1 hN,N

)
−=

(
hN−1,N−1 hN−1,N
hN,N−1 hN,N

)
=

(
hN−1,1 hN−1,2

hN,1 hN,2

)
<

(
hN−1,1 hN−1,2

hN,1 hN,2

)
· · · =

(
hN−1,N−1 hN−1,N
hN,N−1 hN,N

)
<

(
hN−1,N−1 hN−1,N
hN,N−1 hN,N

)





<(s1)

<(s2)

=(s1)

=(s2)
...

<(sN−1)

<(sN)

=(sN−1)

=(sN)



+



<(n1)

<(n2)

=(n1)

=(n2)
...

<(nN−1)

<(nN)

=(nN−1)

=(nN)



. (5)

It can be suggested that the proposed modified RVD is a permuted version of conventional
RVD and it takes 2 × 2 sub-matrices and 2 × 1 sub-vectors of original complex matrix and vectors,
respectively, as basic units to perform RVD. Thus, N is restricted to an even number.

3.2. The Proposed SQRD Algorithm

Based on the modified RVD introduced above, we propose a reduced-complexity SQRD algorithm
with CORDIC-based GR, which is shown in Algorithm 1. The proposed SQRD algorithm basically
comprises three steps. In step 1, sorted complex Givens rotation (SCGR), which contains iterative
sorting, and complex Givens rotation is applied to complex channel matrix H and receive signal y.
Before the elimination process of every column, first, the sorting procedure finds the column with
the smallest norm value and swaps it with the first column. Then, the reordered matrix is processed
with complex Givens rotation to zero the elements below the diagonal in the first column. Repeat the
two procedures until all the elements below the diagonal of H are eliminated and then the complex
upper triangular matrix Rc is obtained. In the SCGR, the permutation matrix P records the column
order of the iterative sorting for subsequent MIMO detection. In step 2, Rc is converted into its real
counterpart S with the proposed modified RVD. Figure 1 shows the diagram of the proposed modified
RVD performed on Rc for N ×N (N is even) MIMO systems, where rR and rI denote the real and
imaginary part of r, respectively. Firstly, Rc are partitioned into 2 × 2 sub-matrices q2×2

i, j and 2 × 1

sub-vectors q2×1
i , where i, j = 1, 2, · · · , n and n = N/2. Then, RVD is performed on all the sub-matrices

q2×2
i, j and sub-vectors q2×1

i to obtain their corresponding extended versions p4×4
i, j of size 4 × 4 and p4×1

i
of size 4 × 1 by Equations (6) and (7), respectively. Due to the feature of complex Givens rotation [24],
the diagonal elements of the upper triangular matrix Rc are all real numbers and all the elements above
its diagonal are complex numbers. After the modified RVD is performed, below the diagonal of every
sub-matrix q4×4

i, j (in red dotted box) of S, there is only one non-zero element. Consequently, the number
of non-zero elements that need to be eliminated in S is N/2 in total, which is quite small and does not
need many elimination operations in the following real Givens rotation (RGR). It is clear that all the
non-zero elements to be nullified in S are located close to the diagonal but in different rows far from
each other. This will facilitate the eliminating operations of the following RGR in hardware design.
Finally, in step 3, these non-zero elements below the diagonal of S are eliminated with RGR to get the
desired upper triangular matrix R and QHy.

p4×4
i j =

 <
(
q2×2

i j

)
−=

(
q2×2

i j

)
=

(
q2×2

i j

)
<

(
q2×2

i j

) , (6)

p4×1
i =

[
<

(
q2×1

i

)
;=

(
q2×1

i

)]
. (7)

Electronics 2020, 9, 1657 5 of 15
Electronics 2020, 9, x FOR PEER REVIEW 6 of 16

2 2

,i j


q

1, 1

1,1 1,2 1,2 1 1,2 1, 1 1, 1

22 2,2 1 2,2 2, 1 2, 2

2 1,2 1 2 1,2 2 1, 1 2 1, 2 1

2 ,2 2 , 1 2 , 2

1, 1

,

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

N N

j j N N

j j N N

i j i j i N i N i

i j i N i N i

N N N

N N N

r r r r r r y

r r r r r y

r r r r y

r r r y

r r y

r y

 

 

 

      



 



























 

1,1 1,2 1,2 1,2 1 1,2 1,2 1 1,2 1, 1 1, 1, 1 1, 1

2,2 2,2 1 2,2 2,2 1 2,2 2, 1 2, 2, 1 2, 2

1,2 1,1 1,2 1,2 1 1,2 1,2 1 1,2 1, 1 1,

0

0 0 0

0

R I R R I I R R I I R

j j j j N N N N

R R I I R R I I R

j j j j N N N N

I R I I R R I

j j j j N

r r r r r r r r r r r y

r r r r r r r r r y

r r r r r r r r r

   

   

  

    

   

1, 1 1, 1

2,2 2,2 1 2,2 2,2 1 2,2 2, 1 2, 2, 1 2, 2

2 1,2 1 2 1,2 2 1,2 2 1, 1 2 1, 2 1, 1 2 1, 2 1

2 ,2 2 , 1 2 , 2

0 0 0

0

0 0 0

I R R I

N N N

I I R R I I R R I

j j j j N N N N

R I R R I I R

i j i j i j i N i N i N i N i

R R

i j i N i N

r r y

r r r r r r r r r y

r r r r r r r y

r r r r



   

          



  



1, 1

, 1 2 , 2

2 1,2 2 1,2 1 2 1,2 2 1, 1 2 1, 2 1, 1 2 1, 2 1

2 ,2 2 , 1 2 , 2 , 1 2 , 2

1, 1, 1

,

1,

0

0 0 0

0

0 0 0

0

N N

I I R

i N i N i

I R I I R R I

i j i j i j i N i N i N i N i

I I R R I

i j i N i N i N i N i

R I R

N N N N N

R

N N N

N N

r y

r r r r r r r y

r r r r r y

r r r y

r y

r

 



          

 

  







1, 1 1, 1

,0 0 0

N N

I R I

N N N

I

N N N

r r y

r y

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

2 2

1,1


q

2 2

1, j


q

2 2

1,n


q

2 2

,i n


q

2 2

,n n


q

2 1

1


q

2 1

i


q

2 1

n


q

04×4

04×4 04×4

c R

S

4 4

1,1


p

4 4

1, j


p

4 4

,i j


p 4 4

,i n


p

4 4

,n n


p

4 1

1


p

4 1

i


p

4 1

n


p

4 4

1,n


p

Figure 1. Schematic diagram of the expansion of c
R with proposed modified real-value

decomposition (RVD).

3.3. Performance Evaluation of the Proposed SQRD Algorithm

For SQRD, which is implemented with CORDIC, the number of required CORDIC operations

can be regarded as a measurement of the computational complexity of the SQRD algorithm. Within

the proposed SQRD algorithm for N N (N is even) MIMO systems, the CORDIC operations

needed in SCGR stage are given by

       3

1

1 1 1 2() =
N

k

N k N k N k N k N


        . (8)

The detailed derivation of Equation (8) is shown in Appendix B, whereas in the following RGR,

the CORDIC operations consumed are as follows:

 
/2

2

1

(4 1)= 2
N

k

k N N


  . (9)

Table 1 lists the number of CORDIC operations required in the proposed SQRD algorithm as

well as a latest related study. For a clear comparison, the number of CORDIC operations needed and

the complexity reduction of the proposed compared to the one in reference [9] for different matrix

sizes are presented in Figure 2a. It is clear that the proposed SQRD algorithm has a huge advantage

over the one in reference [9] in terms of computational complexity. For 4 × 4 MIMO systems, the

number of CORDIC operations of the proposed algorithm is greatly reduced by 44.7% compared to

the one in reference [9]. In addition, as the size of the channel matrix increases, the reduction will be

further expanded and gradually approach 50%.

Table 1. Complexity of different Givens rotation (GR)-based QR decomposition schemes.

Algorithm Number of CORDIC Operations If 4N 

[9]    3 22 1 2 1 2N N N  134

The proposed    3 2+ 1 2 1 2N N N 74

To evaluate the BER performance of the proposed SQRD algorithm in MIMO detection, it is

simulated with a K-best detector and a maximum likelihood (ML) detector in an uncoded 4 × 4 64-

QAM MIMO system along with the SQRD algorithm in reference [9]. Figure 2b shows that the

proposed SQRD algorithm achieves similar BER performance with the one in reference [9].

Figure 1. Schematic diagram of the expansion of Rc with proposed modified real-value decomposition (RVD).

Algorithm 1 Proposed SQRD algorithm

INPUT: HN×N , yN×1, P = IN
OUTPUT: R2N×2N , QHy2N×1,P

Step 1: Sorted complex Givens rotation (SCGR)
1: Rc = [H

∣∣∣ y]
2: for j = 1 : N
3: α j = ‖Rc

:, j‖
2

4: end
5: for i = 1 : N
6: ki = arg min

l=i,...,N
αl

7: Swap Rc
:,i, P:,i, and αi with Rc

:,ki
, P:,ki , and αki , respectively

8: Perform complex Givens rotation in vectoring mode on the elements of Rc
:,i in pairs

9: for m = i + 1 : N + 1
10: Perform complex Givens rotation in rotation mode on the elements of Rc

:,m in pairs
11: end
12: for j = i : N

13: α j = α j −
∣∣∣∣Rc

i, j

∣∣∣∣2
14: end
15: end
Step 2: Proposed modified RVD
16: for i = 1 : N/2
17: for j = 1 : N/2

18: q2×2
i j =

 Rc
2i−1,2 j−1 Rc

2i−1:2 j
Rc

2i,2 j−1 Rc
2i,2 j


19: S4i−3:4i,4 j−3:4 j =

 <
(
q2×2

i j

)
−=

(
q2×2

i j

)
=

(
q2×2

i j

)
<

(
q2×2

i j

) 
20: end
21: q2×1

i =
[
Rc

2i−1,N+1; Rc
2i,N+1

]
22: S4i−3:4i,2N+1 =

[
<

(
q2×1

i

)
;=

(
q2×1

i

)]
23: end
Step 3: Real Givens rotation
24: for i = 1 : N/2
25: Perform real Givens rotation in vectoring mode on

