
electronics

Article

Optimization of Spiking Neural Networks Based on
Binary Streamed Rate Coding

Ali A. Al-Hamid 1,2 and HyungWon Kim 1,*
1 Department of Electronics, College of Electrical and Computer Engineering, Chungbuk National University,

Cheongju 28644, Korea; alihamid@cbnu.ac.kr
2 Department of Electrical Engineering, College of Engineering, Al-Azhar University, Cairo 11651, Egypt
* Correspondence: hwkim@cbnu.ac.kr

Received: 8 September 2020; Accepted: 28 September 2020; Published: 29 September 2020 ����������
�������

Abstract: Spiking neural networks (SNN) increasingly attract attention for their similarity to the
biological neural system. Hardware implementation of spiking neural networks, however, remains a
great challenge due to their excessive complexity and circuit size. This work introduces a novel
optimization method for hardware friendly SNN architecture based on a modified rate coding
scheme called Binary Streamed Rate Coding (BSRC). BSRC combines the features of both rate and
temporal coding. In addition, by employing a built-in randomizer, the BSRC SNN model provides a
higher accuracy and faster training. We also present SNN optimization methods including structure
optimization and weight quantization. Extensive evaluations with MNIST SNNs demonstrate that the
structure optimization of SNN (81-30-20-10) provides 183.19 times reduction in hardware compared
with SNN (784-800-10), while providing an accuracy of 95.25%, a small loss compared with 98.89%
and 98.93% reported in the previous works. Our weight quantization reduces 32-bit weights to 4-bit
integers leading to further hardware reduction of 4 times with only 0.56% accuracy loss. Overall, the
SNN model (81-30-20-10) optimized by our method shrinks the SNN’s circuit area from 3089.49 mm2

for SNN (784-800-10) to 4.04 mm2—a reduction of 765 times.

Keywords: Spiking Neural Network (SNN); Spike Rate Coding; MNIST dataset; weight quantization;
SNN hardware

1. Introduction

In recent years, various types of Artificial Neural Network (ANN) have been studied as effective
solutions for many object recognition and image classification problems with increasing accuracy.
The Modified National Institute of Standards and Technology (MNIST) dataset is one of the popular
benchmarks for testing different types of ANN due to its simplicity. MNIST dataset contains 60,000
and 10,000 images of handwritten digits for training and testing neural network modules, respectively.
Training and evaluating various types of ANNs on large datasets consume a lot of time. Furthermore,
while keeping a high level of accuracy, designing an ANN of minimal model size or hardware cost is
even more challenging. There is a growing demand for hardware-friendly ANN optimization due to
the rapid growth in low power AI for IOT and edge AI accelerator technologies. Among the ANN
models, SNN is receiving growing attention due to its structural resemblance to the biological neural
system. In addition, SNN is known to require less hardware leading to smaller chip size and lower
power consumption [1,2]. Many hardware accelerators have been reported for SNN, which include
SpiNNaker/SpiNNaker-2 [3,4], Intel Loihi [5] and Neurogrid [6], and TrueNorth chip [7]. In this paper,
we present a highly optimized SNN with relatively high accuracy aimed at a compact SNN hardware
accelerator. We propose a novel spiking signal coding scheme, and present SNN model optimization
and quantization techniques, which are summarized as follows.

Electronics 2020, 9, 1599; doi:10.3390/electronics9101599 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-2602-2075
http://dx.doi.org/10.3390/electronics9101599
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/10/1599?type=check_update&version=2

Electronics 2020, 9, 1599 2 of 17

First, we propose a new rate-based spike generation method called a Binary Streamed Rate Coding
(BSRC), which allows easy implementation in both software and hardware. BSRC eliminates the
need for adding random noise to the input image pixels like traditional rate coding [8–10]. Instead,
we can directly generate spike signals corresponding to all pixels of the entire input image. Second,
we introduce a training technique for the proposed SNN. Recently, a direct supervised training
algorithm for SNN called STBP was published [11]. It can reportedly achieve a very high accuracy of
99.42% using the MNIST dataset. We show in the experimental section that our BSRC coding scheme
method, when combined with STBP, provides even higher accuracy.

It is a great challenge to design hardware accelerators of an SNN for low power and compact
embedded devices. This is especially the case because hardware resources like memory, multipliers,
and adders are limited. The accelerator designs are also constrained by the size of the ANN model,
design complexity, operation speed, and power consumption [12–17]. In [18], the authors discussed
an efficient technique for reducing the number of bits in representing SNN weights for training
and inference process using either fixed-point or floating-point calculations. The authors in [19]
further reduced the number of required weight bits into two bits for the inference process using an
ANN training algorithm called BinaryConnect [20]. Then, they converted the ANN model to an
SNN model and reported an accuracy of 99.43% on MNIST dataset. In [21], the authors reported
an energy-efficient convolutional SNN by converting a deep CNN into an SNN to implement it
to a spike-based neuromorphic hardware. In [14], a hybrid updating algorithm was proposed,
which combines the advantages of existing algorithms to reduce the hardware complexity and improve
the system performance. They proposed a network module supporting up to 16,384 neurons with a
total of 16.8 million synapses. The design of [14] reported a reduced power consumption of 0.477 W,
while achieving a relatively high accuracy of 97.06% for the MNIST dataset.

Many research studies on SNN have gradually improved the accuracy of the MNIST dataset.
SNNs can be grouped to two types: fully connected SNNs [1,22] and convolutional SNNs [18,19].
Fully connected (FC) network is our choice, because of its simplicity for hardware implementation.
In the fully connected networks, all neurons in one layer are connected to every neuron in the next
layer. The nature of nondifferentiable spiking function and the dynamic feature make the training
process of SNN incredibly challenging. Training an SNN can be done in three different methods:

• Unsupervised training is a kind of self-training for synapse weight modification inspired by
biological neural system exhibiting spike timing dependence plasticity [23–25].

