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Abstract: Visible light positioning (VLP) using complementary metal–oxide–semiconductor (CMOS)
image sensors is a cost-effective solution to the increasing demand for an indoor positioning system.
However, in most of the existing VLP systems with an image sensor, researchers assume that the
receiving image sensor is positioned parallel to the indoor floor without any tilting and, thus, have only
focused on the high-precision positioning algorithm and ignored the proper light-emitting diode
(LED)-ID recognition. To address these limitations, we present, herein, a smartphone CMOS image
sensor and visible light-based indoor localization system for a receiver device in a tilted position,
and we have applied a machine learning approach for optimized LED-ID detection. For detection of
the LED-ID, we generated different features for different LED-IDs and utilize a machine learning
method to identify each ID as opposed to using the conventional coding and decoding method.
An image processing method was used for the image features extraction and selection. We utilized
the rolling shutter mechanism of the smartphone CMOS image sensor in our indoor positioning
system. Additionally, to improve the LED-ID detection and positioning accuracy with the tilting of the
receiver, we utilized the embedded fusion sensors of the smartphone (e.g., accelerometer, gyroscope,
and magnetometer, which can be used to extract the yaw, pitch, and roll angles). The experimental
results for the proposed positioning system show that it can provide 2.49, 4.63, 8.46, and 12.20 cm
accuracy with angles of 0, 5, 10, and 15◦, respectively, within a 2 m × 2 m × 2 m positioning area.

Keywords: visible light positioning; CMOS image sensor; machine learning; device orientation;
light-emitting diode

1. Introduction

Due to the increasing demand for a localization system for indoor environments, visible light
indoor positioning has attracted considerable attention for location-based services in the new research
community. The global positioning system (GPS) works quite adequately for providing positioning
information in the outdoors environment. However, because of difficulties in propagating the GPS
signal in indoor areas, the GPS cannot provide satisfactory performance in this environment. Therefore,
there are many alternative techniques used for indoor positioning, and these include the use of the
flight time for Wi-Fi signals [1], radiofrequency (RF) identification [2], ultrawideband [3], and ZigBee [4]
in triangulation. Among these techniques, RF-based positioning offers low cost and good coverage [5].
However, because of multipath fading and signal interference, the accuracy of their RF-based positioning
is still uncertain, the radiation is harmful to the human body, and its use is restricted to a certain location
such as hospitals, aircraft, and mines. The accuracy of ultrasonic positioning systems [6] can be extremely
high. However, additional infrastructure is required for system installations. By contrast, visible light
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communication (VLC) is a reliable technology; it offers high data transfer rates, is environmentally
friendly, and ensures secure communication in an indoor environment [7].

Many positioning methods using visible light have been proposed, and they can determine
positioning by applying time-of-arrival, angle-of-arrival, and vision analyses [8]. Several smartphone
image sensor-based visible light positioning (VLP) have been proposed and implemented in recent
years [9–12]. The use of visible light, image sensors, and a machine learning approach has been
proposed for indoor light-emitting diode (LED)-ID detection in the indoor positioning has proposed
in [13,14]. In [14], the authors used double-LED positioning algorithms with an industrial camera image
sensor and did not consider the tilt angle during the experiment. The proximity-based positioning
method with the utilized industrial camera cannot provide the exact positioning information during
positioning estimation and the authors also did not consider the receiver device angle effect at the time
of the experiment in [13]. In addition, use of an industrial camera as a visible light indoor positioning
system is impractical because it is not suitable for handheld use or compatible with user mobility
within the experimental region.

In recent studies [15–17], VLP by smartphone inertial sensor, magnetic sensor, accelerometer
sensor, and other supported devices has been used to improve position accuracy. Three-dimensional
VLC-based indoor positioning systems considering receiver tilt and using received signal strength have
also been reported [18]. In [18], a photodiode (PD) is used as the receiver, but it is difficult to implement
this in a VLP system capable of considering the tilt of the receiver. The system also requires extra
hardware that makes it complicated and costly. A large scale VLP system with a receiver orientation
system and tilting effect has been reported [19]. In that work, the authors used a PD receiver and
employed the traditional decoding and encoding technique for modulation in the transmitter. A visible
light-based positioning system considering receiver tilting angle during position estimation has been
reported in [20]. The receiver device is not clear, and it provides simulation-based performance with a
small-scale positioning area.

After consideration of the above studies, we have developed and present herein, a VLP system
based on visible light and complementary metal–oxide–semiconductor (CMOS) image sensor. With this
system, we considered the effect of receiver device tilting and have used a machine learning approach
for the LED-ID detection techniques. We generate different features for the different LED-IDs and
utilize machine learning methods to identify each ID, rather than reply on the conventional coding
and decoding method. The image processing method was used for the extraction and selection of
the image features. We also used the smartphone CMOS image sensor rolling shutter mechanism in
our proposed positioning system. Additionally, to improve the LED-ID detection and positioning
accuracy for various orientations of the receiver, we utilized the embedded smartphone fusion sensors
(accelerometer, gyroscope, and magnetometer) to extract yaw, pitch, and roll angles. Experimental
results show that the proposed positioning system can provide 2.49, 4.63, 8.46, and 12.20 cm accuracy
with angles 0, 5, 10, and 15◦, respectively, within a 2 m × 2 m × 2 m positioning area.