(
S4i−2,4i−2, S4i−1,4i−2

)
26: for j = 4i− 1 : 2N + 1
27: Perform real Givens rotation in rotation mode on

(
S4i−2, j, S4i−1, j

)
28: end
29: end

Electronics 2020, 9, 1657 6 of 15

3.3. Performance Evaluation of the Proposed SQRD Algorithm

For SQRD, which is implemented with CORDIC, the number of required CORDIC operations can
be regarded as a measurement of the computational complexity of the SQRD algorithm. Within the
proposed SQRD algorithm for N ×N (N is even) MIMO systems, the CORDIC operations needed in
SCGR stage are given by

N∑
k=1

((N − k + 1)(N − k + 1) + (N − k)(1 + 2(N − k))) = N3. (8)

The detailed derivation of Equation (8) is shown in Appendix B, whereas in the following RGR,
the CORDIC operations consumed are as follows:

N/2∑
k=1

(4k− 1) =
(
N2 + N

)
/2. (9)

Table 1 lists the number of CORDIC operations required in the proposed SQRD algorithm as well
as a latest related study. For a clear comparison, the number of CORDIC operations needed and the
complexity reduction of the proposed compared to the one in reference [9] for different matrix sizes
are presented in Figure 2a. It is clear that the proposed SQRD algorithm has a huge advantage over
the one in reference [9] in terms of computational complexity. For 4 × 4 MIMO systems, the number
of CORDIC operations of the proposed algorithm is greatly reduced by 44.7% compared to the one
in reference [9]. In addition, as the size of the channel matrix increases, the reduction will be further
expanded and gradually approach 50%.

Table 1. Complexity of different Givens rotation (GR)-based QR decomposition schemes.

Algorithm Number of CORDIC Operations If N=4

[9] 2N3 + (1/2)N2
− (1/2)N 134

The proposed N3 + (1/2)N2 + (1/2)N 74Electronics 2020, 9, x FOR PEER REVIEW 7 of 16

(a)

(b)

Figure 2. Performance comparisons with the design in reference [9]: (a) complexity performance for

different matrix sizes; (b) uncoded bit error rate (BER) performance in 4 × 4 64-QAM multiple-input

multiple-output (MIMO) system.

4. Proposed SQRD VLSI Architecture

4.1. Overview of the Proposed SQRD Hardware Architecture

According to Algorithm 1, we designed the corresponding high-speed and low-complexity

SQRD hardware architecture for a 4 × 4 MIMO system. To match the high throughput of current

wireless communication systems, the proposed SQRD architecture is deeply pipelined and highly

parallel, which can decompose one 4 × 4 channel matrix in four clock cycles and process one H
Q y

per clock cycle. In other words, the processing cycles of SQRD (clock cycles needed for decomposing

one H) and H
Q y (clock cycles needed for processing one H

Q y) are four clock cycles and one clock

cycle, respectively, which are both decreased by 20% compared to the design of reference [9]. As

throughput=clock frequency processing cyc les , both the SQRD and H
Q y throughput of the proposed

SQRD will be improved by 25% compared to the design of reference [9]. In addition, the time-sharing

GR structure is designed to take advantages of the idle state of CORDIC modules caused by iterative

sorting, which can further reduce the hardware overhead and improve hardware efficiency.

The proposed SQRD hardware architecture is basically comprised of one norm calculator, three

sorting modules, and four processing engines. Norm calculator and sorting modules are used for

iterative sorting; processing engines with CORDIC-based Givens rotation structure are used for

decomposing the channel matrix and processing H
Q y . Figure 3 presents the dataflow of the

proposed SQRD design for the 4 × 4 MIMO system. Sorted complex Givens rotation (SCGR) is

performed on the 4 × 4 complex channel matrix H and 4 × 1 complex receive signal vector y with

all sorting modules and processing engines. After the iterative sorting procedure, every processing

engine zeros the elements below the diagonal in the first column of the current input matrix in

vectoring mode (introduced in Section 4.2) and rotates the elements of subsequent columns in

rotation mode (introduced in Section 4.2). Thus, the SQRD processing cycles of SCGR are four clock

cycles. After the process of all the four columns is done, the complex upper triangular matrix c
R is

obtained. According to Algorithm 1, next, the 4 × 4 intermediate c
R is converted into its 8 × 8 real

version S for the following RGR, which is given by

Figure 2. Performance comparisons with the design in reference [9]: (a) complexity performance for
different matrix sizes; (b) uncoded bit error rate (BER) performance in 4 × 4 64-QAM multiple-input
multiple-output (MIMO) system.

To evaluate the BER performance of the proposed SQRD algorithm in MIMO detection, it is
simulated with a K-best detector and a maximum likelihood (ML) detector in an uncoded 4 × 4 64-QAM
MIMO system along with the SQRD algorithm in reference [9]. Figure 2b shows that the proposed
SQRD algorithm achieves similar BER performance with the one in reference [9].

Electronics 2020, 9, 1657 7 of 15

4. Proposed SQRD VLSI Architecture

4.1. Overview of the Proposed SQRD Hardware Architecture

According to Algorithm 1, we designed the corresponding high-speed and low-complexity
SQRD hardware architecture for a 4 × 4 MIMO system. To match the high throughput of current
wireless communication systems, the proposed SQRD architecture is deeply pipelined and highly
parallel, which can decompose one 4 × 4 channel matrix in four clock cycles and process one
QHy per clock cycle. In other words, the processing cycles of SQRD (clock cycles needed for
decomposing one H) and QHy (clock cycles needed for processing one QHy) are four clock cycles and
one clock cycle, respectively, which are both decreased by 20% compared to the design of reference [9].
As throughput =clock frequency/processing cycles, both the SQRD and QHy throughput of the
proposed SQRD will be improved by 25% compared to the design of reference [9]. In addition,
the time-sharing GR structure is designed to take advantages of the idle state of CORDIC modules caused
by iterative sorting, which can further reduce the hardware overhead and improve hardware efficiency.

The proposed SQRD hardware architecture is basically comprised of one norm calculator, three
sorting modules, and four processing engines. Norm calculator and sorting modules are used for
iterative sorting; processing engines with CORDIC-based Givens rotation structure are used for
decomposing the channel matrix and processing QHy. Figure 3 presents the dataflow of the proposed
SQRD design for the 4 × 4 MIMO system. Sorted complex Givens rotation (SCGR) is performed on the
4 × 4 complex channel matrix H and 4 × 1 complex receive signal vector y with all sorting modules and
processing engines. After the iterative sorting procedure, every processing engine zeros the elements
below the diagonal in the first column of the current input matrix in vectoring mode (introduced in
Section 4.2) and rotates the elements of subsequent columns in rotation mode (introduced in Section 4.2).
Thus, the SQRD processing cycles of SCGR are four clock cycles. After the process of all the four
columns is done, the complex upper triangular matrix Rc is obtained. According to Algorithm 1, next,
the 4 × 4 intermediate Rc is converted into its 8 × 8 real version S for the following RGR, which is
given by


r1,1 r1,2 r1,3 r1,4 y1

0 r2,2 r2,3 r2,4 y2

0 0 r3,3 r3,4 y3

0 0 0 r4,4 y4


Modified

RVD
→



r1,1 rR
1,2 0 −rI

1,2 rR
1,3 rR

1,4 −rI
1,3 −rI

1,4 yR
1

0 r2,2 0 0 rR
2,3 rR

2,4 −rI
2,3 −rI

2,4 yR
2

0 rI
1,2 r1,1 rR

1,2 rI
1,3 rI

1,4 rR
1,3 rR

1,4 yI
1

0 0 0 r2,2 rI
2,3 rI

2,4 rR
2,3 rR

2,4 yI
2

0 0 0 0 r3,3 rR
3,4 0 −rI

3,4 yR
3

0 0 0 0 0 r4,4 0 0 yR
4

0 0 0 0 0 rI
3,4 r3,3 rR

3,4 yI
3

0 0 0 0 0 0 0 r4,4 yI
4


. (10)

Electronics 2020, 9, x FOR PEER REVIEW 8 of 16

1,1 1,2 1,2 1,3 1,4 1,3 1,4 1

2,2 2,3 2,4 2,3 2,4 2

1,1 1,2 1,3 1,4 1 1,2 1,1 1,2 1,3 1,4 1,3 1,4 1

2,2 2,3 2,4 2

3,3 3,4 3

4,4 4

0

0 0 0

0

0 Modified

0 0 RVD

0 0 0

R I R R I I R

R R I I R

I R I I R R

r r r r r r r y

r r r r r y

r r r r y r r r r r r r y

r r r y

r r y

r y

  

 

 
 
 
 
 
  

2,2 2,3 2,4 2,3 2,4 2

3,3 3,4 3,4 3

4,4 4

3,4 3,3 3,4 3

4,4 4

0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

I

I I R R I

R I R

R

I R I

I

r r r r r y

r r r y

r y

r r r y

r y

 
 
 
 
 
 
 
 
 
 
 
 
 

. (10)

sorting#2 sorting#3
Norm cal. &

sorting#1

Zero Real number

Complex number

 H y

Processing engine#1 Processing engine#2 Processing engine#3 Processing engine#4

Being processed

S
C

G
R

R
G

R

1:4,:S
5:8,:S

c
R

1:4,: 1:4

H  R Q y 5:8,: 5:8

H  R Q y

Figure 3. Dataflow diagram of the proposed sorted QR decomposition (SQRD) hardware architecture

for 4 × 4 multiple-input multiple-output (MIMO) systems.

Then, RGR performed with processing engine#3–4 eliminates the two non-zero elements below

the diagonal of S , as shown in Figure 4. It can be suggested that the elements of the upper two rows

of c
R are obtained after the processing in sorting#3 because the elimination of the first two columns

of  H y have been completed. As the upper four rows of S are derived from the upper two rows

of c
R according to Equation (10), they can be obtained immediately after the process of sorting#3 is

done. Therefore, the elimination processes of the non-zero element
3,2S (i.e.,

1,2

Ir) in RGR and the

third column of c
R in SCGR are performed with processing engine#3 at the same time when the

relevant elements are output from sorting#3. This will improve the parallelism of the SQRD hardware

architecture and shorten the processing latency. As for the non-zero element
7,6S (i.e.,

3,4

Ir), it will

be zeroed with processing engine#4 when
4,4r of c

R is obtained.