• Indirect supervised training is a method that first trains the network model as an ANN through
using traditional training algorithms, and then converts the trained network model into SNN
version [26–28].

• Direct supervised training is a method that attempts to train an SNN directly by using approximated
version of spiking function [11]. These training algorithms should have the capability to utilize
spatial domain property to increase the training accuracy [22].

The proposed work introduces a new type of direct supervised training method based on Binary
Streamed Rate Coding (BSRC). We then efficiently combine the time and spatial domain information to
obtain higher accuracy than other algorithms.

2. Structure of Spiking Neural Network

2.1. Overall Structure of SNN

Spiking neural networks commonly consist of spiking neurons, synapses, and interconnections
between neurons and synapses. Synapses are often modeled by adjustable weights. A type of SNNs
comprises only fully connected layer(s), while other types comprise convolutional layer(s) as well as
fully connect layer(s). In the fully connected type of SNNs, all neurons in the preceding layer are fully
connected to every neuron in the subsequent layer [26]. Figure 1a shows the general structure of a

Electronics 2020, 9, 1599 3 of 17

fully connected SNN for 28 × 28 MNIST dataset. The training or inference processes start by flatten
the input image pixels from two-dimensional array of 28 × 28 to a one-dimensional vector of size 784.
After the input image flattening, the input layer of the network converts each input pixel’s integer
value to spike signals using various methods such as temporal coding and rate coding. The output
layer consists of neurons, whose outputs represent the classes of MNIST.

Electronics 2020, 9, x FOR PEER REVIEW 3 of 17

After the input image flattening, the input layer of the network converts each input pixel’s integer
value to spike signals using various methods such as temporal coding and rate coding. The output
layer consists of neurons, whose outputs represent the classes of MNIST.

(a) (b)

Figure 1. Spiking neural network (SNN) structure: (a) SNN structure (m hidden layers) for Modified
National Institute of Standards and Technology (MNIST) dataset 28 × 28; (b) SNN structure (two
hidden layers) for MNIST dataset 9 × 9. In the (a,b), red synapse color represents Excitatory synapses
and blue for Inhibitory one, the bold line indicates more positive (Excitatory) or more negative
(Inhibitory) values.

For low cost hardware implementation, the full-scale input image can be scaled down to reduce
the SNN size. For example, Figure 1b shows a reduced SNN that takes as input the MNIST images
scaled downed to 9 × 9.

The full scale SNNs and reduced SNNs have been used to evaluate our proposed SNN
optimization and quantization methods.

Through an extensive analysis of performance-to-cost metric, we chose an SNN structure
consisting of two fully connect hidden layers with various image size (28 × 28, 14 × 14, 9 × 9) and
various number of neurons in each layer. Our SNN model represents each pixel integer value in a
binary stream of spikes using the proposed rate coding scheme called a Binary Streamed Rate Coding
(BSRC). Like other SNN models, our SNN model also distinguishes between two types of synapses,
excitatory and inhibitory synapses, which are denoted by red and blue colors, respectively, in Figure
1a,b.

Throughout our paper, we define an SNN’s dimension by a list of each layer’s size (the number
of neurons). For example, (784-800-10) represents an SNN consisting of the input layer with 784
neurons, first hidden layer with 800 neurons, and the output layer with 10 neurons.

2.2. Spike Signal Representation

Spiking neural networks are more plausible than other types of biological neuron ensembles.
Most of SNNs process spike signals in two domains (temporal and spatial) [11], which provides
prominent advantage over traditional ANNs which have only spatial domain. Figure 2 illustrates the
differences between ANN and SNN’s neuron models. Note the differences in the input signal,
multiplication and addition processes, activation function, and the output signal.

Figure 1. Spiking neural network (SNN) structure: (a) SNN structure (m hidden layers) for Modified
National Institute of Standards and Technology (MNIST) dataset 28 × 28; (b) SNN structure (two hidden
layers) for MNIST dataset 9 × 9. In the (a,b), red synapse color represents Excitatory synapses and blue
for Inhibitory one, the bold line indicates more positive (Excitatory) or more negative (Inhibitory) values.

For low cost hardware implementation, the full-scale input image can be scaled down to reduce
the SNN size. For example, Figure 1b shows a reduced SNN that takes as input the MNIST images
scaled downed to 9 × 9.

The full scale SNNs and reduced SNNs have been used to evaluate our proposed SNN optimization
and quantization methods.

Through an extensive analysis of performance-to-cost metric, we chose an SNN structure consisting
of two fully connect hidden layers with various image size (28 × 28, 14 × 14, 9 × 9) and various
number of neurons in each layer. Our SNN model represents each pixel integer value in a binary
stream of spikes using the proposed rate coding scheme called a Binary Streamed Rate Coding (BSRC).
Like other SNN models, our SNN model also distinguishes between two types of synapses, excitatory
and inhibitory synapses, which are denoted by red and blue colors, respectively, in Figure 1a,b.

Throughout our paper, we define an SNN’s dimension by a list of each layer’s size (the number of
neurons). For example, (784-800-10) represents an SNN consisting of the input layer with 784 neurons,
first hidden layer with 800 neurons, and the output layer with 10 neurons.