The rest of this paper is organized as follows: The system design is described in Section 2,
the proposed positioning method is discussed in Section 3, and the experimental environment and the
outcomes of this study are presented in Section 4. Finally, conclusions based on this work are presented
in Section 5.

2. System Architecture

2.1. Transmitter Section

2.1.1. Transmitter Design

Figure 1 contains a schematic of the transmitter system, which consists primarily of three parts:
(1) an LED bulb, (2) a metal–oxide–semiconductor field-effect transistor (MOSFET) chip, and (3) a
microcontroller unit (MCU) chip. A circular white LED with a 15 cm diameter, and 15 W power
capacity was used as a transmitter LED. To control the current of the LED bulb, we constructed a
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driver circuit comprising a high-speed switching MOSFET device with two parallel resistors R1 and
R2. The resistor R1 was connected to the data pin of the MCU, and resistor R2 was connected with pin
number three of the MOSFET. An ATmega328p [21] MCU was used to encode the data for the LED
lighting. Table 1 shows the parameters of the components used for transmitting data.

Figure 1. Transmitter circuit connections and components.

Table 1. Transmitter component parameters.

Parameters Name Values

LED Model BSDW-010, Color Temp. 5300~6000 K
LED Size 15 cm

LED Power 15 W
Number of LEDs 4

MCU Atmega328p
MOSFET Chip P24N65E [22]
Resistance R1 10 kΩ
Resistance R2 55 Ω

Modulation Scheme PWM

2.1.2. Transmitter LED Modulation

To avoid the flickering problem typical of general on–off keying modulation techniques, we used
pulse width modulation (PWM) with variable frequency in this system, and the different duty ratios are
shown in Figure 2. The transmitter LED flickering is controlled according to the modulation frequency
used during the transmission process. However, for frequencies below 200 Hz, human eyes can observe
the flicker [23]. As human eyes can recognize visual flicker at a modulation frequency less than 200 Hz,
the frequency for modulation is generally between 200 Hz to 8 kHz. In the proposed system, we control
the flickering by adopting different frequencies for different LED-IDs using frequencies greater than
200 Hz. In the receiver section, we used the smartphone CMOS image sensor; after configuring the
smartphone camera parameters, we could capture each LED lighting image with the CMOS image
sensor. The images for different LEDs modulated by the different duty ratios and frequencies are shown
in Figure 3. The duty ratios of the bright strips are different, and the number of bright strips on the
image plane is the same for a given the distance between transmitter LEDs and a receiver smartphone
camera. Therefore, the number of bright strips depends on the distance between transmitter and
receiver. Figure 3 shows the image captured from different LED-IDs with different duty ratios and
strips widths.
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Figure 2. Transmitting PWM modulation data with different duty ratios.

Figure 3. LED-ID modulation with different duty ratios: (a) 40% duty ratio; (b) 50% duty ratio; (c) 70%
duty ratio; (d) 80% duty ratio.

2.2. Receiver Section

2.2.1. Rolling Shutter Operation of Smartphone Embedded CMOS Image Sensor

The operation of the rolling shutter of the smartphone CMOS image sensor is shown in Figure 4.
The working mode for the CMOS image sensor requires that the exposure and data readout time be
executed by scanning the pixels of every dark and bright strip row by row. By switching between ON
and OFF states of the LED during data transmission, dark and bright strips appeared for the image
captured by the CMOS image sensor. The rolling shutter mechanism allows each row of pixels to be
individually scanned and provides a high frame rate speed.

Figure 4. Rolling shutter operation of smartphone CMOS image sensor.
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2.2.2. Smartphone Camera Configuration

In our VLP system, we developed a camera application for the receiver on the Android Studio
platform. We manually configured some camera parameters to capture the image data without
distortion. For the configuration of the camera, we focused primarily on two parameters, namely,
exposure time and ISO. Table 2 shows the parameters of the components used for the receiver section.

Table 2. Receiver components parameters.

Parameters Name Values

Image Sensor Rolling Shutter CMOS Sensor
Shutter Speed 32 kHz

ISO 500
Frame Rate 30 fps

Smartphone Model Samsung Galaxy S8
Camera Front Camera with 8 megapixels

Focal Length 24 mm
Aperture 1.7

Camera API Camera 2 with API Level 25
Camera Image Resolution 1080 × 920 pixels

Exposure is the time during which the camera shutter is open to allow light into the photodiode
matrix, and it is defined as the time required for the collection of a pixel. The pixels are the light-induced
charge accumulated until saturation is reached.

In a smartphone camera, ISO indicates the number of photons required to saturate the pixel.
The higher ISO value, fewer photons required to reach saturation. Therefore, as the ISO value increases,
the probability of pixel saturation will increase; in this case, the widths of the dark and bright stripes
on the image plane will also increase.