1,1 1,2 1,2 1,3 1,4 1,3 1,4 1

2,2 2,3 2,4 2,3 2,4 2

1,2 1,1 1,2 1,3 1,4 1,3 1,4 1

2,2 2,3 2,4 2,3 2,4 2

3,3 3,4 3,4 3

4,4 4

3,4 3,3 3,4 3

0

0 0 0

0

0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

R I R R I I R

R R I I R

I R I I R R I

I I R R I

R I R

R

I R I

r r r r r r r y

r r r r r y

r r r r r r r y

r r r r r y

r r r y

r y

r r r y

  

 



4,4 40 0 0 0 0 0 0 Ir y

 
 
 
 
 
 
 
 
 
 
 
 
 

1,1 1,2 1,2 1,3 1,4 1,3 1,4 1

2,2 2,3 2,4 2,5 2,6 2,7 2,8 2

3,3 3,4 3,5 3,6 3,7 3,8 3

2,2 2,3 2,4 2,3 2,4 2

3,3 3,4 3,4 3

6,6 6,7 6,8 6

7,7 7,8 7

4,4

0

0

0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

R I R R I I R

I I I I I

R I R

r r r r r r r y

a a a a a a a b

a a a a a a b

r r r r r y

r r r y

a a a b

a a b

r y

  



4

I

 
 
 
 
 
 
 
 
 
 
 
 
 

RGR

: rotation mode: vectoring mode

Figure 4. The processing diagram of real Givens rotation (RGR) for 4 × 4 MIMO system.

4.2. Processing Engines

Figures 5–7 present the block diagram of the proposed processing engines (PEs). All these PEs

comprise three kinds of CORDIC-based Givens rotation structures: processing unit a (PUa),

Figure 3. Dataflow diagram of the proposed sorted QR decomposition (SQRD) hardware architecture
for 4 × 4 multiple-input multiple-output (MIMO) systems.

Electronics 2020, 9, 1657 8 of 15

Then, RGR performed with processing engine#3–4 eliminates the two non-zero elements below
the diagonal of S, as shown in Figure 4. It can be suggested that the elements of the upper two rows of
Rc are obtained after the processing in sorting#3 because the elimination of the first two columns of
[H

∣∣∣ y] have been completed. As the upper four rows of S are derived from the upper two rows of Rc

according to Equation (10), they can be obtained immediately after the process of sorting#3 is done.
Therefore, the elimination processes of the non-zero element S3,2 (i.e., rI

1,2) in RGR and the third column
of Rc in SCGR are performed with processing engine#3 at the same time when the relevant elements
are output from sorting#3. This will improve the parallelism of the SQRD hardware architecture
and shorten the processing latency. As for the non-zero element S7,6 (i.e., rI

3,4), it will be zeroed with
processing engine#4 when r4,4 of Rc is obtained.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 16

1,1 1,2 1,2 1,3 1,4 1,3 1,4 1

2,2 2,3 2,4 2,3 2,4 2

1,1 1,2 1,3 1,4 1 1,2 1,1 1,2 1,3 1,4 1,3 1,4 1

2,2 2,3 2,4 2

3,3 3,4 3

4,4 4

0

0 0 0

0

0 Modified

0 0 RVD

0 0 0

R I R R I I R

R R I I R

I R I I R R

r r r r r r r y

r r r r r y

r r r r y r r r r r r r y

r r r y

r r y

r y

  

 

 
 
 
 
 
  

2,2 2,3 2,4 2,3 2,4 2

3,3 3,4 3,4 3

4,4 4

3,4 3,3 3,4 3

4,4 4

0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

I

I I R R I

R I R

R

I R I

I

r r r r r y

r r r y

r y

r r r y

r y

 
 
 
 
 
 
 
 
 
 
 
 
 

. (10)

sorting#2 sorting#3
Norm cal. &

sorting#1

Zero Real number

Complex number

 H y

Processing engine#1 Processing engine#2 Processing engine#3 Processing engine#4

Being processed

S
C

G
R

R
G

R

1:4,:S
5:8,:S

c
R

1:4,: 1:4

H  R Q y 5:8,: 5:8

H  R Q y

Figure 3. Dataflow diagram of the proposed sorted QR decomposition (SQRD) hardware architecture

for 4 × 4 multiple-input multiple-output (MIMO) systems.

Then, RGR performed with processing engine#3–4 eliminates the two non-zero elements below

the diagonal of S , as shown in Figure 4. It can be suggested that the elements of the upper two rows

of c
R are obtained after the processing in sorting#3 because the elimination of the first two columns

of  H y have been completed. As the upper four rows of S are derived from the upper two rows

of c
R according to Equation (10), they can be obtained immediately after the process of sorting#3 is

done. Therefore, the elimination processes of the non-zero element
3,2S (i.e.,

1,2

Ir) in RGR and the

third column of c
R in SCGR are performed with processing engine#3 at the same time when the

relevant elements are output from sorting#3. This will improve the parallelism of the SQRD hardware

architecture and shorten the processing latency. As for the non-zero element
7,6S (i.e.,

3,4

Ir), it will

be zeroed with processing engine#4 when
4,4r of c

R is obtained.

1,1 1,2 1,2 1,3 1,4 1,3 1,4 1

2,2 2,3 2,4 2,3 2,4 2

1,2 1,1 1,2 1,3 1,4 1,3 1,4 1

2,2 2,3 2,4 2,3 2,4 2

3,3 3,4 3,4 3

4,4 4

3,4 3,3 3,4 3

0

0 0 0

0

0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

R I R R I I R

R R I I R

I R I I R R I

I I R R I

R I R

R

I R I

r r r r r r r y

r r r r r y

r r r r r r r y

r r r r r y

r r r y

r y

r r r y

  

 



4,4 40 0 0 0 0 0 0 Ir y

 
 
 
 
 
 
 
 
 
 
 
 
 

1,1 1,2 1,2 1,3 1,4 1,3 1,4 1

2,2 2,3 2,4 2,5 2,6 2,7 2,8 2

3,3 3,4 3,5 3,6 3,7 3,8 3

2,2 2,3 2,4 2,3 2,4 2

3,3 3,4 3,4 3

6,6 6,7 6,8 6

7,7 7,8 7

4,4

0

0

0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

R I R R I I R

I I I I I

R I R

r r r r r r r y

a a a a a a a b

a a a a a a b

r r r r r y

r r r y

a a a b

a a b

r y

  



4

I

 
 
 
 
 
 
 
 
 
 
 
 
 

RGR

: rotation mode: vectoring mode

Figure 4. The processing diagram of real Givens rotation (RGR) for 4 × 4 MIMO system.

4.2. Processing Engines

Figures 5–7 present the block diagram of the proposed processing engines (PEs). All these PEs

comprise three kinds of CORDIC-based Givens rotation structures: processing unit a (PUa),

Figure 4. The processing diagram of real Givens rotation (RGR) for 4 × 4 MIMO system.

4.2. Processing Engines

Figures 5–7 present the block diagram of the proposed processing engines (PEs). All these PEs
comprise three kinds of CORDIC-based Givens rotation structures: processing unit a (PUa), processing
unit b (PUb), and processing unit c (PUc). Figure 8 shows their architecture based on CORDIC
module, all of which can work in vectoring mode (VM) and rotation mode (RM). In VM, elimination
operation is applied to the leading column elements of the current input matrix; in RM, the rotation
directions generated in the vectoring mode are retrieved for rotation operations of subsequent elements.
PUa processes paired complex rows, zeroing the lower one and turning the upper one into a real
number [25]. In vectoring mode, the upper-left three CORDIC modules are used, whereas in rotation
mode, all of the four CORDIC modules are occupied. PUb is used for the paired rows of which the
leading elements are real numbers and the rest are complex numbers. In vectoring mode, the upper
CORDIC module processes the leading paired real elements and zeros the lower one; in rotation mode,
the two CORDIC modules are used for the rotation operations of the following complex elements.
PEc with only one CORDIC module processes paired real inputs. As these processing units have
different processing delays (PUa has two CORDIC stages, whereas PUb and PUc have one), delay
elements (DEs) are used to align the data sequences for the subsequent processing unit or sorting
module. Among all these Givens rotation structures, all the processing units in PE#1 and PE#2, PUa#4
in PE#3, and PUc#2 in PE#4 are used for SCGR, whereas PUc#3 in PE#3 and PUc#4 in PE#4 are
dedicated to RGR. The processing units with multiplexers (MUXs) at input and output ports, including
PUb#2 and PUc#2–4, form the time-sharing Givens rotation structure, which will be introduced in the
next subsection.

Electronics 2020, 9, 1657 9 of 15

Electronics 2020, 9, x FOR PEER REVIEW 9 of 16

processing unit b (PUb), and processing unit c (PUc). Figure 8 shows their architecture based on

CORDIC module, all of which can work in vectoring mode (VM) and rotation mode (RM). In VM,

elimination operation is applied to the leading column elements of the current input matrix; in RM,

the rotation directions generated in the vectoring mode are retrieved for rotation operations of

subsequent elements. PUa processes paired complex rows, zeroing the lower one and turning the

upper one into a real number [25]. In vectoring mode, the upper-left three CORDIC modules are used,

whereas in rotation mode, all of the four CORDIC modules are occupied. PUb is used for the paired

rows of which the leading elements are real numbers and the rest are complex numbers. In vectoring

mode, the upper CORDIC module processes the leading paired real elements and zeros the lower

one; in rotation mode, the two CORDIC modules are used for the rotation operations of the following

complex elements. PEc with only one CORDIC module processes paired real inputs. As these

processing units have different processing delays (PUa has two CORDIC stages, whereas PUb and

PUc have one), delay elements (DEs) are used to align the data sequences for the subsequent

processing unit or sorting module. Among all these Givens rotation structures, all the processing

units in PE#1 and PE#2, PUa#4 in PE#3, and PUc#2 in PE#4 are used for SCGR, whereas PUc#3 in

PE#3 and PUc#4 in PE#4 are dedicated to RGR. The processing units with multiplexers (MUXs) at

input and output ports, including PUb#2 and PUc#2–4, form the time-sharing Givens rotation

structure, which will be introduced in the next subsection.