2.2. Spike Signal Representation

Spiking neural networks are more plausible than other types of biological neuron ensembles.
Most of SNNs process spike signals in two domains (temporal and spatial) [11], which provides
prominent advantage over traditional ANNs which have only spatial domain. Figure 2 illustrates
the differences between ANN and SNN’s neuron models. Note the differences in the input signal,
multiplication and addition processes, activation function, and the output signal.

Electronics 2020, 9, 1599 4 of 17
Electronics 2020, 9, x FOR PEER REVIEW 4 of 17

(a) (b)

Figure 2. (a) ANN neuron model; (b) SNN neuron model.

Coding schemes play an important role in representing the spike signals in each layer and
training the SNN with the temporal and spatial domains. There are two common coding schemes for
converting input pixel value in SNNs: rate coding and temporal coding [10,11]. The rate-based coding
scheme is regarded as highly demanding for training and implementation, since it results in a large
number of weight lookups and high spike traffic in the routing fabric [29]. Another difficulty is that
high spike rate tends to mask the discrete nature of the spiking activity [30], On the other hand, the
temporal coding SNNs tend to suffer from poor accuracy. For example, in [29,30], where temporal
based coding was used, the authors reported low accuracies of 96.8% and 97.55% respectively, for the
SNN of size (78-4800-10). In our work, we developed a hardware-friendly rate coding SNN model
called Binary Streamed Rate Coding (BSRC) which can overcome the above drawbacks.

BSRC converts the input pixel values to rate-based spike signals represented by a binary stream.
The length T of spike streams is determined with consideration of the hardware implementation cost.
We represent each spike signal in each layer of SNN by a stream of T binary values with 1 indicating
the presence of a spike and 0 indicating no spike. Each image in the MNIST dataset consists of pixels
represented in integer values like most image data. In the proposed method, Algorithm 1 converts
each input pixel’s integer value to a stream of binary values representing the rate of spikes in the pre-
determined stream length T. For a pixel value of n-bits, the pixel is converted to a sequence of 2n − 1
bits. Hence, the sequence length 𝑇 is given by Equation (1): 𝑇 = (2 − 1) (1)

Line 2 and 6 of Algorithm 1 separate the pixel values into two groups. The pixel value Pv
satisfying the condition 0 < 𝑃𝑣 < 𝑖𝑛𝑡(𝑇/2) falls into the first group (line 2). For the first group, line
4 of Algorithm 1 sets the bits to ones that correspond to spike positions. On the other hand, the pixel
values Pv meeting 𝑖𝑛𝑡(𝑇/2) ≤ Pv falls into the second group (line 6). For the second group, line 7 of
Algorithm 1 initializes the spike stream Sspikes by all ones and sets the bits to zeros that correspond to
non-spike positions (line 14). As the final step in each group, the stream of spikes is rotated by random
positions R (0 < R < T − 1), which provides regularization with randomness for robust classification
results.

Algorithm 1 Generate Binary Stream of Spikes
Inputs: input image pixel values Pv, n bits representing each pixel value, length 𝑇 of binary stream.
Output: Stream of Spikes (Sspikes) with length 𝑇 = (2 − 1)

For each pixel in the input image:
1. initialize Sspikes with all zeros
2. if 0 < Pv < 𝑖𝑛𝑡(𝑇/2) then // No spike is added if Pv = 0
3. for 𝑖 = 𝑇 − 1 𝑡𝑜 0; step = −𝑖𝑛𝑡(𝑇/Pv)
4. Sspikes [i] = 1
5. Random-rotate (Sspikes) // Rotate in range (0, 𝑇 − 1)
6. else if Pv ≥ 𝑖𝑛𝑡(𝑇/2) then
7. initialize Sspikes with all ones
8. 𝑃𝑣_𝑐𝑜𝑚 = 𝑇 − 𝑃𝑣 // Calculate 2’s complement of Pv
9. if 𝑃𝑣_𝑐𝑜𝑚 =1 then // Only 1 spike is needed in the stream
10. Sspikes [𝑖𝑛𝑡(𝑇/2)] = 0

Wi0

Wi1

Wi2

WiNl-1

Wi0

Wi1

Wi2

WiNl-1

1

0

𝑉

Figure 2. (a) ANN neuron model; (b) SNN neuron model.

Coding schemes play an important role in representing the spike signals in each layer and training
the SNN with the temporal and spatial domains. There are two common coding schemes for converting
input pixel value in SNNs: rate coding and temporal coding [10,11]. The rate-based coding scheme is
regarded as highly demanding for training and implementation, since it results in a large number of
weight lookups and high spike traffic in the routing fabric [29]. Another difficulty is that high spike
rate tends to mask the discrete nature of the spiking activity [30], On the other hand, the temporal
coding SNNs tend to suffer from poor accuracy. For example, in [29,30], where temporal based coding
was used, the authors reported low accuracies of 96.8% and 97.55% respectively, for the SNN of size
(78-4800-10). In our work, we developed a hardware-friendly rate coding SNN model called Binary
Streamed Rate Coding (BSRC) which can overcome the above drawbacks.

BSRC converts the input pixel values to rate-based spike signals represented by a binary stream.
The length T of spike streams is determined with consideration of the hardware implementation cost.
We represent each spike signal in each layer of SNN by a stream of T binary values with 1 indicating
the presence of a spike and 0 indicating no spike. Each image in the MNIST dataset consists of pixels
represented in integer values like most image data. In the proposed method, Algorithm 1 converts
each input pixel’s integer value to a stream of binary values representing the rate of spikes in the
pre-determined stream length T. For a pixel value of n-bits, the pixel is converted to a sequence of 2n

− 1
bits. Hence, the sequence length T is given by Equation (1):

T = (2n
− 1) (1)

Line 2 and 6 of Algorithm 1 separate the pixel values into two groups. The pixel value Pv satisfying
the condition 0 < Pv < int(T/2) falls into the first group (line 2). For the first group, line 4 of
Algorithm 1 sets the bits to ones that correspond to spike positions. On the other hand, the pixel values
Pv meeting int(T/2) ≤ Pv falls into the second group (line 6). For the second group, line 7 of Algorithm
1 initializes the spike stream Sspikes by all ones and sets the bits to zeros that correspond to non-spike
positions (line 14). As the final step in each group, the stream of spikes is rotated by random positions
R (0 < R < T − 1), which provides regularization with randomness for robust classification results.