2.2.3. Mechanism of LED-ID Feature Extraction and Selection

The LED-ID feature extraction process has been described in [13], where authors extracted three
features in the image processing method. According to the feature generation process, to obtain a
better recognition and detection rate during decoding and classification of each transmitting LED-ID,
we complemented with three features (bright strip no., duty ratio, area of the LED) when we were
training the system in the offline process. Frequency is a predefined feature of each modulated LED,
and it was valuable feature during the training process. The overall process for the extraction of
LED features is shown in the block diagram in Figure 5. According to the figure, by using an image
processing method, it requires four steps to be completed for feature extraction.

Figure 5. Block diagram of LED-ID feature extraction mechanism.
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First, the original image captured by the smartphone CMOS image sensor must be converted
into a grayscale image. Further, the grayscale image is converted into a binary image, and then
the color labels of the RGB image are applied. Finally, the image segmentation method is applied.
The image segmentation process for the image captured by smartphone CMOS image sensor is shown
in Figure 6a–f. The mechanism for determining the extraction numbers of the bright strips by the image
processing method is shown in Figure 7a–e, where Figure 7a represents the grayscale image from the
original capture image, Figure 7b indicates the histogram for the threshold value of the original image
with the gray level for counting the pixels, the binary image converted from the grayscale image is
represented by Figure 7c, and the RGB color image to detect and count each bright strip of the blob
on the binary image is represented by Figure 7d. Finally, Figure 7e represents the binary image with
bright strip count number.

Figure 6. Mechanism of image segmentation: (a) captured original image; (b) grayscale image; (c) binary
converted image; (d) closing operation of binary image; (e) region of interest detection of binary image;
(f) segmentation of each image.

Figure 7. Bright strips number calculation process: (a) grayscale image; (b) histogram of captured image;
(c) converted binary image; (d) RGB color image with strip number; (e) bright strip number image.

2.3. LED-ID Identification Process

The LED-ID recognition for the transmission side was accomplished with the machine learning
method, which is highly accurate and applicable for the classification of transmitter information in the
VLP system. A typical linear classifier, linear support vector machine (SVM), is used to achieve the
recognition of LED-IDs in the machine learning field. For the selection of training and testing samples,
5000 image data were taken at each position, where 4000 were used as the training samples and the
other 1000 were used as testing samples. The average training time was 2.56 s and the total image
processing/classifying time was 17.36 ms. The identification process is described in detail below.
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Support Vector Machine

We applied different duty ratios and modulated frequencies to four different LED transmitters for
the extraction of the different LED-ID features from all of the transmitters by the process described
in Section 2.2.3 above. Table 3 shows the part of the sample input data which are extracted from the
ID extraction process. To obtain accurate positioning information, we must decode or recognize the
LED-ID information properly; otherwise, the system requires repositioning, and this increases the
system latency. For this reason, we separate all of the LED features by applying SVM to classify each
LED-ID by their feature characteristics. SVM works based on the concept of the decision planes that
define the decision boundaries. The decision plane is to separate between a set of objects having different
classes. For the LED feature extraction process with linearly separate different data samples, the optimal
classification hyperplane can separate the instances into two classes, as shown in Figure 8 [24]. Let us
define the class case as Xj, where j = 1, 2, 3..., N. Here, in our case, N = 4 be the feature vector of training
data set X. These belong to either of the two classes,ω1 andω2, which are linearly separable. The general
SVM classification can be described as a mathematical optimization problem: argmin 1

2 ‖ ω ‖
2 s.t.

y j
(
ωTX j + b

)
≥ 1. The goal is to find the hyperplane that classifies all the training vectors correctly

which can be expressed as f(X) = ωT
·X + b where the direction of the hyperplane is represented by ω,

which has the same dimensions as X, the transpose of ω is defined as ωT, and the appropriate position
of the hyperplane in space is indicated by b. The hyperplane is not the identical such that we can

write the geometrical margin as o =
| f (X)|
ω , which represents the geometrical distance between the

data samples to the hyperplane. To obtain the optimal value of the hyperplane, we aim to maximize o.
As the value of |f(X)| can be changed by scaling ω and b when making it equal to 1 and the solution we
have obtained from the maximum value of 1

||ω|| . We can solve the problem by utilizing the Lagrange

multiplier, and the problem comes to be solved by f (X) =
∑n

j=1 y jα j
〈
X, X j

〉
+ b where yj is the class

indicator of X j (+1 for ω1 and −1 for ω2), the Lagrange multiplier is indicated by αj and, finally,

the inner vector inner product is defined by
〈
X, X j

〉
.

Table 3. Sample of input LED features data.

LED-ID Bright Strip no. Duty Ratio (%) Frequency (kHz) Area of LED (pixel)

ID-1 3 0.400 2 5794
ID-2 3 0.500 3 6712
ID-3 4 0.700 4 8584
ID-4 4 0.800 5 10,737

Figure 8. Linearly separable two class problem with linear classifier.
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3. Positioning Method

3.1. Overview of Proposed System

The proposed positioning method is deployed using VLC and by the most popular smartphone
image sensor. It consists of two stages: the offline stage and the online stage. Figure 9 shows an
overview of the proposed positioning system process.

Figure 9. Overview of the proposed positioning system with the mechanism of LED-ID reorganization.

