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Abstract: In this paper, the scaling laws of scheduling gain and the feasibility of user scheduling for
uplink massive multiple input–multiple output (MIMO) systems are investigated by analyzing the
second moment of mutual information. We consider two well-known linear receivers of matched
filter (MF) and zero-forcing (ZF). The exact distribution of the signal-to-interference-plus-noise ratio
(SINR) and its moment-generating function are first obtained, and the approximated variance of
the mutual information for a user is derived as a closed form with a function of the number of
antennas. The achievable scheduling gain under the optimal user scheduler is then derived using the
Gaussianity of the sum rate. From the analyses and simulation results, it is found that the scheduling
gain for the MF receiver increases with the number of base station (BS) antennas, while that for the ZF
receiver decreases as the number of BS antennas increases, for most cases (except some impractical
scenarios). Therefore, it is verified that user scheduling is still beneficial for the MF receiver while
random user selection is sufficient for the ZF receiver in massive MIMO systems.

Keywords: massive MIMO; user scheduling; matched filter; zero-forcing

1. Introduction

Recently, the fifth-generation (5G) wireless communication system, known as new radio (NR),
has been successfully commercialized globally. With the development of 5G NR, the performance
and functionality of cellular mobile communications have reached an unprecedented level [1].
Compared to the fourth-generation (4G) long-term evolution (LTE), the NR supports faster data
rates, lower latency, higher reliability, and new spectrum bands for enabling a wide range of use cases,
such as enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC),
and massive machine-type communications (mMTC) [2,3].

Massive multiple input–multiple output (MIMO), in which the base station (BS) is equipped
with a few hundreds of antenna arrays, is a key feature for 5G NR, used to satisfy the target data rate
requirement [4]. With the emerging large number of antennas, many users can be served simultaneously
using given time and frequency resources through multiuser MIMO [5], which can significantly
improve the spectral efficiency [6]. In addition to the capacity enhancement, massive MIMO has
several benefits, such as the mitigation of uncorrelated noise and small-scale fading [7], high energy
efficiency [8], low computational complexity for signal processing [9], and robustness against severe
propagation loss and blockage in high-frequency ranges [10,11].

To further improve the achievable sum rate in massive MIMO systems, a proper user scheduling
algorithm is typically employed in wireless communication systems [4], which selects the number
of users to be served simultaneously in a spatial multiplexing manner. Therefore, many studies
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have recently been conducted to investigate the user scheduling algorithm for various massive
MIMO systems [12]. In [13], a semi-orthogonal user selection (SUS) algorithm was proposed for
zero-forcing (ZF) precoding. In [14], a signal-to-interference-ratio-based user scheduling (SIRUS)
method was addressed for matched filter (MF) precoding in downlink MIMO systems. For uplink
massive MIMO, a multi-user grouping-based scheduling algorithm was investigated in [15], while a
joint user scheduling and beam selection scheme was studied in [16] for beam-based massive MIMO
systems. In [17], a greedy user selection algorithm for distributed massive MIMO was investigated.
The aforementioned studies focused on reducing the complexity of optimal user scheduling, in which
the complexity increased exponentially with the number of served users due to the exhaustive search.

Therefore, this study investigates whether user scheduling is necessary for massive MIMO
systems. Many previous studies [7,18–20] have analyzed the performance of massive MIMO
systems in terms of the ergodic sum rate. The optimality of MF was proven in [7] under the
framework of non-cooperative multicellular networks. In [18], the deterministic equivalent forms
of signal-to-interference-plus-noise ratio (SINR) for ZF and minimum mean-square error (MMSE)
precoders were derived. In [19], the authors derived the asymptotic achievable rates of MF and
MMSE precoders/receivers while considering pilot contamination. The effect of channel aging was
analyzed in [20] using a similar analysis technique as that given in [18] and [19]. The previous works
in [7,18–20] have studied the performance of massive MIMO systems regarding the first moment of
mutual information. However, because the diversity gain from user scheduling depends on natural or
artificially induced fluctuations in the channel, it is important to estimate the fluctuations that can be
expected in a particular system environment to investigate the feasibility of user scheduling. Therefore,
in this paper, the performance of a massive MIMO system is analyzed in terms of the second moment
of mutual information (i.e., the variance of mutual information) to understand how the fluctuations in
mutual information can be varied according to the number of antennas.

In [21–23], a phenomenon of massive MIMO systems, referred to as the channel hardening effect,
was investigated. The channel hardening effect implies that the variance of mutual information
shrinks as the number of antennas increases. In [21], the authors used Gaussian approximations to
derive the distribution of capacity and discussed the implications of channel hardening for scheduling
and rate feedback. The channel hardening phenomenon was observed in [22] when selecting an
optimum antenna. The work in [22] was expanded to the case of multiple antenna selection in terms
of energy efficiency in [23]. However, in the conventional works in [21–23], the channel hardening
phenomena were studied in terms of capacity, without considering any practical signal processing
techniques, such as linear precoders/receivers. In addition, in previous works [21–23], there were no
comprehensive closed-form expressions of the variance of mutual information as a function of the
number of antennas to scale the variance according to the number of antennas.

Consequently, in this paper, we investigate the scaling laws of scheduling gain for uplink multiuser
massive MIMO systems in order to verify the feasibility of user scheduling for massive MIMO,
assuming MF and ZF receivers at the BS for data demodulation. First, we derive the exact probability
density function (PDF) of SINR and its moment-generating function (MGF) to obtain the first and
second moments of SINR under the perfect channel state information (CSI) at the BS. Using Taylor
series expansion, we obtain a closed-form expression for the approximated variance of the individual
rate for a user as a function of the number of BS antennas. Then, using the Gaussianity of the sum
rate for multiple users, the achievable scheduling gain is derived as a closed form. According to our
analysis for the case of perfect CSI, as the number of antennas increases and tends towards infinity,
the scheduling gain of the MF receiver increases and converges to a constant value, while that of the
ZF receiver decreases to zero. Thereafter, our analysis is extended to the case of imperfect CSI at the
BS. It is shown that when there is insufficient CSI available at the BS, the variance of the sum rate
for the ZF receiver increases as the number of antennas increases, similar to the MF receiver. This is
because the multiuser interference cannot be completely removed, owing to the imperfectness of the
CSI. However, the scheduling gain of the ZF receiver still decreases to zero with the increasing number
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of antennas when the user selection is performed based on the imperfect CSI. Thus, user scheduling
for massive MIMO systems is still beneficial for the MF receiver, regardless of the imperfectness of CSI;
however, the benefit of user scheduling is negligible for the ZF receiver.