Electronics 2020, 9, 1599 5 of 17

Algorithm 1 Generate Binary Stream of Spikes

Inputs: input image pixel values Pv, n bits representing each pixel value, length T of binary stream.
Output: Stream of Spikes (Sspikes) with length T = (2n

− 1)
For each pixel in the input image:
1. initialize Sspikes with all zeros
2. if 0 < Pv < int(T/2) then // No spike is added if Pv = 0
3. for i = T − 1 to 0; step = −int(T/Pv)
4. Sspikes [i] = 1
5. Random-rotate (Sspikes) // Rotate in range (0, T − 1)
6. else if Pv ≥ int(T/2) then
7. initialize Sspikes with all ones
8. Pv_com = T − Pv // Calculate 2’s complement of Pv
9. if Pv_com =1 then // Only 1 spike is needed in the stream
10. Sspikes [int(T/2)] = 0
11. Random-rotate (Sspikes) // Rotate in range (0, T − 1)
12. else if Pv_com > 1 then //generate equally distributed zeros
13. for i = 0 to T − 1; step = int(T/Pv_com)

14. Sspikes [i] = 0
15. Random-rotate (Sspikes) // Rotate in range (0, T − 1)

As a running example, we use a reduced MNIST image with each pixel represented by 4 bits.
Thus, the input layer of the SNN converts each pixel value to a binary sequence of a length of 15 spikes
using Algorithm 1. For example, a pixel value of 5 is converted to the spike sequence shown below.

Pixel o f 5 = int[0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]

An example of Random-rotate (Sspikes) with R = 1 is given below.

Pixel o f 5 = int[1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0]

For the example of 4-bit pixels, the conversion results for all pixel values are given in Figure 3
(before applying the random rotation).

Electronics 2020, 9, x FOR PEER REVIEW 5 of 17

11. Random-rotate (Sspikes) // Rotate in range (0, 𝑇 − 1)
12. else if 𝑃𝑣_𝑐𝑜𝑚 > 1 then //generate equally distributed zeros

13. for 𝑖 = 0 𝑡𝑜 𝑇 − 1; 𝑠𝑡𝑒𝑝 = 𝑖𝑛𝑡(𝑇/𝑃𝑣_𝑐𝑜𝑚)

14. Sspikes [i] = 0
15. Random-rotate (Sspikes) // Rotate in range (0, 𝑇 − 1)

As a running example, we use a reduced MNIST image with each pixel represented by 4 bits.
Thus, the input layer of the SNN converts each pixel value to a binary sequence of a length of 15
spikes using Algorithm 1. For example, a pixel value of 5 is converted to the spike sequence shown
below. 𝑃𝑖𝑥𝑒𝑙 𝑜𝑓 5 = 𝑖𝑛𝑡[0,0,1,0,0,1,0,0,1,0,0,1,0,0,1]

An example of Random-rotate (Sspikes) with R = 1 is given below. 𝑃𝑖𝑥𝑒𝑙 𝑜𝑓 5 = 𝑖𝑛𝑡[1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0]
For the example of 4-bit pixels, the conversion results for all pixel values are given in Figure 3

(before applying the random rotation).

Figure 3. 4–bit pixels, Binary Streamed Rate Coding (BSRC) conversion results.

2.3. Spiking Neural Network Model

Among various spiking neuron models, the leaky integrate and fire (LIF) neuron is regarded as
more efficient and reliable than others [31]. The LIF neuron model is represented by Equation (2) [11]: 𝜏 () = −𝑉 (𝑡) +(W ∙ S) (2)

here, 𝑉 and 𝜏 represent the membrane voltage and time constant, respectively, while (W × S) is
the dot product of synapse weights W and pre-synaptic inputs S. For 𝑉 (𝑡 = 0), the initial condition
is 𝑉 (𝑡 = 0) = 𝑉 () + Δ𝑉 (𝑡). Here, 𝑉 () is the initial membrane voltage upon reset of the
circuit. In our implementation, we used 𝑉 () = 0 without loss of generality.

Equation (2) has been simplified to an approximate formula of Equation (3) that is suitable for
the numerical implementation of fast training and inference processes. The resulted exponential

decay term 𝑒 ()
 from Equation (2) has been approximated by an addition operation with the

previous membrane voltage factored by a constant slope 𝐷 . Equation (3) also makes the circuit
implementation extremely compact even for large SNNs with thousands of synapses:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
3 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
4 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1
5 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
6 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1
7 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
8 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1
9 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1

10 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
11 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1
12 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1
13 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Spike sequence index

Pi
xe

l v
al

ue

Figure 3. 4–bit pixels, Binary Streamed Rate Coding (BSRC) conversion results.