In the process of the offline stage, the number of LED project strips in the image sample
was captured by the smartphone CMOS image sensor via the rolling shutter mechanism. The image
processing method was then applied for extracting and counting each LED image feature. Subsequently,
the machine learning method was applied to build the classifier in accordance with the obtained data
features. Finally, the LED-ID library was completed to finalize the structure.

During the online stage, the image data from the library were separated according to the number
of strips and modulated LED with ID pairs. The camera image sensor then recognized the LED project
ID within the camera field of view. Subsequently, the establishment of the image sensor position was
used to calculate the distance between the LED coordinate and image sensor coordinate. Smartphone
embedded sensors (accelerometer, gyroscope, and magnetometer) were used to extract yaw, pitch,
and roll angles and improve the recognition accuracy during acquisition of the positioning information
by the proposed system.

3.2. Positioning Algorithm

The positioning system architecture consists of a transmitter and receiver, as shown in Figure 10.
The coordinates of the LED in the world coordinate system are

(
x′1, y′1, z′1

)
,
(
x′2, y′2, z′2

)
,
(
x′3, y′3, z′3

)
,

and
(
x′4, y′4, z′4

)
, which are known. V is the vertical distance from the lens center of the CMOS image

sensor to the fixed point of the LED. The camera focal length is f, which is an intrinsic parameter of
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every camera CMOS image sensor. The LED coordinates of the image coordinate system are defined as
(k1, l1), (k2, l2), (k3, l3), and (k4, l4), respectively, which can be obtained from the LED coordinate on the
pixel plane. The origin point of image coordinate system is the intersection point between the camera
optical axis of the camera and imaging plane of the CMOS image sensor. The unit of the coordinate
system is mentioned as mm (millimeter) and the unit of the pixel coordinate is pixel, which is described
by rows and lines of the pixels. Therefore, when obtaining the pixel coordinates of an LED by camera,
the coordinates of an LED in the image coordinate system can be calculated by the relationship between
the pixel coordinate and image coordinate which is expressed as follows.

kn = (i − i0)dkn (1)

ln = (j − j0)dln (2)

where kn and ln donate the image coordinate system, and i and j denote the pixel coordinate system,
which we can extract via the image processing mechanism of receiving an image on the image plane.
Variables dkn and dln represent the unit image transformation coordinate systems. The centers of the
coordinate system of the image are represented as i0 and j0, respectively. To ensure that we can get the
image coordinate system after that, we can calculate the distance L of the LED in the image coordinate
system and the distance M of the LED in the world coordinate system. Therefore, the distance L can be
expressed as

L =

√
(k1 − k2)

2 + (l1 − l2)
2. (3)

Figure 10. Architecture of the proposed positioning system with the transmitter and receiver sections.



Electronics 2020, 9, 1635 10 of 18

However, the distance M can be expressed as

M =

√(
x′1 − x′2

)2
+

(
y′1 − y′2

)2
. (4)

According to the camera operating principle, the vertical distance V between the camera lens
and the LED can be obtained, and the z’ coordinate can be calculated from the distance, which is
expressed as

V =
M
L

f (5)

where f is the camera focal length and is a known parameter of every smartphone image sensor.
Therefore, the zm coordinate of the image sensor from the four LEDs can be written as

zm = z′1 −V = z′2 −V = z′3 −V = z′4 −V. (6)

At the origin on the image plane, the image coordinate system is generated, and if we consider
that the Dn is the origin point and n = 1, 2, 3, 4..., we can express the relation as

Dn =

√
(kn)

2 + (ln)
2. (7)

Therefore, according to the camera operating principle, the horizontal distance Hn between the
image sensor in the world coordinate system and the LED can be expressed as

Hn =
M
L

Dn. (8)

However, the distances Hn, where n = 4, from multiple LEDs and the smartphone image sensor
can be expressed as 

H1 =
(
xm − x′1

)2
+

(
ym − y′1

)2
+

(
zm − z′1

)2

H2 =
(
xm − x′2

)2
+

(
ym − y′2

)2
+

(
zm − z′2

)2

H3 =
(
xm − x′3

)2
+

(
ym − y′3

)2
+

(
zm − z′3

)2

H4 =
(
xm − x′4

)2
+

(
ym − y′4

)2
+

(
zm − z′4

)2

. (9)

After evaluation of Equation (9), we can write the following expression:
H1 −H2 = 2

(
x′2 − x′1

)
xm + 2

(
y′2 − y′1

)
ym + 2

(
z′2 − z′1

)
zm +

(
x′21 + y′21 + z′21 − x′22 − y′22 − z′22

)
H1 −H3 = 2

(
x′3 − x′1

)
xm + 2

(
y′3 − y′1

)
ym + 2

(
z′3 − z′1

)
zm +

(
x′21 + y′21 + z′21 − x′23 − y′23 − z′23

)
H1 −H4 = 2

(
x′4 − x′1

)
xm + 2

(
y′4 − y′1

)
ym + 2

(
z′4 − z′1

)
zm +

(
x′21 + y′21 + z′21 − x′24 − y′24 − z′24

) (10)