The remainder of this paper is organized as follows. Section 2 presents an uplink massive MIMO
system model with linear receivers. In Section 3, the scaling laws and feasibility of user scheduling
according to the number of antennas are investigated under the assumption of perfect CSI at the BS and
these results are extended to the case of imperfect CSI in Section 4. Section 5 presents the simulation
results to verify our analyses, and Section 6 concludes the paper.

2. System Model

We consider an uplink multiuser MIMO system, where a BS equipped with M antennas serves K
users with a single antenna. The M× 1 received signal vector is expressed as

y =
√

puHx + n.

H = [h1, · · · , hK] is the M× K aggregated channel matrix, where the kth column hk ∼ CN (0, IM)

represents the channel vector between the BS and user k. x = [x1, · · · , xK]
T is the K× 1 signal vector,

where xk is the transmit symbol for user k with E{|xk|2} = 1. n ∼ CN (0, IM) is the M× 1 additive
white Gaussian noise vector with unit variance, and pu is the uplink power. Using a linear receiver,
the BS can obtain K streams for K users from the received signal y. Let G be the M× K matrix for the
linear receiver. We consider two linear receivers, MF and ZF, i.e.,

G =

{
H for MF receiver

H
(
HHH

)−1 for ZF receiver.
(1)

Therefore, using the linear receiver, the kth stream for user k is expressed as:

rk = gH
k y

=
√

pugH
k hkxk +

√
pu ∑j 6=k gH

k hjxj + gH
k n,

where gk is the kth column of G, which represents the receiver vector for the kth user and hj is the
channel between the BS and the jth user. Therefore, the received SINR for user k is expressed as:

γk =
pu
∣∣wH

k hk
∣∣2

pu ∑j 6=k
∣∣wH

k hj
∣∣2 + 1

, (2)

where wk = gk/ ‖gk‖ is the normalized receive vector.

3. Scaling Laws of Scheduling Gain—Perfect CSI

In this section, we derive the scaling laws of scheduling gain for optimal user scheduling in
terms of the number of BS antennas under the assumption of perfect CSI at the BS, i.e., no channel
estimation errors. Thus, we obtain the variance of the individual rate and a closed-form expression for
the achievable scheduling gain.

3.1. Individual Rate Analysis

According to the Shannon capacity formula [24], the individual rate for user k is defined as

Rk = log2 (1 + γk) . (3)

To understand the fluctuations of the individual rate, it is necessary to analyze the second moment
of mutual information. The direct derivation of the exact distribution of the mutual information
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is unfeasible [25]; thus, the approximated second moment is obtained in this subsection. For (3),
the Taylor series is obtained as follows:

log2 (1 + γk) = log2e

(
log (1 + µγ) +

∞

∑
n=1

(−1)n−1

n
(γk − µγ)

n

(1 + µγ)
n

)
, (4)

where µγ = E{γk}. From the definition of the joint cumulant moment of n random variables
X1, ..., Xn [26], we can obtain

κn = Ec {X1, X2, ..., Xn}

∆
= ∑

ψ

(−1)|ψ|−1 (|ψ| − 1)! ∏
β∈ψ

E
{

∏
i∈β

Xi

}
, (5)

where ψ runs through all partitions of {1, ..., n}, |ψ| denotes the number of blocks in ψ, and β runs
through the list of all blocks of ψ. From (4) and (5), the second cumulant moment, i.e., the variance of
individual rate, can be expressed as

κ2 = Ec {log2 (1 + γk) , log2 (1 + γk)}

= (log2e)2
∞

∑
m=1

∞

∑
n=1

(−1)m+n

mn
Ec
{
(γk − µγ)

m, (γk − µγ)
n}

(1 + µγ)
m+n (6)

(a)
≈

(log2e)2σ2
γ

(1 + µγ)
2 . (7)

Here, the approximation (a) is obtained by neglecting the higher-order terms in the summation in
(6), and σ2

γ = Var {γk}. Therefore, as shown in (7), the moments of the SINR, µγ and σ2
γ, should be

derived to obtain the variance of mutual information.
Next, the variance of the mutual information is analyzed for the case of the MF receiver. Thus,

we first derive the following lemma:

Lemma 1. For a random variable Z ∆
= aX

bY+1 , where X ∼ X 2
2d1

, Y ∼ X 2
2d2

, and X and Y are independent, the
PDF of Z is expressed as

fZ (z) =
d1
( z

a
)d1−1e−

z
a

aΓ (d2)

d1

∑
i=0

(i + d2 − 1)!bi

(d1 − i)!i!

(
b
a

z + 1
)−(i+d2)

. (8)

Furthermore, the MGF of Z is expressed as

MZ (s) =
d1Γ (d1)

Γ (d2)

d1

∑
i=0

(i + d2 − 1)!bi−d1

(d1 − i)!i!
×Ψ

(
d1, 1 + d1 − i− d2,

1
b
− a

b
s
)

, (9)

where Γ (x) =
∫ ∞

0 tx−1e−tdt is the Gamma function; Ψ(a, b, s) is the confluent hypergeometric function of the
second kind, which is defined by Ψ (a, b, s) = 1

Γ(a)

∫ ∞
0 e−stta−1(1 + t)b−a−1dt [27].

Proof of Lemma 1. See Appendix A.

Using Lemma 1, we can obtain the PDF and MGF of the SINR for the MF receiver.