PUa#1

PUa#2 PUb#1

DE#1
1,:H

2,:H

3,:H

4,:H

1,:H

2,:H

3,:H

4,:H

(a)

PUc#3

M
U

X

M
U

X

PUa#4
3,:H

4,:H

6:7,8S

2:3,:S

4,:H

3,:

c
R

2:3,:R

6:7,8R

(b)

Figure 5. Block diagram of processing engines (PEs): (a) processing engine#1; (b) processing engine#3.

PUc#1

PUa#3
PUb#2

M
U

X

DE#2

DE#3

M
U

X

2,:H

3,:H

4,:H

2,:H

3,:H

4,:H

2:3,6S
2:3,6R

2:3,8R

Figure 6. Block diagram of processing engine#2.

PUc#2

PUc#4

M
U

X

M
U

X

M
U

X

M
U

X

DE#4
4,:H

6:7,:S

2:3,7S
2:3,7R

6:7,:R

4,:

c
R

Figure 7. Block diagram of processing engine#4.

Figure 5. Block diagram of processing engines (PEs): (a) processing engine#1; (b) processing engine#3.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 16

processing unit b (PUb), and processing unit c (PUc). Figure 8 shows their architecture based on

CORDIC module, all of which can work in vectoring mode (VM) and rotation mode (RM). In VM,

elimination operation is applied to the leading column elements of the current input matrix; in RM,

the rotation directions generated in the vectoring mode are retrieved for rotation operations of

subsequent elements. PUa processes paired complex rows, zeroing the lower one and turning the

upper one into a real number [25]. In vectoring mode, the upper-left three CORDIC modules are used,

whereas in rotation mode, all of the four CORDIC modules are occupied. PUb is used for the paired

rows of which the leading elements are real numbers and the rest are complex numbers. In vectoring

mode, the upper CORDIC module processes the leading paired real elements and zeros the lower

one; in rotation mode, the two CORDIC modules are used for the rotation operations of the following

complex elements. PEc with only one CORDIC module processes paired real inputs. As these

processing units have different processing delays (PUa has two CORDIC stages, whereas PUb and

PUc have one), delay elements (DEs) are used to align the data sequences for the subsequent

processing unit or sorting module. Among all these Givens rotation structures, all the processing

units in PE#1 and PE#2, PUa#4 in PE#3, and PUc#2 in PE#4 are used for SCGR, whereas PUc#3 in

PE#3 and PUc#4 in PE#4 are dedicated to RGR. The processing units with multiplexers (MUXs) at

input and output ports, including PUb#2 and PUc#2–4, form the time-sharing Givens rotation

structure, which will be introduced in the next subsection.

PUa#1

PUa#2 PUb#1

DE#1
1,:H

2,:H

3,:H

4,:H

1,:H

2,:H

3,:H

4,:H

(a)

PUc#3

M
U

X

M
U

X

PUa#4
3,:H

4,:H

6:7,8S

2:3,:S

4,:H

3,:

c
R

2:3,:R

6:7,8R

(b)

Figure 5. Block diagram of processing engines (PEs): (a) processing engine#1; (b) processing engine#3.

PUc#1

PUa#3
PUb#2

M
U

X

DE#2

DE#3

M
U

X

2,:H

3,:H

4,:H

2,:H

3,:H

4,:H

2:3,6S
2:3,6R

2:3,8R

Figure 6. Block diagram of processing engine#2.

PUc#2

PUc#4

M
U

X

M
U

X

M
U

X

M
U

X

DE#4
4,:H

6:7,:S

2:3,7S
2:3,7R

6:7,:R

4,:

c
R

Figure 7. Block diagram of processing engine#4.

Figure 6. Block diagram of processing engine#2.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 16

processing unit b (PUb), and processing unit c (PUc). Figure 8 shows their architecture based on

CORDIC module, all of which can work in vectoring mode (VM) and rotation mode (RM). In VM,

elimination operation is applied to the leading column elements of the current input matrix; in RM,

the rotation directions generated in the vectoring mode are retrieved for rotation operations of

subsequent elements. PUa processes paired complex rows, zeroing the lower one and turning the

upper one into a real number [25]. In vectoring mode, the upper-left three CORDIC modules are used,

whereas in rotation mode, all of the four CORDIC modules are occupied. PUb is used for the paired

rows of which the leading elements are real numbers and the rest are complex numbers. In vectoring

mode, the upper CORDIC module processes the leading paired real elements and zeros the lower

one; in rotation mode, the two CORDIC modules are used for the rotation operations of the following

complex elements. PEc with only one CORDIC module processes paired real inputs. As these

processing units have different processing delays (PUa has two CORDIC stages, whereas PUb and

PUc have one), delay elements (DEs) are used to align the data sequences for the subsequent

processing unit or sorting module. Among all these Givens rotation structures, all the processing

units in PE#1 and PE#2, PUa#4 in PE#3, and PUc#2 in PE#4 are used for SCGR, whereas PUc#3 in

PE#3 and PUc#4 in PE#4 are dedicated to RGR. The processing units with multiplexers (MUXs) at

input and output ports, including PUb#2 and PUc#2–4, form the time-sharing Givens rotation

structure, which will be introduced in the next subsection.

PUa#1

PUa#2 PUb#1

DE#1
1,:H

2,:H

3,:H

4,:H

1,:H

2,:H

3,:H

4,:H

(a)

PUc#3

M
U

X

M
U

X

PUa#4
3,:H

4,:H

6:7,8S

2:3,:S

4,:H

3,:

c
R

2:3,:R

6:7,8R

(b)

Figure 5. Block diagram of processing engines (PEs): (a) processing engine#1; (b) processing engine#3.

PUc#1

PUa#3
PUb#2

M
U

X

DE#2

DE#3

M
U

X

2,:H

3,:H

4,:H

2,:H

3,:H

4,:H

2:3,6S
2:3,6R

2:3,8R

Figure 6. Block diagram of processing engine#2.

PUc#2

PUc#4

M
U

X

M
U

X

M
U

X

M
U

X

DE#4
4,:H

6:7,:S

2:3,7S
2:3,7R

6:7,:R

4,:

c
R

Figure 7. Block diagram of processing engine#4. Figure 7. Block diagram of processing engine#4.Electronics 2020, 9, x FOR PEER REVIEW 10 of 16

CORDIC

VM/RM

CORDIC

VM/RM

CORDIC

VM/RM

CORDIC

RM

CORDIC

VM/RM

CORDIC

RM

CORDIC

VM/RM

(a) (b) (c)

Figure 8. Architecture of coordinate rotation digital computer (CORDIC)-based processing units: (a)

PUa; (b) PUb; (c) PUc.

4.3. Time-Sharing Givens Rotation Structure

During the SCGR procedure for 4 × 4 MIMO system described above, the current input matrix

of PE#2 is of the size 3 × 3 after the elimination process of the first column of H with PE#1. With the

sorting procedures inserted in the column elimination processes, the Givens rotation structures of

PE#2 process only three columns and stay in an idle state for one clock cycle within every processing

cycle (four clock cycles). Similarly, the periods of idle state of PE#3 and PE#4 in every processing

cycles are two and three clock cycles, respectively. As a result, quite a few processing units are

operating in an unsaturated state, which causes inefficiency of the SQRD hardware architecture. On

the other hand, the elimination process of non-zero elements below the diagonal of S in RGR needs

many Givens rotation operations which are independent of the process of SCGR. Given this, we

design a time-sharing (TS) Givens rotation structure to take advantage of these idle states mentioned

above to share parts of the Givens rotation operations in RGR, which can save hardware cost as well

as improve hardware efficiency.

Figure 9 shows the deeply pipelined processing flow of the proposed SQRD processor with time-

sharing Givens rotation structure. The index  ,i j in the box denotes the element being processed

in the i th row and j th column of the first H during SCGR procedure or the first S during RGR

procedure. In the SCGR procedure, after the process of sorting#2 is done, PUc#1 and PUa#3 in PE#2

stay idle at the first clock cycle of the processing cycles and process the three columns of the current

input 3 × 3 matrix in the other three clock cycles; PUa#4 in PE#3 is in an idle state for the first half of

every processing cycle and processes the two columns of the current input 2 × 2 matrix in the second

half; then, PUc#2 in PE#4 processes the remaining
4,4H at the last clock cycle of the processing cycles

and stays idle for the other three clock cycles. In the procedure of RGR, the elimination of
3,2S in

the first S performed by PUc#3 in PE#3 in vectoring mode starts at the 41st clock cycle when
3,2S ,

i.e.,
1,2

Ir , and
2,2S , i.e.,

2,2r , are obtained after the processing in sorting#3; PUc#4 in PE#4 will

eliminate
7,6S in vectoring mode at the 55th clock cycle after

6,6S , i.e.,
4,4r , is obtained from the

process of PUc#2. With a time-sharing Givens rotation structure, part of the rotation operations of

PUc#3 and PUc#4 performed on the subsequent elements shown in Figure 4 are reasonably assigned

to the suitable processing units in an idle state. As illustrated in Figure 9, the rotation operations of

 2,4 1,4,R Ir r , i.e.,  2,6 3,6,S S , and  2,4 1,4,I Rr r , i.e.,  2,8 3,8,S S , are separately assigned to the two

CORDIC modules in PEb#2 because PEb#2 is just idle when
1,4r and

2,4r are generated. For a

similar reason, the rotation operations of  2,3 1,3,I Rr r , i.e.,  2,7 3,7,S S ,  1,10, r , i.e.,  2,3 3,3,S S , and

 3,40, Rr , i.e.,  6,8 7,8,S S , are assigned to PUc#2, PUc#4, and PUc#3, respectively. If no time-sharing

Givens rotation is adopted, as shown in Figure 10, an additional PUc#5 must be used for helping

PUc#3 with the rotation operations to match the processing rate of SCGR because it will take seven

clock cycles for PUc#3 alone to finish the Givens rotation of the seven paired elements of
2:3,:S , which

exceeds the processing cycles of SCGR. Furthermore, it will cost more delay buffers (DBs) for the

aligning of the relevant elements for modified RVD, because the process is extended with only three

processing units (PUc#3, PUc#4, and PUc#5). Therefore, with time-sharing Givens rotation structure,

Figure 8. Architecture of coordinate rotation digital computer (CORDIC)-based processing units:
(a) PUa; (b) PUb; (c) PUc.