Therefore, the smartphone image coordinates (xm, ym, zm) will be
xm

ym

zm

 = 1
2


x′2 − x′1 y′2 − y′1 z′2 − z′1
x′3 − x′1 y′3 − y′1 z′3 − z′1
x′4 − x′1 y′4 − y′1 z′4 − z′1


−1

H1 −H2 −
(
x′21 + y′21 + z′21 − x′22 − y′22 − z′22

)
H1 −H3 −

(
x′21 + y′21 + z′21 − x′23 − y′23 − z′23

)
H1 −H4 −

(
x′21 + y′21 + z′21 − x′24 − y′24 − z′24

)
. (11)

3.3. Smartphone Rotation Model

In recent years, modern smartphones have been equipped with many sensors. To determine
the orientation of the smartphone, an accelerometer, gyroscope, and magnetometer sensor are used,
which respectively can give roll, pitch, and yaw angles during operation, as shown in Figure 11.
Those angles can be denoted, as shown in Figure 10, asα, β, andγ, respectively. To provide the promising
positioning system with accurate information regarding the user terminal device, those embedded
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sensors are used during user movement and with different device orientations in the positioning
environment. However, accurately estimating these angles from the built-in sensor is practically
challenging because of the hardware quality and different noise issues such as thermal noise of the
magnetometer and mechanical noise of the accelerometer sensors. In prior work [25–27], the authors
reported a different method for improvement and performance analysis of the positioning information
by measuring sensor data. In this study, our goals are to establish a positioning system by using the
smartphone embedded image sensor and use other embedded sensors to observe the performance
of the system with various orientations effect of the smartphone. However, the measurements of the
sensor angles (α, β, and Υ) with VLC and the image sensor could be used to enhance the positioning
accuracy with the proposed positioning method and also to simplify the system. The rotation theorem
from Euler’s proposal explains that in three-dimensional space, any displacement of a rigid body
at a fixed point is equal to a single rotation about some axis that runs through that fixed point [28].
According to the relationship between the rotation angle R = RαRβRγ of the device and the normal

vector
→
m
′

of the device, we can express that relation as
→
m
′

= R
→
m = RαRβRγ

→
m (12)

where
→
m and

→
m
′

are the device normal vectors before and after rotation, respectively [29]. Moreover,
RαRβRγ is the rotation angle resulting from the roll, pitch, and yaw along the x′, y′, and z′ axes,
respectively. Let us consider that the world and the initial device coordinates of the normal vector
→
m = [0, 0, 1]T; after applying the rotation matrices, the corresponding normal rotation vector [29] from
Equation (12) can be expressed as

→
m
′

= RαRβRγ


0
0
1

 =

− cosα sinα 0
sinα cosα 0

0 0 1




1 0 0
0 cos β − sin β
0 sin β cos β




cosγ 0 sinγ
0 1 0

− sinγ 0 cosγ




0
0
1

 (13)

→
m
′

=


cosγ sinα sin β+ cosα sinγ
sinα sinγ− cosα cosγ sin β

cos β cosγ

. (14)

Figure 11. Mobile orientation scenario: (a) initial rotation position; (b) orientation along the z axis of
yaw angle (α); (c) orientation along the x axis of pitch angle; (β); (d) orientation along the y axis of roll
angle (γ).
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The normal vector for the rotated device,
→
m, is represented in the world coordinate system with

the corresponding polar angle (θ) and azimuth (ω), respectively. The polar (θ) angle is the angle

between the device normal vector
→
m
′

and along the positive z′ axis, and azimuth (ω) angle is the angle

between the projection of a device normal vector,
→
m
′

from the x′y′ plane and along the positive x′ axis.
Polar and azimuth angle of the smartphone orientation are shown in Figure 12. However, the polar

angle can be represented as cosθ =
→
m
′

. ẑ′
∣∣∣∣∣∣∣∣→m′∣∣∣∣∣∣∣∣ where ẑ′ is the unit vector along the z′ axis. Therefore,

the polar angle can be obtained from Equation (14) as

θ = cos−1(cos β cosγ). (15)

Figure 12. Polar and azimuth angle of the receiver orientation.

From Equation (15), it is understood that the polar angle of the device is primarily dependent
on the roll and pitch angle that is associated with the human movement during position estimation.
However, the azimuth angle of the device can be represented by the fundamental rotation of the device
which can expressed as

ω = tan−1

→
m
′

y′

→
m
′

x′
= tan−1 sinα sinγ− cosα cosγ sin β

cosγ sinα sin β+ cosα sinγ
. (16)

4. Experiment and Results

4.1. Experimental Setup

The proposed positioning system was tested in an experimental work area with a floor space
area measuring 2 m × 2 m, and the with the LED luminaire and camera image sensor mounted at a
height of 2 m above the ground. The experimental setup for the proposed system comprised 4 LEDs
mounted on the ceiling. The LEDs were spacing 2 m from each other and within the experimental area.
Each of the LED luminaires transmitted their individual coordinate information to the smartphone
camera image sensor, and the image sensor continuously received this coordinate information from
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the ceiling LED luminaires. Figure 13 shows the experimental environment. The CMOS image sensor
captured image data and processed it with MATLAB software. Since, in this study, our focus is on the
receiver image sensor orientation effect and testing the performance with tilt angles during location
estimation, we considered those angles for our test with a smartphone (Samsung S8). Accordingly,
we tested positioning accuracy when the smartphone was tilted at different heights by measuring roll,
pitch, and yaw angles.