Corollary 1. The PDF and MGF of the SINR for the MF receiver are obtained from Lemma 1 after substituting
d1 = M, d2 = K− 1, and a = b = pu.
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Proof of Corollary 1. Let νj
∆
=
∣∣wH

k hj
∣∣2 =

∣∣hH
k hj

∣∣2/‖hk‖2 ∀j. Then, the SINR for the MF receiver is
expressed as

γk,MF =
puνk

pu ∑j 6=k νj + 1
.

νk in the numerator of γk,MF follows the chi-square distribution with 2M degrees of freedom.
Furthermore, ∑j 6=k νj in the denominator of γk,MF follows the chi-square distribution with 2(K− 1)
degrees of freedom because each νj ∼ Exp (1) and the summation of independent (K − 1) Exp (1)
random variables follow a chi-square distribution with 2(K− 1) degrees of freedom [28]. In [29], it was
proven that νk is independent of νj for ∀j 6= k. Therefore, we can obtain the PDF and the MGF of the
SINR of the MF receiver directly from Lemma 1.

Although the MGF in Lemma 1 is a closed-form expression, it is still a challenge to explicitly
understand the dependence of the variance on the number of BS antennas M. Therefore, to obtain a
simplified form of the variance, we use the following lemma:

Lemma 2. Consider two chi-square random variables X ∼ X 2
2d1

and Y ∼ X 2
2d2

. Then a random variable

Z ∆
= d2

d1
· X

Y follows F (2d1, 2d2), i.e., the PDF of Z is expressed as:

fZ (z; 2d1, 2d2) =
Γ (d1 + d2)

Γ (d1) Γ (d2)
×
(

d1

d2

)d1

zd1−1
(

1 +
d1

d2
z
)−(d1+d2)

,

and the nth moment is given by:

ηn =

(
d2

d1

)n Γ (d1 + n) Γ (d2 − n)
Γ (d1) Γ (d2)

. (10)

Proof of Lemma 2. From the definition of F distributions [30], this is straightforward and thus
omitted here.

At the high pu regime, i.e., the interference-limited environment, the noise variance in the
denominator of the SINR can be neglected. Therefore, the distribution of the SINR for the MF
receiver can be approximated as a scaled F distribution, i.e., K−1

M γk,MF ∼ F (2M, 2 (K− 1)). Therefore,
using (10) in Lemma 2, we obtain the first and second moments of the SINR for the MF receiver
as follows:

µγ =
M

K− 2
and σγ

2 =
M (M + K− 2)

(K− 2)2 (K− 3)
. (11)

By substituting the mean and variance of the SINR of (11) into (7), the approximated variance of
the individual rate for the MF receiver is expressed as

κ2,MF ≈
(log2e)2M

(M + K− 2) (K− 3)
. (12)

Hereafter, the variance of mutual information is analyzed for the case of the ZF receiver. For the
ZF receiver, because

∣∣wH
k hk

∣∣2 = 1/‖gk‖2 and
∣∣wH

k hj
∣∣2 = 0 for ∀j 6= k, the SINR is obtained as

γk,ZF = pu/‖gk‖2.

Because γk,ZF follows the chi-square distribution, with 2(M− K + 1) degrees of freedom [31],
the first and second moments of the SINR can be represented in terms of M and K from the MGF of a
chi-square distribution as follows:

µγ = pu(M− K + 1) and σγ
2 = p2

u(M− K + 1). (13)
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By substituting (13) into (7), we can approximate the variance of the individual rate for the ZF
receiver as:

κ2,ZF ≈
p2

u(log2e)2 (M− K + 1)

(pu (M− K + 1) + 1)2 . (14)

From the analysis, the following scaling laws of the individual rate with perfect CSI can be
observed. For the MF receiver, the variance of the individual rate κ2,MF is a monotonically increasing
function of M, which then scales with O(1) as M→ ∞. Conversely, the variance of the individual rate
for the ZF receiver κ2,ZF decreases withO( 1

M ) and converges to zero as M increases. Thus, the analysis
indicates that the channel hardening effect occurs only for the ZF receiver, while the fluctuation of
mutual information for the MF receiver becomes large as the number of antennas increases.

3.2. Sum Rate Analysis

The scheduling gain is related to the fluctuations in the mutual information; thus, more scheduling
gain can be realized as the fluctuations in the sum rate become larger. To explicitly understand the
relationship between the variance of sum rate and the scheduling gain, we introduce the result in [21]
with a slight modification.

We assume that the BS selects K active users among N total users through a user scheduling

algorithm. Let R denote the sum rate, that is, R ∆
= ∑K

k=1 Rk andR denote the achievable rate, defined as
the maximum sum rate after the optimal multiuser scheduling, that is

R ∆
= max
S⊂{1,...,N},|S|=K

R (S) ,

where S is a set of users and R (S) ∆
= ∑k∈S Rk. Combining the Gaussianity of the sum rate of the linear

receiver [25] and the results in [21], we can approximate the achievable rateR as

R ≈ µR +
√

2σ2
R log

(N
K
)
, (15)

where µR and σ2
R are the mean and variance of R, respectively. According to (15), the maximum

scheduling gain by the optimum algorithm is approximately
√

2σ2
R log

(N
K
)
.

Hereafter, we investigate the variance of the sum rate σ2
R to understand the achievable scheduling

gain with respect to the number of antennas. Using the results in [25], the second-order joint cumulant
moment of R can be expressed as

κsum
2 = ∑K

m=1 ∑K
n=1 Ec [Rm, Rn]

= ∑K
m=1 Ec [Rm, Rm] + ∑K

m=1 ∑K
n=1
n 6=m

Ec [Rm, Rn]

(a)
= KEc [R1, R1] + K (K− 1)Ec [R1, R2]

(b)
≈ (log2e)2K

σ2
γ

(1 + µγ)
2 + (log2e)2K (K− 1)

E [γ1γ2]− µ2
γ

(1 + µγ)
2 . (16)

Here, (a) follows the symmetry of the joint cumulant matrix, [25] and (b) follows the same
approximation used in (7). Although the first term of (16), the variance of the individual rate,
was already derived, the second term of (16), the covariance of the SINR, should be derived and
is defined as Cov [γ1, γ2] = E [γ1γ2]−E [γ1]E [γ2]. To calculate the exact covariance, the joint PDF of