4.3. Time-Sharing Givens Rotation Structure

During the SCGR procedure for 4 × 4 MIMO system described above, the current input matrix
of PE#2 is of the size 3 × 3 after the elimination process of the first column of H with PE#1. With the
sorting procedures inserted in the column elimination processes, the Givens rotation structures of PE#2
process only three columns and stay in an idle state for one clock cycle within every processing cycle
(four clock cycles). Similarly, the periods of idle state of PE#3 and PE#4 in every processing cycles
are two and three clock cycles, respectively. As a result, quite a few processing units are operating
in an unsaturated state, which causes inefficiency of the SQRD hardware architecture. On the other
hand, the elimination process of non-zero elements below the diagonal of S in RGR needs many
Givens rotation operations which are independent of the process of SCGR. Given this, we design a
time-sharing (TS) Givens rotation structure to take advantage of these idle states mentioned above to
share parts of the Givens rotation operations in RGR, which can save hardware cost as well as improve
hardware efficiency.

Electronics 2020, 9, 1657 10 of 15

Figure 9 shows the deeply pipelined processing flow of the proposed SQRD processor with
time-sharing Givens rotation structure. The index (i, j) in the box denotes the element being processed
in the ith row and jth column of the first H during SCGR procedure or the first S during RGR procedure.
In the SCGR procedure, after the process of sorting#2 is done, PUc#1 and PUa#3 in PE#2 stay idle
at the first clock cycle of the processing cycles and process the three columns of the current input
3 × 3 matrix in the other three clock cycles; PUa#4 in PE#3 is in an idle state for the first half of every
processing cycle and processes the two columns of the current input 2 × 2 matrix in the second half;
then, PUc#2 in PE#4 processes the remaining H4,4 at the last clock cycle of the processing cycles and
stays idle for the other three clock cycles. In the procedure of RGR, the elimination of S3,2 in the first
S performed by PUc#3 in PE#3 in vectoring mode starts at the 41st clock cycle when S3,2, i.e., rI

1,2,
and S2,2, i.e., r2,2, are obtained after the processing in sorting#3; PUc#4 in PE#4 will eliminate S7,6 in
vectoring mode at the 55th clock cycle after S6,6, i.e., r4,4, is obtained from the process of PUc#2. With a
time-sharing Givens rotation structure, part of the rotation operations of PUc#3 and PUc#4 performed
on the subsequent elements shown in Figure 4 are reasonably assigned to the suitable processing
units in an idle state. As illustrated in Figure 9, the rotation operations of (rR

2,4, rI
1,4), i.e., (S2,6, S3,6),

and (−rI
2,4, rR

1,4), i.e., (S2,8, S3,8), are separately assigned to the two CORDIC modules in PEb#2 because
PEb#2 is just idle when r1,4 and r2,4 are generated. For a similar reason, the rotation operations
of (−rI

2,3, rR
1,3), i.e., (S2,7, S3,7), (0, r1,1), i.e., (S2,3, S3,3), and (0, rR

3,4), i.e., (S6,8, S7,8), are assigned to
PUc#2, PUc#4, and PUc#3, respectively. If no time-sharing Givens rotation is adopted, as shown
in Figure 10, an additional PUc#5 must be used for helping PUc#3 with the rotation operations to
match the processing rate of SCGR because it will take seven clock cycles for PUc#3 alone to finish the
Givens rotation of the seven paired elements of S2:3,:, which exceeds the processing cycles of SCGR.
Furthermore, it will cost more delay buffers (DBs) for the aligning of the relevant elements for modified
RVD, because the process is extended with only three processing units (PUc#3, PUc#4, and PUc#5).
Therefore, with time-sharing Givens rotation structure, one CORDIC module and eight DBs (a DB
contains Nbw bit registers; Nbw is the adopted bit-width) are saved and the hardware efficiency of the
entire SQRD is improved.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 16

one CORDIC module and eight DBs (a DB contains
bwN bit registers;

bwN is the adopted bit-width)

are saved and the hardware efficiency of the entire SQRD is improved.

PUa#1

PUa#2

PUb#1

PUc#1

PUa#3

PUb#2

PUa#4

PUc#2

T/clock cycle

Idle state VM of SCGR TS RMRM of SCGR RM of RGRVM of RGR

6 7 8 9 10 11 12 13 14 15 16 23 24 25 26 27 28 29 30 31 32 33 34 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 5817

PUc#3

PUc#4

0

6 clock cycles for Sorting#1

1,1

2,1

3,1

4,1

2,2

3,2

2,3

3,3
2,5

3,5

3,3

4,3

1,2

2,2

1,3

2,3

1,4

2,4
3,2

4,2

3,3

4,3

3,4

4,4

1,1

3,1

1,2

3,2

1,3

3,3

1,4

3,4

2,2 2,3 2,4

3,2

4,2

3,3

4,3

3,4

4,4

2,2

3,2

2,3

3,3

2,4

3,4

3,4

4,4

2,4

3,4

2,7

3,7

2,6

3,6

2,8

3,8

4,4

6,6

7,6

6,8

7,8
6,7

7,7

Processing cycles of first or H

5 clock cycles for Sorting#2 5 clock cycles for Sorting#3

TS RM of first orHS S

59

Figure 9. Deeply pipelined processing flow of the proposed SQRD processor with time-sharing

Givens rotation structure.

, ,0

,0

,

,

,

,

DB

, ,0 ,0

DB DB

DB DBDB

DB

RB
DB

DB
DB

DB
DB

DB
DB

DB DB DB

DBDB

DB

DB

PUb#2

PUc#3 PUc#4

PUc#2

PUc#4 PUc#3

PUc#3 PUc#4

PUc#5

D
at

a
 f

lo
w

G
iv

e
n
s

ro
ta

ti
o

n

D
at

a
 f

lo
w

G
iv

e
n
s

ro
ta

ti
o
n

0 2T 
0 1T 0T

0 3T  0 4T  1T 1 1T  1 2T  1 3T  0 2T 
0 1T 0T

0 3T  1T 1 1T  1 2T 

Time/clock cycle Time/clock cycle

Without time-sharing structure With time-sharing structure

DB

22r
12

Ir

22r

12

Rr 14

Ir

11r

11r
24

Rr

14

Rr24- Ir
13

Ir23

Rr

13

Rr23- Ir

44r

44r 34

Ir 33r

12r

13r

14r

23r

24r

34

Rr

34r
11r

12r

13r
14r

22r 23r 24r

,22r
12

Ir , 13

Ir23

Rr ,0 12

Rr

,0 11r , 14

Ir
24

Rr

, 13

Rr23- Ir , 14

Rr24- Ir

44r
34r

33r 33r

,44r 34

Ir ,0 33r

,0 34

Rr

Figure 10. Processing flow of time-sharing Givens rotation structure.

4.4. CORDIC Architecture

Figures 11 and 12 illustrate the detailed CORDIC architecture adopted in our design. The

CORDIC module has eight micro-rotation stages and four pipelined stages. In the normal CORDIC

module shown in Figure 11a, the rotation direction calculated by 0 : 1:1iy   is used and stored in

VM; and in RM, the rotation direction is retrieved. In the CORDIC module used for the time-sharing

Givens rotation structure shown in Figure 11b, a time-sharing mode (TSM) is added to process the

shared rotation operation using the rotation direction from the corresponding processing unit. The

scale factor of CORDIC with eight micro-rotations is  7 2

0
1 1 2 0.607259i

i




  . In our design, we

approximate this number to 1 3 6 92 2 2 2 0.607421875       and the corresponding hardware

architecture is presented in Figure 12.

+/-

xi yi

VM/RM

M
U

X

>> i >> i

REG

+/-

xi+1 yi+1

yi>0:-1:1

(a)

+/-

xi yi

VM/RM/TSM

M
U

X

>> i >> i

REG

+/-

xi+1 yi+1

yi>0:-1:1

TS rotation

direction

(b)

Figure 11. Architecture of micro-rotations of adopted CORDIC module: (a) micro-rotation for normal

CORDIC module; (b) micro-rotation for time-sharing CORDIC module.

Figure 9. Deeply pipelined processing flow of the proposed SQRD processor with time-sharing Givens
rotation structure.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 16

one CORDIC module and eight DBs (a DB contains
bwN bit registers;

bwN is the adopted bit-width)

are saved and the hardware efficiency of the entire SQRD is improved.

PUa#1

PUa#2

PUb#1

PUc#1

PUa#3

PUb#2

PUa#4

PUc#2

T/clock cycle

Idle state VM of SCGR TS RMRM of SCGR RM of RGRVM of RGR

6 7 8 9 10 11 12 13 14 15 16 23 24 25 26 27 28 29 30 31 32 33 34 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 5817

PUc#3

PUc#4

0

6 clock cycles for Sorting#1

1,1

2,1

3,1

4,1

2,2

3,2

2,3

3,3
2,5

3,5

3,3

4,3

1,2

2,2

1,3

2,3

1,4

2,4
3,2

4,2

3,3

4,3

3,4

4,4

1,1

3,1

1,2

3,2

1,3

3,3

1,4

3,4

2,2 2,3 2,4

3,2

4,2

3,3

4,3

3,4

4,4

2,2

3,2

2,3

3,3

2,4

3,4

3,4

4,4

2,4

3,4

2,7

3,7

2,6

3,6

2,8

3,8

4,4

6,6

7,6

6,8

7,8
6,7

7,7

Processing cycles of first or H

5 clock cycles for Sorting#2 5 clock cycles for Sorting#3

TS RM of first orHS S

59

Figure 9. Deeply pipelined processing flow of the proposed SQRD processor with time-sharing

Givens rotation structure.