Figure 13. Experiential test field with mapping area.

4.2. Experimental Results

4.2.1. LED-ID Recognition with Different Angle

The recognition of LED-ID depends on the distance between the LED transmitter and the
smartphone image sensor receiver. The light intensity received by the CMOS image sensor drops
because of the path loss for a line of sight communication and if the distance between the LED and
image sensor increases. Additionally, the rate of recognition depends on the area of LED projection
and the number of the dark and bright strips captured for the projected image. However, the width of
dark and bright strips did not vary, but as the intensity of light at the receiving image has decreased,
this affects the detection rate of the dark and bright strips during recognition of ID, and the recognition
accuracy for each LED-ID also decreases.

To analyze the LED-ID recognition rate as a function of distance and sensor orientation angle,
we modulated the LED transmitting data with PWM at 40%, 50%, 70%, and 80% duty ratio and 2, 3, 4,
and 5 kHz variable frequency at a distance of up to 2 m, as shown in Figure 14. From Figure 14, we can
see that the recognition rate for different tilt angles decreased with increasing communication distance
between the transmitter and smartphone image sensor receiver. However, this performance is suitable
for the accurate detection of LED-ID in any indoor setting.
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Figure 14. LED-ID recognition rate versus communication distance with different SVM tilt angles.

4.2.2. Improved LED-ID Recognition Rate with Different Angle

Since we are using a smartphone image sensor with other embedded sensors to improve the
recognition rates relative to those described previously in Section 4.2.1, we have benefited from the
embedded sensor of the smartphone while measuring the orientation angle. After integrating the
orientation sensor with our system, the recognition rate improved, and the LED-ID detection rate
accuracy has improved, as shown in Figure 15. We can see from the figure that the recognition rate
accuracy for all the tilt angles improved slightly. Additionally, the maximum allowable distance for ID
detection increased slightly with sensor data addition during LED-ID recognition.

Figure 15. LED-ID improved recognition rate versus communication distance with different SVM at
tilt angles.

4.2.3. Performance Analysis of Positioning Accuracy

In our proposed system, the performance of the positioning accuracy analysis was determined for
different angles of the smartphone during the experiment. To observe the performance of the proposed
system as a function of angle, we measured the positioning accuracy at 0, 5, 10, and 15◦ as shown in
Figure 16. From the figure, we can see that the location error increased with increasing smartphone
tilt angle. Figure 16a shows the result with 0◦ tilt angle during the experiment for taking in a single
estimation point, and the positioning error is approximately 2.49 cm. Figure 16b shows a positioning
error of 4.63 cm with 5◦ tilt angle and Figure 16c,d show positioning errors of 8.46 and 12.20 cm for 10
and 15◦ tilts, respectively.
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Figure 16. Positioning error performance at different angles: (a) error at 0◦ polar angle; (b) error at 5◦

polar angle; (c) error at 10◦ polar angle; (d) error at 15◦ polar angle.

We also observed errors resulting from variations in the yaw, pitch, and roll angles, as shown
in Figure 17. When the smartphone is tilted with respect to the x and y axes, the errors in position
estimation are nearly identical for different tilt angles. However, various orientation with respect to
the z axis consistently exhibited errors smaller than 3 cm.

Figure 17. Positioning error at different angles: (a) error at pitch angle; (b) error at roll angle; (c) error
at yaw angle.
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For better visualization of system performance, Figure 18 shows that the cumulative distribution
function (CDF) of the positioning errors for the different polar angles at 0, 5, 10, and 15◦, respectively.
The CDF is defined in terms of the probability of realizing a random positioning error (ε) whose
value is less than or equal to the positioning accuracy Pa, such that the CDF can be expressed as
(Pa) = P (ε ≤ Pa). As shown in Figure 18, the positioning error increases significantly as the polar
angle increase from 0, 5, 10, and 15◦, respectively, particularly for higher values of CDF percentage.
During the experiment when the camera image sensor was tilted at greater than 15◦ angle, the lens
of the camera became fish-eyed. The reason behind this is the radial distortion of the camera image
sensor. Hence, we missed some bright strips during the image capture from the LED which eventually
led to poor decoding accuracy of each LED-ID and increases in the positioning error. With polar
angles ranging from 0 to 15◦, the maximum error was seen to range from 7 to 18 cm, and after that,
was unchanged. Therefore, it is perceivable that the proposed positioning method can achieve highly
accurate positioning performance.

Figure 18. Cumulative distribution function (CDF) vs. positioning error at different polar angles.

5. Conclusions

In most of the existing VLP systems that use an image sensor, researchers have assumed that the
receiving image sensor is positioned completely parallel to the indoor floor without any tilting, and they
have focused exclusively on the high-precision positioning algorithm. In this study, we implemented a
positioning system based on VLC and smartphone CMOS image sensor so as to consider the effect of
tilting during the estimation of position with the image sensor. We also utilized a machine learning
approach for transmitter LED-ID recognition instead of the traditional coding and decoding method to
improve the ID detection rate location accuracy. We considered the tilting of the image sensor over a 0 to
15◦ range and tested the effect of tilting on the position accuracy. We achieved centimeter-level position
accuracies for different tilt angles of the smartphone terminal device; the degree of ID recognition
was also very high when the compensating embedded sensors, such as accelerometer, gyroscope,
and magnetometer, used the machine learning method to identify the IDs of the LED lights. In a future
study, we intend to extend the size of the positioning area and improve system accuracy.