Z ∆
= γ1γ2 is required. However, the joint PDF is intractable because γ1 and γ2 are not independent of

each other.
Therefore, as an alternative approach for the MF receiver, we consider a lower bound of the

variance of the sum rate by considering only the first term in (16). Substituting (12) into the first term
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in (16), we obtain the lower bound for the variance of the sum rate for the MF receiver at the high pu

regime as follows:

κsum
2,MF >

(log2e)2MK
(M + K− 2) (K− 3)

. (17)

Meanwhile, for the ZF receiver, the approximated covariance of the SINR can be derived
as Cov [γ1, γ2] ≈ p2

u in [25] by the joint distribution of the eigenvalues and Noviokv’s theorem.
By combining (14) and (16), the approximated variance of the sum rate for the ZF receiver can be
obtained as

κsum
2,ZF ≈

p2
u(log2e)2MK

(1 + pu (M− K + 1))2 . (18)

From (17) and (18), it is observed that the scaling laws of the sum rate are equivalent to those of
the individual rate. As M tends towards infinity, i.e., massive MIMO, the variance of the sum rate
for the ZF receiver decreases to zero, while that for the MF receiver increases to a constant value.
Therefore, by substituting (17) and (18) into (15), we can observe the following aspects:

• For the MF receiver, the scheduling gain first increases and then scales with O (1) as M → ∞
under perfect CSI. This implies that the user scheduling to maximize the sum rate is still beneficial
for massive MIMO systems with the MF receiver.

• For the ZF receiver, the scheduling gain decreases withO
(√

1
M

)
under the perfect CSI. Therefore,

if the ZF receiver is used at the BS, only a limited scheduling gain can be achievable for large M.
This implies that the benefit of user scheduling tends to disappear for massive MIMO systems
using the ZF receiver.

4. Scaling Laws of Scheduling Gain—Imperfect CSI

In this section, we extend the scaling laws of the scheduling gain of optimal user scheduling in
Section 3 to the case of imperfect CSI at the BS.

The imperfectness of CSI affects two major operations at the BS: data demodulation and user
scheduling. For data demodulation, the imperfect CSI typically implies a CSI with a channel estimation
error that occurs due to the use of a practical channel estimator at the BS. The channel estimation error
causes additional multiuser interference; thus, the channel hardening effect for the cases of imperfect
CSI will be different compared to that for the perfect CSI case. Conversely, from the user scheduling
perspective, the CSI imperfectness corresponds to the degree of CSI availability for calculating proper
user selection metrics to determine a set of users to be scheduled. The CSI availability for user
scheduling can be affected by not only the accuracy of the estimated channel, but also the extra
channel-related information, which can contribute to better user selection. Thus, we consider two
scenarios of CSI availability for user scheduling: non-ideal CSI availability as the worst case and
near-ideal CSI availability as the best case. Based on these scenarios, which will be explained in
detail later in this section, the effect of imperfect CSI on the scaling laws of scheduling gain will
be investigated.

We begin by analyzing the effect of imperfect CSI on the fluctuation of individual rate. Without loss
of generality, the estimated channel ĥk of user k can be modeled as [18]:

hk =
√

1− τ2ĥk + τek, (19)

where ek ∼ CN (0, IM) is the Gaussian noise vector uncorrelated with ĥk and τ ∈ [0, 1],
which represents the imperfectness of ĥk. Typically, τ is determined by the pilot sequence length tp and

pilot power pp, such as τ =
√

1
tp pp+1 when the estimated channel is obtained by the MMSE channel

estimator, assuming that the orthogonal uplink pilot sequences are used across the users, as indicated
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in [32]. Based on the estimated channel, the receiver matrix Ĝ is calculated as (1) at the BS, and the
received kth stream and corresponding received SINR for user k are expressed as:

rk =
√

puĝH
k hkxk +

√
pu ∑j 6=k ĝH

k hjxj + ĝH
k n

=
√

pu (1− τ2)ĝH
k ĥkxk +

√
puτ2ĝH

k ekxk +
√

pu ∑j 6=k ĝH
k hjxj + ĝH

k n,

and

γ
ip
k =

pu
(
1− τ2) ∣∣∣ŵH

k ĥk

∣∣∣2
puτ2

∣∣ŵH
k ek

∣∣2 + pu ∑j 6=k
∣∣ŵH

k hj
∣∣2 + 1

, (20)

where ŵk = ĝk/ ‖ĝk‖ is the normalized kth column vector of Ĝ.
Next, for the MF receiver, the PDF and MGF of the SINR are derived. Considering imperfect CSI,

we introduce Lemma 3.

Lemma 3. For a random variable Z ∆
= aX

bY1+cY2+1 , where X ∼ X 2
2d1

, Y1 ∼ X 2
2d2

, and Y2 ∼ Exp (1), the PDF
of Z is obtained by

fZ (z) =
d1

(
c−b

c

)−d2( z
a
)d1−1e−

z
a

ac
×
(

d1

∑
l=0
A1

(
z
a +

1
c

)−(l+1)
−

d2−1

∑
i=0

d1

∑
p=0
A2

(
z
a +

1
b

)−(p+i+1)
)

. (21)

Here, A1 = 1
(d1−l)! and A2 =

(p+i)!
( 1

b−
1
c

)i

(d1−p)!p!i! . Moreover, the MGF of Z is obtained by

MZ (s) =
d1

(
1− b

c

)−d2

c

d1

∑
l=0
A1Υ

(
d1, l, 1

c , (1− as)
)

−
d1

(
1− b

c

)−d2

c

d2−1

∑
i=0

d1

∑
p=0
A2Υ

(
d1, p + i, 1

b , (1− as)
)

, (22)

where Υ (a, b, c, s) is defined as

Υ (a, b, c, s) = ca−b−1 Γ (a) Γ (1− a + b)
Γ (1 + b) 1F1 (a, a− b, cs)

+ s1−a+bΓ (a− b− 1) 1F1 (1 + b, 2− a + b, cs) , (23)

and pFq (a, b, s) represents the generalized hypergeometric series [27].