, ,0

,0

,

,

,

,

DB

, ,0 ,0

DB DB

DB DBDB

DB

RB
DB

DB
DB

DB
DB

DB
DB

DB DB DB

DBDB

DB

DB

PUb#2

PUc#3 PUc#4

PUc#2

PUc#4 PUc#3

PUc#3 PUc#4

PUc#5

D
at

a
 f

lo
w

G
iv

e
n
s

ro
ta

ti
o

n

D
at

a
 f

lo
w

G
iv

e
n
s

ro
ta

ti
o
n

0 2T 
0 1T 0T

0 3T  0 4T  1T 1 1T  1 2T  1 3T  0 2T 
0 1T 0T

0 3T  1T 1 1T  1 2T 

Time/clock cycle Time/clock cycle

Without time-sharing structure With time-sharing structure

DB

22r
12

Ir

22r

12

Rr 14

Ir

11r

11r
24

Rr

14

Rr24- Ir
13

Ir23

Rr

13

Rr23- Ir

44r

44r 34

Ir 33r

12r

13r

14r

23r

24r

34

Rr

34r
11r

12r

13r
14r

22r 23r 24r

,22r
12

Ir , 13

Ir23

Rr ,0 12

Rr

,0 11r , 14

Ir
24

Rr

, 13

Rr23- Ir , 14

Rr24- Ir

44r
34r

33r 33r

,44r 34

Ir ,0 33r

,0 34

Rr

Figure 10. Processing flow of time-sharing Givens rotation structure.

4.4. CORDIC Architecture

Figures 11 and 12 illustrate the detailed CORDIC architecture adopted in our design. The

CORDIC module has eight micro-rotation stages and four pipelined stages. In the normal CORDIC

module shown in Figure 11a, the rotation direction calculated by 0 : 1:1iy   is used and stored in

VM; and in RM, the rotation direction is retrieved. In the CORDIC module used for the time-sharing

Givens rotation structure shown in Figure 11b, a time-sharing mode (TSM) is added to process the

shared rotation operation using the rotation direction from the corresponding processing unit. The

scale factor of CORDIC with eight micro-rotations is  7 2

0
1 1 2 0.607259i

i




  . In our design, we

approximate this number to 1 3 6 92 2 2 2 0.607421875       and the corresponding hardware

architecture is presented in Figure 12.

+/-

xi yi

VM/RM

M
U

X

>> i >> i

REG

+/-

xi+1 yi+1

yi>0:-1:1

(a)

+/-

xi yi

VM/RM/TSM

M
U

X

>> i >> i

REG

+/-

xi+1 yi+1

yi>0:-1:1

TS rotation

direction

(b)

Figure 11. Architecture of micro-rotations of adopted CORDIC module: (a) micro-rotation for normal

CORDIC module; (b) micro-rotation for time-sharing CORDIC module.

Figure 10. Processing flow of time-sharing Givens rotation structure.

Electronics 2020, 9, 1657 11 of 15

4.4. CORDIC Architecture

Figures 11 and 12 illustrate the detailed CORDIC architecture adopted in our design. The CORDIC
module has eight micro-rotation stages and four pipelined stages. In the normal CORDIC module
shown in Figure 11a, the rotation direction calculated by yi > 0 : −1 : 1 is used and stored in VM; and in
RM, the rotation direction is retrieved. In the CORDIC module used for the time-sharing Givens rotation
structure shown in Figure 11b, a time-sharing mode (TSM) is added to process the shared rotation
operation using the rotation direction from the corresponding processing unit. The scale factor of
CORDIC with eight micro-rotations is

∏7
i=0

(
1/
√

1 + 2−2i
)
= 0.607259. In our design, we approximate

this number to 2−1 + 2−3
− 2−6

− 2−9 = 0.607421875 and the corresponding hardware architecture is
presented in Figure 12.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 16

one CORDIC module and eight DBs (a DB contains
bwN bit registers;

bwN is the adopted bit-width)

are saved and the hardware efficiency of the entire SQRD is improved.

PUa#1

PUa#2

PUb#1

PUc#1

PUa#3

PUb#2

PUa#4

PUc#2

T/clock cycle

Idle state VM of SCGR TS RMRM of SCGR RM of RGRVM of RGR

6 7 8 9 10 11 12 13 14 15 16 23 24 25 26 27 28 29 30 31 32 33 34 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 5817

PUc#3

PUc#4

0

6 clock cycles for Sorting#1

1,1

2,1

3,1

4,1

2,2

3,2

2,3

3,3
2,5

3,5

3,3

4,3

1,2

2,2

1,3

2,3

1,4

2,4
3,2

4,2

3,3

4,3

3,4

4,4

1,1

3,1

1,2

3,2

1,3

3,3

1,4

3,4

2,2 2,3 2,4

3,2

4,2

3,3

4,3

3,4

4,4

2,2

3,2

2,3

3,3

2,4

3,4

3,4

4,4

2,4

3,4

2,7

3,7

2,6

3,6

2,8

3,8

4,4

6,6

7,6

6,8

7,8
6,7

7,7

Processing cycles of first or H

5 clock cycles for Sorting#2 5 clock cycles for Sorting#3

TS RM of first orHS S

59

Figure 9. Deeply pipelined processing flow of the proposed SQRD processor with time-sharing

Givens rotation structure.

, ,0

,0

,

,

,

,

DB

, ,0 ,0

DB DB

DB DBDB

DB

RB
DB

DB
DB

DB
DB

DB
DB

DB DB DB

DBDB

DB

DB

PUb#2

PUc#3 PUc#4

PUc#2

PUc#4 PUc#3

PUc#3 PUc#4

PUc#5

D
at

a
 f

lo
w

G
iv

e
n
s

ro
ta

ti
o

n

D
at

a
 f

lo
w

G
iv

e
n
s

ro
ta

ti
o
n

0 2T 
0 1T 0T

0 3T  0 4T  1T 1 1T  1 2T  1 3T  0 2T 
0 1T 0T

0 3T  1T 1 1T  1 2T 

Time/clock cycle Time/clock cycle

Without time-sharing structure With time-sharing structure

DB

22r
12

Ir

22r

12

Rr 14

Ir

11r

11r
24

Rr

14

Rr24- Ir
13

Ir23

Rr

13

Rr23- Ir

44r

44r 34

Ir 33r

12r

13r

14r

23r

24r

34

Rr

34r
11r

12r

13r
14r

22r 23r 24r

,22r
12

Ir , 13

Ir23

Rr ,0 12

Rr

,0 11r , 14

Ir
24

Rr

, 13

Rr23- Ir , 14

Rr24- Ir

44r
34r

33r 33r

,44r 34

Ir ,0 33r

,0 34

Rr

Figure 10. Processing flow of time-sharing Givens rotation structure.

4.4. CORDIC Architecture

Figures 11 and 12 illustrate the detailed CORDIC architecture adopted in our design. The

CORDIC module has eight micro-rotation stages and four pipelined stages. In the normal CORDIC

module shown in Figure 11a, the rotation direction calculated by 0 : 1:1iy   is used and stored in

VM; and in RM, the rotation direction is retrieved. In the CORDIC module used for the time-sharing

Givens rotation structure shown in Figure 11b, a time-sharing mode (TSM) is added to process the

shared rotation operation using the rotation direction from the corresponding processing unit. The

scale factor of CORDIC with eight micro-rotations is  7 2

0
1 1 2 0.607259i

i




  . In our design, we

approximate this number to 1 3 6 92 2 2 2 0.607421875       and the corresponding hardware

architecture is presented in Figure 12.

+/-

xi yi

VM/RM

M
U

X

>> i >> i

REG

+/-

xi+1 yi+1

yi>0:-1:1

(a)

+/-

xi yi

VM/RM/TSM

M
U

X

>> i >> i

REG

+/-

xi+1 yi+1

yi>0:-1:1

TS rotation

direction

(b)

Figure 11. Architecture of micro-rotations of adopted CORDIC module: (a) micro-rotation for normal

CORDIC module; (b) micro-rotation for time-sharing CORDIC module.

Figure 11. Architecture of micro-rotations of adopted CORDIC module: (a) micro-rotation for normal
CORDIC module; (b) micro-rotation for time-sharing CORDIC module.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 16

x8

>
>

 6

>
>

 9

>
>

 3

>
>

 1

y8

>
>

 6

>
>

 9

>
>

 3

>
>

 1

Figure 12. Architecture of scaling of adopted CORDIC module.

4.5. Sorting

The iterative sorting procedure of the proposed SQRD processor is performed with norm

calculator and sorting#1–3. Figure 13 shows the architectures of these modules. The complex elements

of the 4 × 4 channel matrix H are delivered column by column as the input of norm calculator. First,

the squares of the real part and imaginary part of the four elements in one column are calculated with

SQ modules and then these squares are added up in pairs to obtain the norm value of every complex

element; ultimately, all the norm values are added together with the SUM module to get the norm

value of the current input column. In sorting#1, the norm update module is bypassed and the CS

module compares these successive norm values until it finds the minimum one. Finally, the column

with the smallest norm is swapped with the first column of the four stored in the column buffer. In a

similar way, sorting#2 and sorting#3 perform the rest of the sorting procedures. However, what is

different from sorting#1 is that, before the CS module, they will first update the norm values from

the former sorting module according to line 13 in Algorithm 1.

SQ

SQ
| |

2

1,ih

SQ

SQ
| |

2

1,ih

SQ

SQ
| |

2

1,ih

SQ

SQ
| |

2

1,ih

SUM
2,4 2,1h h

1,4 1,1h h

3,4 3,1h h
4,4 4,1h h norm

(a)

c
o

lu
m

n
 i

n
p
u

t

CS

min

norm/

upd_norm

Column

buffer M
U

X sorted

columns

norm/upd_norm

Norm

update
REG

(b)

Figure 13. Architecture of the modules of the iterative sorting procedure: (a) norm calculator; (b)

sorting#1–3.