Electronics 2020, 9, 1599 6 of 17

2.3. Spiking Neural Network Model

Among various spiking neuron models, the leaky integrate and fire (LIF) neuron is regarded as
more efficient and reliable than others [31]. The LIF neuron model is represented by Equation (2) [11]:

τ
dVm(t)

dt
= −Vm(t)+(W · S) (2)

here, Vm and τ represent the membrane voltage and time constant, respectively, while (W× S) is the
dot product of synapse weights W and pre-synaptic inputs S. For Vm(t = 0), the initial condition is
Vm(t = 0) = Vm(reset) + ∆Vm(t). Here, Vm(reset) is the initial membrane voltage upon reset of the circuit.
In our implementation, we used Vm(reset) = 0 without loss of generality.

Equation (2) has been simplified to an approximate formula of Equation (3) that is suitable for the
numerical implementation of fast training and inference processes. The resulted exponential decay term

e
t−(t+1)

τ from Equation (2) has been approximated by an addition operation with the previous membrane
voltage factored by a constant slope Dcon. Equation (3) also makes the circuit implementation extremely
compact even for large SNNs with thousands of synapses:

Vm(i)(t + 1) = Vm(i)(t) × (1− Si(t)) ×Dcon +

Nneurons
l−1 −1∑

j=0

(
Wi j · S j(t)

)
(3)

here, Vm(i)(t + 1) is the i-th neuron’s membrane voltage at time t + 1, which is a real value. Si(t) and
S j(t) indicate neuron spike outputs in binary value for post-synaptic and pre-synaptic neurons,
respectively, while a real value Wi j denotes the synaptic weight between the j-th pre-synaptic neuron
and j-th post-synaptic neuron. Nneurons

l−1 indicates the number of neurons (neurons) in the previous layer
(l− 1) and Dcon is a decay constant.

In Equation (3), the term (1− Si(t)) gives a binary value 0 or 1 which resets the membrane voltage
Vm(i)(t + 1), when the spike output Si(t) is 1, after each spiking process. To minimize the hardware
implementation cost, while maintaining high accuracy, we suppressed the decay constant in Equation
(3), leading to Equation (4):

Vm(i)(t + 1) = Vm(i)(t) × (1− Si(t)) +
Nneurons

l−1 −1∑
j=0

(
Wi j · S j

)
(4)

In Section 4, we show that removing decay constant does not degrade the accuracy by comparing
two implementations based on Equations (3) and (4), respectively.

In general, the SNN training or inference process for each input image is computed in an iterative
fashion to take account for the rate or temporal coding of spikes. For the BSRC SNN model configured
with the spike stream length T, the training or inference process expressed by Equation (3) or (4) is
repeated for T times for each image to accumulate the effect the entire spike stream in the membrane.
Equation (1) expresses the length T of spike stream for n-bit pixel value.

3. Optimization of SNN Model

The advantages of the proposed SNN optimization method are summarized below:

• BSRC spike coding scheme significantly reduces the hardware cost by combining the advantages
of both rate and temporal coding schemes using a built-in randomizer.

• BSRC achieves high training and testing accuracies, while keeping the training time short.
It reduces the training time by 50% compared to STBP [11] for the same accuracy goal.

• For a network model of (784-800-10), BSRC achieves higher accuracy even with a small number of
training epochs compared with the previous model.

Electronics 2020, 9, 1599 7 of 17

• By splitting the one hidden layer into two hidden layers, we can substantially reduce the hardware
cost with little loss in the classification accuracy.

• The proposed quantization algorithm provides further reduction in hardware cost.

3.1. BSRC Based Training

For the training algorithm of the proposed BSRC SNN model, we employ a backpropagation
algorithm based on modified gradient decent to handle spike signals. To solve the problem of spike
signals being nondifferentiable, we approximate a spike signal by a rectangular signal of Equation (5),
which is differentiable. Then we can express the differentiation of Equation (5) by Equation (6):

S(x) =
{

0, Vm < Vth
1, Vm ≥ Vth

(5)

S(x)′ = sign(|Vm −Vth|) (6)

At S(x) represents spike with 1 indicating a spike event. Vm indicates the membrane voltage and
Vth denotes the threshold voltage.

Using Equations (5) and (6), our BSRC-based training algorithm optimizes weight values of the
target SNN by utilizing both the spatial and temporal features of the SNN. The training algorithm also
randomly rotates the BSRC spike streams in order to increase the regularization of the SNN model
to avoid overfitting. For faster training, we use constant threshold voltages Vth = 0.5 for all neurons
in all layers. In general, a fixed threshold value does not degrade the accuracy during the training
process, because optimal weights are selected with respect to the constant threshold. In our proposal
we have conducted training of all the SNNs models with a spike stream length T = 15, a batch size of
100, and a learning rate of 10−3 to compare their training accuracy.

3.2. SNN Structure Optimization

This section describes how we optimize the SNN structure and size. The objective of SNN
optimization is to minimize the size of the SNN (the number of neurons and synapses) under the
following constraints and assumptions:

• Fully connected SNNs for MNIST are considered.
• Each pixel of the input image is represented by 4 bits.
• The target accuracy for MNIST is 94.60% or higher.

The structure optimization process explores SNN structures of various image size, various number
of layers, and each layer size in the number of nodes. For the image size, we explored three different
image sizes: 28× 28, 14× 14, and 9× 9 by scaling the MNIST dataset. Figure 4 shows three SNNs models
using the different image sizes and the accuracy obtained for the each SNNs model using the proposed
BSRC based training method described above. The training was conducted with floating-point weight
values before applying our weight quantization algorithm. The hardware cost of the three SNNs
models in terms of the number of synapses decreases from (635,200) to (164,800), and then to (72,800),
which corresponds to 75% and 88.54% reduction, respectively. From this structure optimization, we can
observe that resizing the input images to 9 × 9 pixels presents significant size reduction at a negligible
accuracy loss (only 0.84%). The next structure optimization is reducing the number of neurons in the
hidden layers to determine the minimum network size that meets the target accuracy. For example,
Figure 5 compares the maximum testing accuracy of SNNs with various number of neurons in the
hidden layer using 9 × 9 MNIST dataset. For SNNs with the hidden layer size ranging from 800 to
50 neurons, the accuracy changes from 98.0% to 95.87%. This indicates that a substantial reduction of
72,800 to 4550 synapses (93.75% reduction) can be obtained at an accuracy loss of only 2.13%.