Proof of Lemma 3. See Appendix B.

From Lemma 3, we can obtain the PDF and MGF of the SINR for the MF receiver under
imperfect CSI.

Corollary 2. Under imperfect CSI, the PDF and MGF of the SINR for the MF receiver are obtained from
Lemma 3 after substituting d1 = M, d2 = K− 1, a = pu(1− τ2), b = pu, and c = puτ2.

Proof of Corollary 2. Let νk
∆
= |ŵH

k ĥk|2, ς j
∆
= |ŵH

k hj|2 ∀j and εk
∆
=
∣∣ŵH

k ek
∣∣2. The SINR for the MF

receiver under imperfect CSI conditions is obtained by

γ
ip
k,MF =

pu
(
1− τ2) νk

puτ2εk + pu ∑j 6=k ς j + 1
.
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As presented in the proof of Corollary 1, νk ∼ X 2
2M and ∑j 6=k ς j ∼ X 2

2(K−1). εk ∼ Exp (1) because
ŵk is a unit-norm random vector, independent of the Gaussian random vector ek [33]. In addition, νk,
∑j 6=k ς j and εk are independent of each other. Therefore, we obtain Corollary 2 from Lemma 3.

To obtain a closed-form expression for the variance of the individual rate, we again use the
F approximation. In the high τ regime, the total interference term in the denominator of γ

ip
k,MF

follows an approximate chi-square distribution with 2K degrees of freedom, that is, τ2
∣∣ŵH

k ek
∣∣2 +

∑j 6=k
∣∣ŵH

k hj
∣∣2 ∼ X 2

2K. Therefore, the SINR of the MF receiver can be approximated as a scaled

F distribution as
(

K
(1−τ2)M

)
γ

ip
k,MF ∼ F (2M, 2K) in the high pu regime. Therefore, assuming (7) and

(10), the variance of the individual rate for the MF receiver under imperfect CSI can be approximated as

κ
(ip)
2,MF ≈

(log2e)2(1− τ2)2M (M + K− 1)

(K− 2) (K− 1 + (1− τ2) M)
2 . (24)

Meanwhile, for the ZF receiver, the PDF and MGF of the SINR under the imperfect CSI can be
obtained from Lemma 1.

Corollary 3. Under imperfect CSI, the PDF and MGF of the SINR for the ZF receiver are obtained from Lemma
1 after substituting d1 = M− K + 1, d2 = K, a = pu(1− τ2) and b = puτ2.

Proof of Corollary 3. Let νk
∆
= |ŵH

k ĥk|2 and ε j
∆
=
∣∣ŵH

k ej
∣∣2 ∀j. Then, the SINR for the ZF receiver under

imperfect CSI is given by

γ
ip
k,ZF =

pu
(
1− τ2) νk

puτ2 ∑j ε j + 1

because ŵH
k ĥj = 0 for ∀j 6= k. νk ∼ X 2

2(M−K+1) and ∑j ε j ∼ X 2
2K. Moreover, νk and ∑j ε j are

independent of each other [33]. Therefore, we obtain Corollary 3 from Lemma 1.

Similar to the case of the MF receiver, the SINR of the ZF receiver in the high pu regime can be
approximated as a scaled F distribution as

((
τ2

1−τ2

)
K

M−K+1

)
γ

ip
k,ZF ∼ F (2 (M− K + 1) , 2K). Therefore,

using (7) and (10), the variance of the individual rate for the ZF receiver under imperfect CSI is
expressed as

κ
(ip)
2,ZF ≈

(log2e)2(1− τ2)2
(M− K + 1) M

(τ2 (K− 1) + (1− τ2) (M− K + 1))2
(K− 2)

. (25)

From the analysis, the following scaling laws of the individual rate with imperfect CSI can be
observed. For the MF receiver, the variance of the individual rate κ

(ip)
2,MF is a monotonically increasing

function of M (Appendix C) and scales with O(1) as M→ ∞. That is, the fluctuation characteristic of
the individual rate for the MF receiver does not change according to the imperfectness of CSI. However,
the channel hardening of the ZF receiver depends on τ (Appendix D). As M increases, the variance of
the individual rate κ

(ip)
2,ZF tends to monotonically increase for a large τ, whereas κ

(ip)
2,ZF tends to decrease

monotonically for a small τ. Thus, κ
(ip)
2,ZF is scaled with O(1) as M→ ∞ for a large τ, and the channel

hardening effect for the ZF receiver occurs only in the low τ regime This is because the multiuser
interference for the ZF receiver increases with τ.

Hereafter, the scaling laws of the scheduling gain under imperfect CSI are investigated. We first
consider the case in which the user scheduling relies on non-ideal CSI availability, assuming that
the estimated channel is directly used for the user selection algorithm, as in [13,17]. In this scenario,
the BS will regard the estimated channel as the actual channel as the BS cannot estimate the channel
estimation error by itself. Thus, a metric for user selection can be calculated by the estimated channel,
and the BS can select several users to be served based on the calculated metrics. Accordingly, it can
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be observed from (15) that the achievable scheduling gain follows
√

2σ2
R̂

log
(N

K
)
, where R̂ = ∑k R̂k

corresponds to the estimated sum rate derived from the estimated SINR in (2), after replacing h with ĥ.
Therefore, we can expect that there is no difference between the scaling laws of scheduling gain with
imperfect and perfect CSI.