5. Implementation Results and Comparisons

We designed the RTL models of the proposed SQRD processor with Verilog HDL and

synthesized it by Synopsys Design Compiler with SMIC 55-nm COMS technology. The bit-width of

the data pass of our design was set to 16 bits, including 5 bits for the integer part and 11 bits for the

fractional part. The fixed-point design of the proposed SQRD was simulated in the same platform

introduced in Section 2.1. The result shows that the BER performance has a negligible degradation

compared to the floating-point one. Table 2 presents a summary of the implementation results and

performance comparisons with related studies. The gate count of the proposed SQRD processor is

176.5 K which is greatly reduced compared to the other designs. This is due to the adopted low-

complexity SQRD algorithm and time-sharing Givens rotation structure. Our design achieves a high

throughput of 62.5 M SQRD/s and 250 M H
Q y /s, with an operating frequency of 250 MHz, which is

better than most of the other studies. The design in reference [3] has the highest SQRD throughput

with the best maxf , albeit at the expense of exorbitant hardware cost and long processing latency.

Figure 12. Architecture of scaling of adopted CORDIC module.

4.5. Sorting

The iterative sorting procedure of the proposed SQRD processor is performed with norm calculator
and sorting#1–3. Figure 13 shows the architectures of these modules. The complex elements of the 4 × 4
channel matrix H are delivered column by column as the input of norm calculator. First, the squares of
the real part and imaginary part of the four elements in one column are calculated with SQ modules
and then these squares are added up in pairs to obtain the norm value of every complex element;
ultimately, all the norm values are added together with the SUM module to get the norm value of
the current input column. In sorting#1, the norm update module is bypassed and the CS module
compares these successive norm values until it finds the minimum one. Finally, the column with the
smallest norm is swapped with the first column of the four stored in the column buffer. In a similar
way, sorting#2 and sorting#3 perform the rest of the sorting procedures. However, what is different
from sorting#1 is that, before the CS module, they will first update the norm values from the former
sorting module according to line 13 in Algorithm 1.

Electronics 2020, 9, 1657 12 of 15

Electronics 2020, 9, x FOR PEER REVIEW 12 of 16

x8

>
>

 6

>
>

 9

>
>

 3

>
>

 1

y8

>
>

 6

>
>

 9

>
>

 3

>
>

 1

Figure 12. Architecture of scaling of adopted CORDIC module.

4.5. Sorting

The iterative sorting procedure of the proposed SQRD processor is performed with norm

calculator and sorting#1–3. Figure 13 shows the architectures of these modules. The complex elements

of the 4 × 4 channel matrix H are delivered column by column as the input of norm calculator. First,

the squares of the real part and imaginary part of the four elements in one column are calculated with

SQ modules and then these squares are added up in pairs to obtain the norm value of every complex

element; ultimately, all the norm values are added together with the SUM module to get the norm

value of the current input column. In sorting#1, the norm update module is bypassed and the CS

module compares these successive norm values until it finds the minimum one. Finally, the column

with the smallest norm is swapped with the first column of the four stored in the column buffer. In a

similar way, sorting#2 and sorting#3 perform the rest of the sorting procedures. However, what is

different from sorting#1 is that, before the CS module, they will first update the norm values from

the former sorting module according to line 13 in Algorithm 1.

SQ

SQ
| |

2

1,ih

SQ

SQ
| |

2

1,ih

SQ

SQ
| |

2

1,ih

SQ

SQ
| |

2

1,ih

SUM
2,4 2,1h h

1,4 1,1h h

3,4 3,1h h
4,4 4,1h h norm

(a)

c
o

lu
m

n
 i

n
p
u

t

CS

min

norm/

upd_norm

Column

buffer M
U

X sorted

columns

norm/upd_norm

Norm

update
REG

(b)

Figure 13. Architecture of the modules of the iterative sorting procedure: (a) norm calculator; (b)

sorting#1–3.

5. Implementation Results and Comparisons

We designed the RTL models of the proposed SQRD processor with Verilog HDL and

synthesized it by Synopsys Design Compiler with SMIC 55-nm COMS technology. The bit-width of

the data pass of our design was set to 16 bits, including 5 bits for the integer part and 11 bits for the

fractional part. The fixed-point design of the proposed SQRD was simulated in the same platform

introduced in Section 2.1. The result shows that the BER performance has a negligible degradation

compared to the floating-point one. Table 2 presents a summary of the implementation results and

performance comparisons with related studies. The gate count of the proposed SQRD processor is

176.5 K which is greatly reduced compared to the other designs. This is due to the adopted low-

complexity SQRD algorithm and time-sharing Givens rotation structure. Our design achieves a high

throughput of 62.5 M SQRD/s and 250 M H
Q y /s, with an operating frequency of 250 MHz, which is

better than most of the other studies. The design in reference [3] has the highest SQRD throughput

with the best maxf , albeit at the expense of exorbitant hardware cost and long processing latency.

Figure 13. Architecture of the modules of the iterative sorting procedure: (a) norm calculator; (b) sorting#1–3.

5. Implementation Results and Comparisons

We designed the RTL models of the proposed SQRD processor with Verilog HDL and synthesized
it by Synopsys Design Compiler with SMIC 55-nm COMS technology. The bit-width of the data pass
of our design was set to 16 bits, including 5 bits for the integer part and 11 bits for the fractional
part. The fixed-point design of the proposed SQRD was simulated in the same platform introduced
in Section 2.1. The result shows that the BER performance has a negligible degradation compared to
the floating-point one. Table 2 presents a summary of the implementation results and performance
comparisons with related studies. The gate count of the proposed SQRD processor is 176.5 K which
is greatly reduced compared to the other designs. This is due to the adopted low-complexity SQRD
algorithm and time-sharing Givens rotation structure. Our design achieves a high throughput of
62.5 M SQRD/s and 250 M QHy/s, with an operating frequency of 250 MHz, which is better than most
of the other studies. The design in reference [3] has the highest SQRD throughput with the best fmax,
albeit at the expense of exorbitant hardware cost and long processing latency. Therefore, we take
hardware complexity and implementation technology into consideration and introduce normalized
hardware efficiency (NHE) for a fair comparison of throughput. Table 2 clearly shows that our design
is superior to all the other SQRD processors in terms of normalized hardware efficiency. In addition,
we evaluate these designs in a 4 × 4 64QAM MIMO system and our design achieves the highest data
throughput of 6 Gbps. For IEEE 802.11ax [1], the maximum uncoded data throughput in the same
scenarios with a bandwidth of 160 MHz is 2.88 Gbps. Therefore, the proposed SQRD design is able to
support the IEEE 802.11ax.

Table 2. Implementation results and performance comparisons.

Items This Study [9] [20] [3] [8] [19]

Antennas 4 × 4 4 × 4 4 × 4 4 × 4 4 × 4 4 × 4
Algorithm GR GR GR GR GR GR
Technology 55 nm 65 nm 0.18 µm 65 nm 0.13 µm 90 nm

fmax (Hz) 250 M 243.9 M 116.3 M 550 M 200 M 220 M
Gate count 176.5 K 278 K 437.5 K 468 K 299 K 375.1 K

Processing latency (ns) 236 266.5 - 625.5 685-775 654.5
SQRD Processing cycles 4 5 4 8 8 5

SQRD throughput (SQRD/s) 62.5 M 48.8 M 29 M 68.75 M 25 M 44 M
SQRD NHE 1 0.354 0.207 0.217 0.177 0.198 0.192

QHy Processing cycles 1 1.25 4 - - 5
QHy throughput (QHy/s) 250 M 195 M 29 M - - 44 M

QHy NHE 1.416 0.829 0.217 - - 0.192
MIMO data throughput 2 6 Gbps 4.7 Gbps 696 Mbps - - 1 Gbps
1 NHE = throughput (M) · Technology/(55nm ·Gate cout (K)); 2 evaluated for a 4 × 4 64QAM MIMO system [9].

Electronics 2020, 9, 1657 13 of 15

6. Conclusions

In this article, we designed an SQRD processor with reduced complexity and high throughput for
MIMO detectors. An efficient SQRD algorithm based on a novel modified RVD was proposed, which
could significantly reduce the computational complexity compared to the latest studies. According to the
proposed algorithm, we designed the corresponding SQRD hardware architecture with CORDIC-based
Givens rotation. In the hardware design, a time-sharing Givens rotation structure was adopted to
take advantage of the CORDIC processor in an idle state as far as possible. In this way, hardware
complexity was further decreased and hardware efficiency was improved. We also implemented the
SQRD processor with SMIC 55-nm COMS technology. The implementation results show that our
design surpasses other related studies in normalized hardware efficiency and achieves a MIMO data
throughput of 6 Gbps, which can support current high-speed wireless MIMO systems.

Author Contributions: Conceptualization, L.S. and B.W.; methodology, L.S.; software, L.S.; validation, L.S., B.W.,
and T.Y.; writing—original draft preparation, L.S.; writing—review and editing, L.S. and B.W.; funding acquisition,
T.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by the National Science and Technology Major Project of China under
Grant 2014ZX03001011-002.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Since y is normally distributed which is y ∼ N
(
Hs, δ2INN

)
[14], the likelihood to estimate s can be

given by

p(y; s) =
∏N

i=1

(√
2πσ

)−1
exp

(
−(yi −Hi,:s)

2/2σ2
)

=
(∏N

i=1

(√
2πσ

)−1
)
· exp

(
−

N∑
i=1

(yi −Hi,:s)
2/2σ2

)
=

(∏N
i=1

(√
2πσ

)−1
)
· exp

(
−‖y−Hs‖2/2σ2

) (A1)

Note that to maximize likelihood, p(y; s) is equivalent to minimize ‖y−Hs‖2. Therefore, the ML

solution of s is given by
^
sML = argmin

s∈Ω
‖y−Hs‖2.