Electronics 2020, 9, 1599 8 of 17

Electronics 2020, 9, x FOR PEER REVIEW 7 of 17

model to avoid overfitting. For faster training, we use constant threshold voltages 𝑉 = 0.5 for all
neurons in all layers. In general, a fixed threshold value does not degrade the accuracy during the
training process, because optimal weights are selected with respect to the constant threshold. In our
proposal we have conducted training of all the SNNs models with a spike stream length 𝑇 = 15, a
batch size of 100, and a learning rate of 10−3 to compare their training accuracy.

3.2. SNN Structure Optimization

This section describes how we optimize the SNN structure and size. The objective of SNN
optimization is to minimize the size of the SNN (the number of neurons and synapses) under the
following constraints and assumptions:

• Fully connected SNNs for MNIST are considered.
• Each pixel of the input image is represented by 4 bits.
• The target accuracy for MNIST is 94.60% or higher.

The structure optimization process explores SNN structures of various image size, various
number of layers, and each layer size in the number of nodes. For the image size, we explored three
different image sizes: 28 × 28, 14 × 14, and 9 × 9 by scaling the MNIST dataset. Figure 4 shows three
SNNs models using the different image sizes and the accuracy obtained for the each SNNs model
using the proposed BSRC based training method described above. The training was conducted with
floating-point weight values before applying our weight quantization algorithm. The hardware cost
of the three SNNs models in terms of the number of synapses decreases from (635,200) to (164,800),
and then to (72,800), which corresponds to 75% and 88.54% reduction, respectively. From this
structure optimization, we can observe that resizing the input images to 9 × 9 pixels presents
significant size reduction at a negligible accuracy loss (only 0.84%). The next structure optimization
is reducing the number of neurons in the hidden layers to determine the minimum network size that
meets the target accuracy. For example, Figure 5 compares the maximum testing accuracy of SNNs
with various number of neurons in the hidden layer using 9 × 9 MNIST dataset. For SNNs with the
hidden layer size ranging from 800 to 50 neurons, the accuracy changes from 98.0% to 95.87%. This
indicates that a substantial reduction of 72,800 to 4550 synapses (93.75% reduction) can be obtained
at an accuracy loss of only 2.13%.

Figure 4. Testing accuracy of SNNs with one hidden layer of 800 nodes. BSRC (28 × 28 − 14 × 14 − 9 ×
9) 4-bit per Pixel.

98.84%
98.91%

98.00%

97.40%

97.60%

97.80%

98.00%

98.20%

98.40%

98.60%

98.80%

99.00%

Te
st

in
g

ac
cu

ra
cy

Network model

Figure 4. Testing accuracy of SNNs with one hidden layer of 800 nodes. BSRC (28 × 28 − 14 × 14 −
9 × 9) 4-bit per Pixel.Electronics 2020, 9, x FOR PEER REVIEW 8 of 17

Figure 5. Maximum testing accuracy of SNNs with one hidden layer of (800 to 50) neurons.

For a further reduction in the overall hardware cost, we explore SNN structures by splitting the
hidden layer into two layers. Figure 1b shows such an SNN constructed by hidden layer splitting.
Figure 6 shows various SNN structures by splitting the hidden layer into two hidden layers with
various ratios of number of neurons. We can observe that accuracy decreases as we further reduce
the total number of synapses. For the running example, we chose the SNN of (81-30-20-10) as the
target SNN structure to meet the final accuracy goal of 94.60%.

Figure 6. Maximum testing accuracy of SNNs with two hidden layers using various structures.

3.3. SNN Weight Quantization

After the iterative process of structure optimization and training, our optimization method applies
a weight quantization algorithm to the trained SNN of selected structure to further reduce the circuit
size and power consumption. To explain our weight quantization algorithm, we chose an SNN of (81-
30-20-10) from the training and structure optimization results of Figure 6 (highlighted in blue color).

In the SNN model considered, every synapse consists of two types of weights:

1. Positive weights for Excitatory Synapses
2. Negative weights for Inhibitory Synapses

Upon receiving each spike signal, an excitatory synapse increases the spiking rate, while an
inhibitory synapse decreases the spiking rate. For each synapse type, the quantization algorithm
calculates the mean and the standard deviation of the trained weights that are initially in floating-
point. The proposed quantization algorithm determines the optimal range of the weights for each
layer based on the mean and standard deviation of floating-point weights. It then clips the weights
of each layer by selecting two limits, a positive limit for excitatory synapses and a negative limit for
inhibitory synapses. Algorithm 2 summarizes the key steps of our weight quantization algorithm.
The selected clipping limits influence the final accuracy. Thus, Algorithm 2 determines the clipping
limits for each layer in a way that maximizes the overall SNN’s accuracy.