Next, we determine the scaling laws when the near-ideal CSI is available for user scheduling.
As mentioned earlier, there can be extra channel-related information available on top of the estimated
channel at the BS, for user scheduling purposes. A typical example of obtaining additional information
is to use sounding reference signals, as specified in 5G NR [34]; the additional uplink pilot used
for SINR estimation, channel quality estimation, and beam direction estimation improves the user
scheduling and is not directly related to uplink data demodulation. For simplicity, we assume that the
exact SINR in (20) is available at the BS and used for the user selection metric in the case of near-ideal
CSI availability. Then, it is observed from (15) that the achievable scheduling gain under near-ideal CSI

availability can be obtained by
√

2σ2
R̃ log

(N
K
)
, where R̃ is derived from the exact SINR in (20). In this

case, two different SINRs γ1 and γ2 in (16) are not independent of each other, even for the ZF receiver,
because, unlike perfect CSI, there is residual multiuser interference under imperfect CSI. For tractable
analysis, we consider the lower bounds for the variance of the sum rate for both MF and ZF receivers.
By substituting (24) and (25) into the first term in (16), we obtain

κ
sum,(ip)
2,MF >

(log2e)2(1− τ2)2M (M + K− 1)K

(K− 2) (K− 1 + (1− τ2) M)
2 (26)

and

κ
sum,(ip)
2,ZF >

(log2e)2(1− τ2)2
(M− K + 1) MK

(τ2 (K− 1) + (1− τ2) (M− K + 1))2
(K− 2)

. (27)

From (26) and (27), it is observed that the scaling law for the variance of the sum rate is the same
as that of the individual rate.

Finally, we can summarize the scaling laws of the scheduling gain with imperfect CSI as follows:

• If non-ideal CSI is available for user scheduling at the BS, the scaling law of the scheduling
gain with imperfect CSI is similar to that with perfect CSI. That is, under imperfect CSI for data
demodulation with non-ideal CSI for user scheduling, the user selection is still beneficial for the
MF receiver, whereas this benefit is negligible for the ZF receiver.

• If near-ideal CSI is available for user scheduling at the BS, i.e., under imperfect CSI for data
demodulation with near-ideal CSI for user scheduling, the scaling law of the scheduling gain
for the MF receiver with imperfect CSI is similar to that with perfect CSI. However, the scaling
law of the scheduling gain for the ZF receiver under imperfect CSI is different from that under
perfect CSI and depends on the channel estimation error τ. In the low τ regime, the scheduling
gain decreases. Meanwhile, in the high τ regime, the scheduling increases as M increases
and eventually converges to a constant value, i.e., scaled by O (1) as M → ∞. Therefore,
under imperfect CSI for data demodulation, with near-ideal CSI for user scheduling, the user
selection is still beneficial for the MF receiver, whereas it can be different for the ZF receiver
depending on the imperfectness of CSI.

5. Simulation Results

In this section, simulation results are provided to verify our analyses. First, in Figure 1,
the analytical PDFs of the SINR in the corollaries are compared with the simulation results,
where M = 64, K = 20, pu = 20 dB, and τ2 = 0.2. The symbols represent the simulation results,
and the lines depict the analytical results. From Figure 1, the derived PDFs match well with the
simulation results.
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Figure 1. Comparison between the Monte Carlo simulations and analytical probability density
functions (PDFs) of signal-to-interference-plus-noise ratio (SINR), where M = 64, K = 20, pu = 20 dB,
and τ2 = 0.2.

From Figure 2–9, simulation results for the ergodic sum rates and scheduling gains of user
selection algorithms as well as the variances of individual rates and sum rates are shown. The margin
of error considering the 95% confidence interval for each point is about 2.73 · 10−2 at maximum.

Figure 2 shows the variances of individual rate under perfect CSI according to M when K = 20
and pu = 20 dB. For the MF receiver, two analytical results are considered: (7) after substituting
the exact µγ and σ2

γ obtained by the MGF in Corollary 1, and (12) obtained by the F approximation.
For the ZF receiver, the analytical result corresponds to (14). For the MF receiver, it is observed that the
analytical results with the exact moments and F approximation are almost the same. The difference
between the simulation and analytical results is due to neglecting the higher-order moments of SINR
in the Taylor series expansion. Therefore, we can confirm that the variance of the MF receiver increases
while that of the ZF receiver decreases as M increases. That is, under perfect CSI, the MF receiver does
not exhibit the channel hardening phenomenon unlike the ZF receiver, as predicted.
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Figure 2. Variance of individual rate under perfect channel state information (CSI) as a function of M,
where K = 20 and pu = 20 dB.
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Figure 3 shows the variances of the sum rate under perfect CSI as a function of M when K = 20
and pu = 20 dB. For the MF receiver, the lower bound in (17) is represented; for the ZF receiver,
the approximation in (18) is represented. Similar to the case of individual rate, the variance of the MF
receiver increases, while that of the ZF receiver decreases as M increases. As demonstrated by the
analysis, the sum rate of the ZF receiver still exhibits the channel hardening effect.
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Figure 3. Variance of sum rate under perfect CSI as a function of M, where K = 20 and pu = 20 dB.

Figure 4 illustrates the ergodic sum rate as a function of M according to the user selection
algorithm at the BS under the assumption of perfect CSI, where N = 100, K = 20, and pu = 0 dB.
For the MF receiver, we consider SIRUS [14], which is proposed for MF-based massive MIMO systems.
In SIRUS, a user who generates the maximum SIR among the remaining users is sequentially selected
in a greedy manner until the number of selected users becomes equal to K. For the ZF receiver,
we consider SUS [13], which is designed for the ZF to maximize the sum rate. In SUS, a user set with
near-orthogonal channel vectors is selected in the greedy manner. For comparison, the results of round
robin (RR) scheduling and the achievable maximum sum rate in (15), i.e., optimal user scheduling,
are presented. The RR scheduler selects the users randomly; hence, no scheduling gain occurs.
Meanwhile, the maximum sum rate in (15) can be realized when an optimal user selection algorithm
based on an exhaustive search is employed. Therefore, the simulation of the computational complexity
of the optimal scheduler is infeasible; thus, the analytical results of (15) are shown, rather than the
simulation results. In addition to the ergodic sum rate shown in Figure 4, we plot the corresponding
scheduling gain as a function of M under perfect CSI in Figure 5, where the simulation environment is
equivalent to that in Figure 4. In Figure 5, the scheduling gain is defined as the performance gain of a
specific user selection algorithm compared to RR in terms of the ergodic sum rate.
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Figure 4. Ergodic sum rate under perfect CSI as a function of M, where N = 100, K = 20,
and pu = 0 dB.
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Figure 5. Scheduling gain under perfect CSI as a function of M, where N = 100, K = 20, and pu = 0 dB.