Electronics 2020, 9, 1635 17 of 18

Author Contributions: For Conceptualization, W.-Y.C. and J.-J.K.; system methodology, M.H.R. and M.A.S.S.;
software, M.H.R.; validation, W.-Y.C., J.-J.K. and M.H.R.; formal analysis, M.H.R. and M.A.S.S.; investigation,
W.-Y.C., M.H.R. and M.A.S.S.; data curation, M.H.R.; writing—original draft preparation, M.H.R.; writing—review
and editing, W.-Y.C., J.-J.K., M.H.R. and M.A.S.S.; supervision, W.-Y.C. and J.-J.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by a Research grant of Pukyong National University (Year 2019).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. He, S.; Chan, S.H.G. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons.
IEEE Commun. Surv. Tutor. 2015, 18, 466–490. [CrossRef]

2. Errington, A.F.; Daku, B.L.; Prugger, A.F. Initial position estimation using RFID tags: A least-squares
approach. IEEE Trans. Instrum. Meas. 2010, 59, 2863–2869. [CrossRef]

3. Cazzorla, A.; De Angelis, G.; Moschitta, A.; Dionigi, M.; Alimenti, F.; Carbone, P. A 5.6-GHz UWB position
measurement system. IEEE Trans. Instrum. Meas. 2012, 62, 675–683. [CrossRef]

4. Konings, D.; Budel, A.; Alam, F.; Noble, F. Entity tracking within a Zigbee based smart home. In Proceedings
of the 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing,
China, 28–30 November 2016; pp. 1–6.

5. Çiftler, B.S.; Kadri, A.; Güvenç, I. Fundamental bounds on RSS-based wireless localization in passive UHF
RFID systems. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference
(WCNC), New Orleans, LA, USA, 9–12 March 2015; pp. 1356–1361.

6. Kim, S.J.; Kim, B.K. Accurate hybrid global self-localization algorithm for indoor mobile robots with
two-dimensional isotropic ultrasonic receivers. IEEE Trans. Instrum. Meas. 2011, 60, 3391–3404. [CrossRef]

7. Pham, N.Q.; Rachim, V.P.; Chung, W.Y. High-accuracy VLC-based indoor positioning system using multi-level
modulation. Opt. Express 2019, 27, 7568–7584. [CrossRef] [PubMed]

8. Gu, Y.; Lo, A.; Niemegeers, I. A survey of indoor positioning systems for wireless personal networks.
IEEE Commun. Surv. Tutor. 2009, 11, 13–32. [CrossRef]

9. Rajagopal, N.; Lazik, P.; Rowe, A. Visual light landmarks for mobile devices. In Proceedings of the IEEE 13th
International Symposium on Information Processing in Sensor Networks, Berlin, Germany, 15–17 April 2014;
pp. 249–260.

10. Kuo, Y.S.; Pannuto, P.; Hsiao, K.J.; Dutta, P. Luxapose: Indoor positioning with mobile phones and visible
light. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking,
Maui, HI, USA, 7–11 September 2014; pp. 447–458.

11. Yang, Z.; Wang, Z.; Zhang, J.; Huang, C.; Zhang, Q. Wearables can afford: Light-weight indoor positioning with
visible light. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications,
and Services, Florence, Italy, 18–22 May 2015; pp. 317–330.

12. Huang, H.; Feng, L.; Ni, G.; Yang, A. Indoor imaging visible light positioning with sampled sparse light
source and mobile device. Chin. Opt. Lett. 2016, 14, 090602. [CrossRef]

13. Xie, C.; Guan, W.; Wu, Y.; Fang, L.; Cai, Y. The LED-ID detection and recognition method based on visible
light positioning using proximity method. IEEE Photonics J. 2018, 10, 1–16. [CrossRef]

14. Guan, W.; Zhang, X.; Wu, Y.; Xie, Z.; Li, J.; Zheng, J. High precision indoor visible light positioning algorithm
based on double LEDs using CMOS image sensor. Appl. Sci. 2019, 9, 1238. [CrossRef]

15. Xie, B.; Chen, K.; Tan, G.; Lu, M.; Liu, Y.; Wu, J.; He, T. LIPS: A light intensity–based positioning system for
indoor environments. ACM Trans. Sensor Netw. (TOSN) 2016, 12, 1–27. [CrossRef]

16. Li, Z.; Yang, A.; Lv, H.; Feng, L.; Song, W. Fusion of visible light indoor positioning and inertial navigation
based on particle filter. IEEE Photonics J. 2017, 9, 1–13. [CrossRef]

17. Yasir, M.; Ho, S.W.; Vellambi, B.N. Indoor positioning system using visible light and accelerometer.
J. Lightwave Technol. 2014, 32, 3306–3316. [CrossRef]