98.00%97.97%
97.90% 97.86%

97.69%97.50%
97.26%

96.76% 96.75%
96.62%

96.64%
96.47%

96.32%
96.44%

96.14% 96.10%
95.77%

95.87%

94.50%
95.00%
95.50%
96.00%
96.50%
97.00%
97.50%
98.00%
98.50%

M
ax

im
um

 te
st

in
g

ac
cu

ra
cy

Network model

95.74%
93.81%

95.22% 95.26% 95.17% 94.68% 94.08% 93.29%
92.05%

87.72%

82.00%
84.00%
86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

M
ax

im
um

 te
st

in
g

ac
cu

ra
cy

Network model

Figure 5. Maximum testing accuracy of SNNs with one hidden layer of (800 to 50) neurons.

For a further reduction in the overall hardware cost, we explore SNN structures by splitting the
hidden layer into two layers. Figure 1b shows such an SNN constructed by hidden layer splitting.
Figure 6 shows various SNN structures by splitting the hidden layer into two hidden layers with
various ratios of number of neurons. We can observe that accuracy decreases as we further reduce the
total number of synapses. For the running example, we chose the SNN of (81-30-20-10) as the target
SNN structure to meet the final accuracy goal of 94.60%.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 17

Figure 5. Maximum testing accuracy of SNNs with one hidden layer of (800 to 50) neurons.

For a further reduction in the overall hardware cost, we explore SNN structures by splitting the
hidden layer into two layers. Figure 1b shows such an SNN constructed by hidden layer splitting.
Figure 6 shows various SNN structures by splitting the hidden layer into two hidden layers with
various ratios of number of neurons. We can observe that accuracy decreases as we further reduce
the total number of synapses. For the running example, we chose the SNN of (81-30-20-10) as the
target SNN structure to meet the final accuracy goal of 94.60%.

Figure 6. Maximum testing accuracy of SNNs with two hidden layers using various structures.

3.3. SNN Weight Quantization

After the iterative process of structure optimization and training, our optimization method applies
a weight quantization algorithm to the trained SNN of selected structure to further reduce the circuit
size and power consumption. To explain our weight quantization algorithm, we chose an SNN of (81-
30-20-10) from the training and structure optimization results of Figure 6 (highlighted in blue color).

In the SNN model considered, every synapse consists of two types of weights:

1. Positive weights for Excitatory Synapses
2. Negative weights for Inhibitory Synapses

Upon receiving each spike signal, an excitatory synapse increases the spiking rate, while an
inhibitory synapse decreases the spiking rate. For each synapse type, the quantization algorithm
calculates the mean and the standard deviation of the trained weights that are initially in floating-
point. The proposed quantization algorithm determines the optimal range of the weights for each
layer based on the mean and standard deviation of floating-point weights. It then clips the weights
of each layer by selecting two limits, a positive limit for excitatory synapses and a negative limit for
inhibitory synapses. Algorithm 2 summarizes the key steps of our weight quantization algorithm.
The selected clipping limits influence the final accuracy. Thus, Algorithm 2 determines the clipping
limits for each layer in a way that maximizes the overall SNN’s accuracy.

98.00%97.97%
97.90% 97.86%

97.69%97.50%
97.26%

96.76% 96.75%
96.62%

96.64%
96.47%

96.32%
96.44%

96.14% 96.10%
95.77%

95.87%

94.50%
95.00%
95.50%
96.00%
96.50%
97.00%
97.50%
98.00%
98.50%

M
ax

im
um

 te
st

in
g

ac
cu

ra
cy

Network model

95.74%
93.81%

95.22% 95.26% 95.17% 94.68% 94.08% 93.29%
92.05%

87.72%

82.00%
84.00%
86.00%
88.00%
90.00%
92.00%
94.00%
96.00%
98.00%

M
ax

im
um

 te
st

in
g

ac
cu

ra
cy

Network model

Figure 6. Maximum testing accuracy of SNNs with two hidden layers using various structures.

Electronics 2020, 9, 1599 9 of 17

3.3. SNN Weight Quantization

After the iterative process of structure optimization and training, our optimization method applies
a weight quantization algorithm to the trained SNN of selected structure to further reduce the circuit
size and power consumption. To explain our weight quantization algorithm, we chose an SNN of
(81-30-20-10) from the training and structure optimization results of Figure 6 (highlighted in blue color).

In the SNN model considered, every synapse consists of two types of weights:

1. Positive weights for Excitatory Synapses
2. Negative weights for Inhibitory Synapses

Upon receiving each spike signal, an excitatory synapse increases the spiking rate, while an
inhibitory synapse decreases the spiking rate. For each synapse type, the quantization algorithm
calculates the mean and the standard deviation of the trained weights that are initially in floating-point.
The proposed quantization algorithm determines the optimal range of the weights for each layer based
on the mean and standard deviation of floating-point weights. It then clips the weights of each layer by
selecting two limits, a positive limit for excitatory synapses and a negative limit for inhibitory synapses.
Algorithm 2 summarizes the key steps of our weight quantization algorithm. The selected clipping
limits influence the final accuracy. Thus, Algorithm 2 determines the clipping limits for each layer in a
way that maximizes the overall SNN’s accuracy.