As shown in Figures 4 and 5, the performance gap between the SUS and RR of the ZF receiver
decreases as M increases. This is because the variance of the sum rate decreases for the ZF receiver
for a large M. For the MF receiver, the gain of SIRUS increases and maintains a constant positive
performance gap compared to the RR scheduler as M increases. However, the performance gap
between the SUS and RR of the MF receiver shrinks as M increases, although the variance of the
MF receiver increases. That is, for massive MIMO systems with SUS for the MF receiver, multiuser
diversity gain is not sufficiently obtained compared to SIRUS. This implies that the user scheduling
algorithm should be carefully chosen according to the types of receivers to fully utilize the multiuser
diversity. From the simulation results, we can conclude that user scheduling is more important for
the MF receiver than for the ZF receiver in massive MIMO systems under perfect CSI, as analyzed in
Section 3.

Hereafter, the simulation results under imperfect CSI are presented from Figure 6–9. In Figure 6,
the variance of the individual rate under imperfect CSI is presented as a function of M, where N = 100,
K = 20, and pu = 0 dB. For simplicity, the analytical results of the F approximation are omitted in
Figure 6. As demonstrated by the analysis for the MF receiver, the variance of the individual rate
always increases, regardless of τ. However, for the ZF receiver, the variance of the individual rate
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decreases when τ2 = 0.1 and increases when τ2 = 0.4, according to M. Therefore, it can be observed
from Figure 6 that the imperfectness of CSI affects the channel hardening effect for the ZF receiver.
Furthermore, under imperfect CSI, all variances of the individual rate converge to a constant value as
M increases.
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Figure 6. Variance of individual rate under imperfect CSI as a function of M, where N = 100, K = 20,
and pu = 20 dB.

Figure 7 shows the variance of the sum rate under imperfect CSI as a function of M, where
N = 100, K = 20, and pu = 0 dB. For the analytical results, the lower bounds (26) and (27) are shown
for the MF and ZF receivers, respectively. Similar to the results in Figure 6, the scaling law on the
variance of the sum rate with M for the MF receiver does not change, regardless of τ, while that for the
ZF receiver tends to change depending on τ.
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Figure 7. Variance of sum rate under imperfect CSI as a function of M, where N = 100, K = 20,
and pu = 20 dB.

Figure 8 represents the ergodic sum rate as a function of M with the user selection algorithm at
the BS, where N = 100, K = 20, pu = 0 dB and τ = 0.4. Figure 9 depicts the corresponding scheduling
gain. The cases of a small τ are not presented for simplicity. As explained in Section 4, we consider
two scenarios for CSI availability for user scheduling at the BS, namely non-ideal CSI and near-ideal
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CSI. The exhaustive search for the optimal user selection algorithm uses the exact SINR formula in (4)
as the selection metric; thus, the CSI availability for user scheduling only affects the scheduling gain
for the optimal user selection algorithm. Conversely, SUS and SIRUS are not influenced by the CSI
availability for user scheduling because the user selection metrics are calculated using the estimated
channel. Moreover, the RR scheduler is not affected by the CSI availability for user scheduling because
of the random user selection.
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Figure 8. Ergodic sum rate under imperfect CSI as a function of M, where N = 100, K = 20, pu = 0 dB,
and τ2 = 0.4.
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Figure 9. Scheduling gain under imperfect CSI as a function of M, where N = 100, K = 20 and pu = 0
dB, and τ2 = 0.4.

From Figures 8 and 9, it is observed that the scheduling gain for the MF receiver increases as
M increases, regardless of both the user selection algorithm and CSI availability for user scheduling.
Simply, the scaling law for the MF receiver does not change depending on the user selection algorithm
and CSI availability for user scheduling. However, the scheduling gain for the ZF receiver shows
different scaling laws with M depending on the two factors. For the ZF receiver, it is observed that the
scheduling gains for (i) optimal scheduler with non-ideal CSI for user scheduling and (ii) SUS decrease
as M increases, while that for an optimal scheduler with near-ideal CSI for user scheduling increases
with M. This implies that if near-ideal CSI is available for user scheduling, full multi-user diversity
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gain from the fluctuation of the sum rate can be achieved under the optimal user selection algorithm for
the ZF receiver. However, if non-ideal CSI is available for user scheduling, the achievable scheduling
gain is limited, even if the optimal user selection algorithm is employed. If a typical low-complexity
user selection algorithm, such as SUS, is employed, the scheduling gain for the ZF receiver decreases
as M increases, even though the variance of the sum rate increases with M. Therefore, for a large τ,
the benefit of user scheduling for the ZF receiver disappears under imperfect CSI provided that the
user scheduling is far from optimal, and only non-ideal CSI is available for user scheduling, as analyzed
in Section 4.

6. Conclusions

In this paper, we investigated the scaling laws of scheduling gain for uplink massive MIMO
systems with a linear receiver. From the analyses and simulation results, we verified that the scheduling
gain for the MF receiver increases as the number of antennas increases, regardless of the user selection
algorithm and CSI availability for user scheduling. Furthermore, we verified that the scheduling gain
for a ZF receiver can be increased only when optimal user selection is employed, under the assumption
of a large channel estimation error for data demodulation and near-ideal CSI for user selection.
However, optimal user selection is not practically feasible because of the enormous computational
complexity of the exhaustive search. Therefore, we can conclude that random user selection is sufficient
for the ZF receiver and user scheduling is still beneficial for the MF receiver in uplink massive MIMO
systems. This study can be extended to more generalized massive MIMO systems with multi-antenna
users and multi-cell environments under pilot contamination, as well as to state-of-the-art massive
MIMO systems, such as the mmWave scenario with hybrid beamforming and large intelligent surfaces.
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Appendix A. Proof of Lemma 1

For a random variable Z ∆
= aX

bY+1 with independent X ∼ X 2
2d1

and Y ∼ X 2
2d2

, the PDF of Z is
derived as

fZ (z) =
∫ ∞

0
fZ|Y (z|y) fY (y) dy

=
∫ ∞

0

(
by + 1

a

) (( by+1
a

)
z
)d1−1

e
−
(

by+1
a

)
z

Γ (d1)
· yd2−1e−y

Γ (d2)
dy

=

( z
a
)d1−1e−

z
a

aΓ (d1) Γ (d2)

∫ ∞

0
(by + 1)d1 yd2−1e−

( b
a z+1

)
ydy

(a)
=

( z
a
)d1−1e−

z
a

aΓ (d1) Γ (d2)

∫ ∞

0

d1

∑
i=0

(
d1

i

)
(by)iyd2−1e−

( b
a z+1

)
ydy

(b)
=

d1
( z

a
)d1−1e−

z
a

aΓ (d2)

d1

∑
i=0

(i + d2 − 1)!bi

(d1 − i)!i!