18. Kim, D.; Park, J.K.; Kim, J.T. Three-dimensional VLC positioning system model and method considering
receiver tilt. IEEE Access 2019, 7, 132205–132216. [CrossRef]

http://dx.doi.org/10.1109/COMST.2015.2464084
http://dx.doi.org/10.1109/TIM.2010.2046366
http://dx.doi.org/10.1109/TIM.2012.2219139
http://dx.doi.org/10.1109/TIM.2011.2126890
http://dx.doi.org/10.1364/OE.27.007568
http://www.ncbi.nlm.nih.gov/pubmed/30876319
http://dx.doi.org/10.1109/SURV.2009.090103
http://dx.doi.org/10.3788/COL201614.090602
http://dx.doi.org/10.1109/JPHOT.2018.2809731
http://dx.doi.org/10.3390/app9061238
http://dx.doi.org/10.1145/2953880
http://dx.doi.org/10.1109/JPHOT.2017.2733556
http://dx.doi.org/10.1109/JLT.2014.2344772
http://dx.doi.org/10.1109/ACCESS.2019.2940759


Electronics 2020, 9, 1635 18 of 18

19. Mai, D.H.; Le, H.D.; Pham, T.V.; Pham, A.T. Design and Performance Evaluation of Large-Scale VLC-Based
Indoor Positioning Systems Under Impact of Receiver Orientation. IEEE Access 2020, 8, 61891–61904.
[CrossRef]

20. Jeong, E.-M.; Yang, S.-H.; Kim, H.-S.; Han, S.-K. Tilted receiver angle error compensated indoor positioning
system based on visible light communication. Electron. Lett. 2013, 49, 890–892. [CrossRef]

21. Microchip. Available online: https://www.microchip.com/wwwproducts/en/atmega328p (accessed on
1 October 2020).

22. Vishay. Available online: https://www.alldatasheet.com/datasheet-pdf/pdf/436852/VISHAY/SIHP24N65E.
html (accessed on 1 October 2020).

23. Berman, S.M.; Greenhouse, D.S.; Bailey, I.L.; Clear, R.D.; Raasch, T.W. Human electroretinogram responses to
video displays, fluorescent lighting, and other high frequency sources. Optom. Vis. Sci. 1991, 68, 645–662.
[CrossRef] [PubMed]

24. Theodoridis, S.; Koutroumbas, K. Pattern Recognition, 4th ed.; Academic: St. Louis, MO, USA, 2010; pp. 22–34.
25. Patonis, P.; Patias, P.; Tziavos, I.N.; Rossikopoulos, D.; Margaritis, K.G. A fusion method for combining

low-cost IMU/magnetometer outputs for use in applications on mobile devices. Sensors 2018, 18, 2616.
[CrossRef] [PubMed]

26. Kok, M.; Hol, J.D.; Schön, T.B. Using inertial sensors for position and orientation estimation. arXiv 2017,
arXiv:1704.06053.

27. Ayub, S.; Bahraminasab, A.; Honary, B. A sensor fusion method for smart phone orientation estimation.
PGNET 2012. In Proceedings of the 13th Annual Postgraduate Symposium on the Convergence of
Telecommunications, Networking & Broadcasting, Liverpool, UK, 25–26 June 2012.

28. Kuipers, J.B.Q. A Primer with Applications to Orbits, Aerospace, and Virtual Reality; Princeton Univ. Press:
Princeton, NJ, USA, 1999.

29. Soltani, M.D.; Purwita, A.A.; Zeng, Z.; Haas, H.; Safari, M. Modeling the random orientation of mobile
devices: Measurement, analysis and LiFi use case. IEEE Trans. Commun. 2018, 67, 2157–2172. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2020.2984027
http://dx.doi.org/10.1049/el.2013.1368
https://www.microchip.com/wwwproducts/en/atmega328p
https://www.alldatasheet.com/datasheet-pdf/pdf/436852/VISHAY/SIHP24N65E.html
https://www.alldatasheet.com/datasheet-pdf/pdf/436852/VISHAY/SIHP24N65E.html
http://dx.doi.org/10.1097/00006324-199108000-00012
http://www.ncbi.nlm.nih.gov/pubmed/1923343
http://dx.doi.org/10.3390/s18082616
http://www.ncbi.nlm.nih.gov/pubmed/30096944
http://dx.doi.org/10.1109/TCOMM.2018.2882213
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	System Architecture 
	Transmitter Section 
	Transmitter Design 
	Transmitter LED Modulation 

	Receiver Section 
	Rolling Shutter Operation of Smartphone Embedded CMOS Image Sensor 
	Smartphone Camera Configuration 
	Mechanism of LED-ID Feature Extraction and Selection 

	LED-ID Identification Process 

	Positioning Method 
	Overview of Proposed System 
	Positioning Algorithm 
	Smartphone Rotation Model 

	Experiment and Results 
	Experimental Setup 
	Experimental Results 
	LED-ID Recognition with Different Angle 
	Improved LED-ID Recognition Rate with Different Angle 
	Performance Analysis of Positioning Accuracy 


	Conclusions 
	References