Appendix B

The number of CORDIC operations needed in SCGR is the summation of the CORDIC operations
needed in every column elimination process.

The elimination process of the kth column zeros the complex-valued elements below the kth row
and turns the element in the kth row into a real number, which contains two steps.

Step 1, zero the imaginary parts of all the N − k + 1 complex-valued elements to be processed of
the kth column. For the elimination process of every complex-valued element to be processed, one
CORDIC operation for vectoring mode and N − k CORDIC operations (rotation operations for the
subsequent N − k elements in the corresponding row) for rotation mode are needed. Thus, the number
of CORDIC operations cost in step 1 is (N − k + 1)(1 + N − k).

Step 2, the first row of the kth column is selected as pivot row to nullify all the N − k real-valued
elements in the subsequent rows of the kth column. For the elimination operation of every real-valued
element in the subsequent rows, one CORDIC operation for vectoring mode and 2(N − k) CORDIC
operations (rotation operations for the subsequent N − k paired complex-valued elements in the
corresponding rows) for rotation mode are needed. Thus, the number of CORDIC operations cost in
step 2 is (N − k)(1 + 2(N − k)).

For all the elimination processes of N columns in H, the number of CORDIC operations is totally
N∑

k=1
((N − k + 1)(N − k + 1) + (N − k)(1 + 2(N − k))) = N3.

Electronics 2020, 9, 1657 14 of 15

References

1. IEEE Draft Standard for Information Technology—Telecommunications and Information Exchange between
Systems Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications Amendment Enhancements for High
Efficiency WLAN. Available online: https://ieeexplore.ieee.org/document/8424259 (accessed on 31 July 2018).

2. Tsai, P.Y.; Lo, P.C.; Shih, F.J.; Jau, W.J.; Huang, M.Y.; Huang, Z.Y. A 4 × 4 MIMO-OFDM Baseband Receiver
with 160 MHz Bandwidth for Indoor Gigabit Wireless Communications. IEEE Trans. Circuits Syst. I Regul. Pap.
2015, 62, 2929–2939. [CrossRef]

3. Yan, Z.T.; He, G.H.; Ren, Y.F.; He, W.F.; Jiang, J.F.; Mao, Z.G. Design and Implementation of Flexible
Dual-Mode Soft-Output MIMO Detector with Channel Preprocessing. IEEE Trans. Circuits Syst. I Regul. Pap.
2015, 62, 2706–2717. [CrossRef]

4. Wubben, D.; Bohnke, R.; Rinas, J.; Kuhn, V.; Kammeyer, K.D. Efficient algorithm for decoding layered
space-time codes. Electron. Lett. 2001, 37, 1348–1350. [CrossRef]

5. Rakesh, G.; Ove, E.; Liu, L. An Adaptive QR Decomposition Processor for Carrier-Aggregated LTE-A in
28-nm FD-SOI. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 1914–1926. [CrossRef]

6. Dongyeob, S.; Jongsun, P. A Low-Latency and Area-Efficient Gram–Schmidt-Based QRD Architecture for
MIMO Receiver. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 2606–2616. [CrossRef]

7. Patel, D.; Shabany, M.; Gulak, P.G. A low-complexity high-speed QR decomposition implementation for
MIMO receivers. In Proceedings of the IEEE International Symposium Circuits and Systems, Taipei, Taiwan,
24–27 May 2009; pp. 33–36. [CrossRef]

8. Ren, Y.F.; He, G.H.; Ma, J. High-throughput sorted MMSE QR decomposition for MIMO detection.
In Proceedings of the IEEE International Symposium on Circuits and Systems, Seoul, Korea, 20–23 May 2012;
pp. 2845–2848. [CrossRef]

9. Lee, H.; Oh, K.; Jang, M.C.Y. Efficient Low-Latency Implementation of CORDIC-Based Sorted QR
Decomposition for Multi-Gbps MIMO Systems. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 1375–1379.
[CrossRef]

10. Wieringen, W.N. Lecture Notes on Ridge Regression. Available online: https://arxiv.org/abs/1509.09169
(accessed on 30 September 2015).

11. Martino, L.; Read, J. Joint Introduction to Gaussian Processes and Relevance Vector Machines with Connections
to Kalman Filtering and other Kernel Smoothers. Available online: https://arxiv.org/abs/2009.09217 (accessed
on 19 September 2020).

12. Burg, A. VLSI Circuits for MIMO Communication Systems. Ph.D. Thesis, ETH, Zürich, Switzerland, 2006.
13. Krishnamoorthy, A.; Menon, D. Matrix inversion using Cholesky decomposition. In Proceedings of the

2013 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland,
26–28 September 2013; pp. 70–72.

14. Chen, Y.J.; Halbauer, H.; Jeschke, M.; Richter, R. An efficient Cholesky Decomposition based multiuser MIMO
detection algorithm. In Proceedings of the 21st Annual IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications, Poznan, Poland, 26–30 September 2010; pp. 499–503. [CrossRef]

15. Peter, L.; Andreas, B.; Haene, S.; Perels, D.; Felber, N.; Fichtner, W. VLSI Implementation of a High-Speed
Iterative Sorted MMSE QR Decomposition. In Proceedings of the 2007 IEEE International Symposium on
Circuits and Systems, New Orleans, LA, USA, 27–30 May 2007; pp. 1421–1424. [CrossRef]

16. Peter, L.; Studer, C.; Duetsch, S.; Zgraggen, E.; Kaeslin, H.; Felber, N. Gram-Schmidt-based QR decomposition
for MIMO detection: VLSI implementation and comparison. In Proceedings of the 2008 IEEE Asia Pacific
Conference on Circuits and Systems, Macao, China, 30 November–3 December 2008; pp. 830–833. [CrossRef]

17. Miyaoka, Y.; Nagao, Y.; Kurosaki, M.; Ochi, H. Sorted QR decomposition for high-speed MMSE MIMO
detection based wireless communication systems. In Proceedings of the 2012 IEEE International Symposium
on Circuits and Systems, Seoul, Korea, 20–23 May 2012; pp. 2857–2860. [CrossRef]

18. Liao, C.; Wang, J.; Huang, Y. A 3.1 Gb/s 8×8 Sorting Reduced K-Best Detector with Lattice Reduction and QR
Decomposition. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 22, 2675–2688. [CrossRef]

19. Zhang, C.; Prabhu, H.; Liu, Y.; Liu, L.; Edfors, O.; Öwall, V. Energy Efficient Group-Sort QRD Processor
With On-Line Update for MIMO Channel Pre-Processing. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62,
1220–1229. [CrossRef]

https://ieeexplore.ieee.org/document/8424259
http://dx.doi.org/10.1109/TCSI.2015.2495740
http://dx.doi.org/10.1109/TCSI.2015.2479055
http://dx.doi.org/10.1049/el:20010899
http://dx.doi.org/10.1109/TCSI.2017.2658729
http://dx.doi.org/10.1109/TCSI.2018.2795342
http://dx.doi.org/10.1109/ISCAS.2009.5117678
http://dx.doi.org/10.1109/ISCAS.2012.6271904
http://dx.doi.org/10.1109/TCSII.2018.2853099
https://arxiv.org/abs/1509.09169
https://arxiv.org/abs/2009.09217
http://dx.doi.org/10.1109/PIMRC.2010.5671904
http://dx.doi.org/10.1109/ISCAS.2007.378495
http://dx.doi.org/10.1109/APCCAS.2008.4746151
http://dx.doi.org/10.1109/ISCAS.2012.6271909
http://dx.doi.org/10.1109/TVLSI.2013.2297435
http://dx.doi.org/10.1109/TCSI.2015.2402936

Electronics 2020, 9, 1657 15 of 15

20. Tseng, T.; Shen, C. Design and implementation of a high-throughput configurable pre-processor for MIMO
detections. Microelectron. J. 2018, 72, 14–23. [CrossRef]

21. Chen, W.; Guenther, D.; Shen, C.; Ascheid, G. Design and implementation of a low-latency, high-throughput
sorted QR decomposition circuit for MIMO communications. In Proceedings of the IEEE Asia Pacific
Conference on Circuits and Systems, Jeju, Korea, 25–28 October 2016; pp. 277–280. [CrossRef]

22. Lin, J.S.; Hwang, Y.T.; Fang, S.H.; Chu, P.H.; Shieh, M.D. Low-Complexity High-Throughput QR Decomposition
Design for MIMO Systems. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2015, 23, 2342–2346. [CrossRef]

23. Guo, Z.; Nilson, P.A. 53.3 Mb/s 4×4 16-QAM MIMO decoder in 0.35µm CMOS. In Proceedings of the IEEE
International Symposium Circuits and Systems, Kobe, Japan, 23–26 May 2005; pp. 4947–4950. [CrossRef]

24. Huang, Z.Y.; Tsai, P.Y. Efficient Implementation of QR Decomposition for Gigabit MIMO-OFDM Systems.
IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 2531–2542. [CrossRef]

25. Alexander, M.; Vladimir, P.; Roman, M.; Alexey, K. Triangular systolic array with reduced latency for
QR-decomposition of complex matrices. In Proceedings of the IEEE International Symposium on Circuits
and Systems, Island of Kos, Greece, 21–24 May 2006; pp. 385–388. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.mejo.2017.10.004
http://dx.doi.org/10.1109/APCCAS.2016.7803953
http://dx.doi.org/10.1109/TVLSI.2014.2361906
http://dx.doi.org/10.1109/ISCAS.2005.1465743
http://dx.doi.org/10.1109/TCSI.2011.2123770
http://dx.doi.org/10.1109/ISCAS.2006.1692603
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	MIMO Detection Model
	Related Studies

	Proposed SQRD Algorithm with a Novel Modified RVD
	Proposed Modified RVD
	The Proposed SQRD Algorithm
	Performance Evaluation of the Proposed SQRD Algorithm

	Proposed SQRD VLSI Architecture
	Overview of the Proposed SQRD Hardware Architecture
	Processing Engines
	Time-Sharing Givens Rotation Structure
	CORDIC Architecture
	Sorting

	Implementation Results and Comparisons
	Conclusions
	
	
	References