(
b
a

z + 1
)−(i+d2)

, (A1)

where (a) follows the binomial expansion of (by + 1)i, and (b) comes from the equality
∫ ∞

0 yMe−αydy =

M!α−(M+1). The MGF of Z in (7) is straightforwardly derived from the definition of MGFMZ (s) =∫ ∞
0 esz fZ (z) dz and Ψ (a, b, s) = 1

Γ(a)

∫ ∞
0 e−stta−1(1 + t)b−a−1dt [27].
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Appendix B. Proof of Lemma 3

Let Z ∆
= aX

Y+1 and Y , bY1 + cY2, where X ∼ X 2
2d1

, Y1 ∼ X 2
2d2

, and Y2 ∼ Exp (1). First, the PDF of
Y is derived as

fY (y) =
∫ ∞

0
fY|Y1

(y|y1) fY1 (y1)dy1

=
∫ y/b

0

1
c

e−
(

y−by1
c

)
yd2−1

1 e−y1

Γ (d2)
dy1

=
e−

y
c

cΓ (d2)

∫ y/b

0
yd2−1

1 e−
(

1− b
c

)
y1 dy1

(a)
=

e−
y
c

cΓ (d2)

(
1− b

c

)−d2

γ
(

d,
(

1
b −

1
c

)
y
)

(b)
=

e−
y
c

c

(
1− b

c

)−d2

1− e−(
1
b−

1
c )y

d2−1

∑
i=0

(
1
b −

1
c

)i
yi

i!

 , (A2)

where (a) follows the equality
∫ z

0 yd−1e−αydy = α−dγ (d, αz) and (b) comes from the relationship
between the lower and upper incomplete gamma functions γ (d, x) = Γ (d)− Γ (d, x). Then, from the
PDF of Y, the PDF of Z is expressed as

fZ (z) =
∫ ∞

0
fZ|Y (z|y) fY (y) dy

=

(
1− b

c

)−d2( z
a
)d1−1e−

z
a

acΓ (d1)

∫ ∞

0
(y + 1)d1 e−

( z
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1
c

)
y

×

1− e−Ay
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∑
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(
1
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1
c

)i
yi

i!

 dy. (A3)

Meanwhile, we have

∫ ∞

0
(y + 1)d1 e−

( z
a+

1
c

)
ydy =

d1

∑
l=0

d1!
(d1 − l)!

(
z
a
+

1
c

)−(l+1)
(A4)

and

∫ ∞

0
(y + 1)d1 e−

( z
a+

1
c

)
y
(

e−Ay
d2−1

∑
i=0

Aiyi
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)
dy
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d2−1

∑
i=0

d1

∑
p=0

d1 (p + i)!Ai

(d1 − p)!p!i!

(
z
a
+

1
c
+ A

)−(p+i+1)
. (A5)

Therefore, by substituting (A4) and (A5) into (A3), (22) is obtained. Further, the MGF of (22) is
straightforwardly obtained in the same way as Lemma 1 in Appendix A.

Appendix C. Proof of Monotonicity of (24)

Let a ∆
= 1 − τ2 and c ∆

= K − 1 for simplicity. Then, the first-order derivative of (24) can be
written as

∂κ
ip
2,MF

∂M
=

(
(log2e)2a2c

K− 2

)(((
2a− a2)M2 + 2cM + c2)

(aM + c)4

)
. (A6)
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Consider the denominator of (A6), i.e., f (M) =
(
2a− a2)M2 + 2cM + c2. Because 2a− a2 ≥ 0,

f (M) is a convex function. Thus, the two roots of f (M) are given by

ω =
−c± c

√
1− a (2− a)

2a− a2 . (A7)

Because 0 ≤ a ≤ 1 and c > 0, both roots are always negative. Therefore, f (M) is always positive
for M ≥ K > 0, and (24) is a monotonically increasing function of M.

Appendix D. Proof of Monotonicity of (25)

Let a ∆
= 1−τ2

τ2 and c ∆
= K − 1 for simplicity, where a ≥ 0 and 0 < c < K. Then, the first-order

derivative of (25) is given by

∂κ
ip
2,ZF

∂M
=

(log2e)2a2c
(K− 2)

×
(

a (2− a) M2 + 2c(a− 1)2M− c2(a− 1)2

(a (M− c) + c)4

)
.

Let f (M) = a (2− a) M2 + 2c(a− 1)2M− c2(a− 1)2. Then, we can consider the following three cases:

• Case (i) When a = 2, f (M) = 2cM− c2 is an increasing function of M. Since the root of f (M) is
ω = c

2 = K−1
2 , f (M) is always positive where M ≥ K.

• Case (ii) When 0 ≤ a < 2, f (M) is a convex function and the two roots are given by

ω1 =
c (a− 1)

a
and ω2 =

c (a− 1)
a− 2

.

When 1 ≤ a < 2, ω1 ≥ ω2 and K>ω1. When 0 ≤ a < 1, ω2 > ω1 and K>ω2. Therefore, f (M) is
always positive where M ≥ K.

• Case (iii) When a > 2, f (M) is a concave function and ω2 > ω1 and K>ω2. Therefore, f (M) is
always negative where M ≥ K,

As a result, (25) is a monotonically increasing function when 0 ≤ a ≤ 2, i.e., 1
3 ≤ τ2 ≤ 1 and (25)

is a monotonically decreasing function when a > 2, i.e., 0 < τ2 < 1
3 .
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