Algorithm 2 Find optimal Weight Quantization

Inputs: SNN with floating-point weights w, Target Accuracy ATarget, Max allowable number of bits Bmax for
quantization
Output: The number bits N, Quantized weights wExc _int and wInh_int
1. for l = 0 to L // L is the num. of layers
// Group all weights into excitatory and inhibitory weights
2. for i = 0 to len(w);
3. if w[i] ≥ 0 then wExc = append(w[i]);
4. else wInh = append(w[i]);
// Compute statistics of all weights in floating point:
5. MExc= mean(wExc); StdExc= std(wExc);
6. MInh= mean(wInh); StdInh = std(wInh);
7. Repeat for all (nExc, nInh) in range (nmin, nmax) with step (nstep)
// Gradually increase the quantized weight resolution:
8. LExc = nExc × StdExc + MeanExc;
9. LInh = nInh × StdInh + MeanInh;
10. for i = 0 to len(w);
11. if w[i] > LExc then w[i] = LExc; // Clip the max value
12. else if w[i] < LInh then w[i] = LInh; // Clip the min value
13. for N = 0 to Bmax// Find the best quantization bits N
// Calculate the quantization step
14. ∆Excq = LExc/(2N−1

−1);
15. ∆Inhq = LInh/(2N−1);
// Quantize all clipped weights to N-bits
16. for i = 0 to len(w);
17. if w[i] ≥ 0 then wQ_int[i] = int (w[i] /∆Excq);
18. else wQ_int[i] = int (w[i] /∆Inhq);
19. Vth(int)(l) = Comp_Thresh (wQ_int)
20. Acc = Calculate Accuracy of SNN (wQ_int)
21. Select best (nExc, nInh) with min N that meets ATarget

Lines 2–4 of Algorithm 2 start by splitting the trained floating-point weights to excitatory and
inhibitory weights. For each of weights, Lines 5 and 6 compute the mean and standard deviation.

Electronics 2020, 9, 1599 10 of 17

Meanwhile, lines 7–12 iteratively determine the minimum clipping limits of the weight groups, so we
can maximize the resolution of the quantized weights by clipping large outlier weights. Lines 14
and 15 calculate the excitatory and inhibitory quantization steps (∆Excq, ∆Inhq) based on the chosen
number of bits N for weight quantization. Then, lines 16–21 determine the minimal number of bits for
the quantized weights in each layer that can satisfy the target accuracy in the constraints.

To apply Algorithm 2 to the running example SNN of (81-30-20-10), we chose nmin = 0.8, nmax = 1.6,
nstep = 0.1, and Bmax = 8. As optimal parameters, Algorithm 2 selected n = 4 bits for all layers,
clipping limits of (1.04, −1.03) for hidden layer 1, (0.95, −1.19) for hidden layer 2, and (1.24, −2.20)
for the output layer. Figure 7 shows the output layer floating-point weights, in this figure the two
horizontal red lines indicate the range of floating-point weights before weights clipping. The purple
and gray lines (at 1.24 and −2.20) in Figures 7 and 8 are two examples for the chipping levels of
excitatory and inhibitory synapses, respectively. Figure 9 shows the SNN output layer 4-bit integers
optimized quantized weights according to Algorithm 2.Electronics 2020, 9, x FOR PEER REVIEW 10 of 17

Figure 7. SNN output layer 32-bit floating-point weights (Excitatory weights = 46.5% and Inhibitory
weights = 53.5%).

Figure 8. SNN output layer 32-bit floating-point weights after clipping the outlier excitatory and
inhibitory weights to increase integer weight resolution.

Figure 7. SNN output layer 32-bit floating-point weights (Excitatory weights = 46.5% and Inhibitory
weights = 53.5%).

Electronics 2020, 9, x FOR PEER REVIEW 10 of 17

Figure 7. SNN output layer 32-bit floating-point weights (Excitatory weights = 46.5% and Inhibitory
weights = 53.5%).

Figure 8. SNN output layer 32-bit floating-point weights after clipping the outlier excitatory and
inhibitory weights to increase integer weight resolution.

Figure 8. SNN output layer 32-bit floating-point weights after clipping the outlier excitatory and
inhibitory weights to increase integer weight resolution.

Electronics 2020, 9, 1599 11 of 17Electronics 2020, 9, x FOR PEER REVIEW 11 of 17

Figure 9. SNN output layer 4-bit integers weight ranged from (−8) to (7) as shown in the two red
horizontal lines, the integers weights optimized according to Algorithm 2.

3.4. Integer Threshold Compensation

The final step of the proposed SNN optimization method is an integer threshold compensation
algorithm. After applying the weight quantization algorithm, the floating-point threshold should be
compensated to maintain the target accuracy [12,19]. The following equations describe why threshold
compensation is required and derive a simplified formula to directly calculate the integer threshold
compensation. Equation (7) represents total number of spikes fired by each neuron (𝑖) in any layer:

𝑁 () = 𝑖𝑛𝑡 ∑ ∑ 𝑤 ∙ 𝑆𝑁𝑙−1𝑛𝑒𝑢𝑟𝑜𝑛𝑠−1𝑉 (7)

𝐹 () = 𝑁 ()𝑇 (8)

In Equations (7) and (8), 𝑁 () is the number of generated spikes in one neuron (𝑖), while 𝐹 () indicates the firing rate using floating-point weights for post-neuron (𝑖), and 𝑉 is the
original threshold voltages.

𝑁 () = 𝑖𝑛𝑡 ∑ ∑ 𝑤 ∙ ∑ 𝑆𝑁𝑙−1𝑛𝑒𝑢𝑟𝑜𝑛𝑠−1𝑁𝑙𝑛𝑒𝑢𝑟𝑜𝑛𝑠−1 𝑉 × 𝑇 (9)

𝐹 () ≃ ∑ ∑ 𝑤 ∙ 𝑖𝑛𝑡 ∑ 𝑆𝑇𝑁𝑙−1𝑛𝑒𝑢𝑟𝑜𝑛𝑠−1𝑁𝑙𝑛𝑒𝑢𝑟𝑜𝑛𝑠−1 𝑉
(10)

𝐹 () ≃ ∑ ∑ 𝑤 ∙ 𝑓 ()𝑁𝑙−1𝑛𝑒𝑢𝑟𝑜𝑛𝑠−1𝑁𝑙𝑛𝑒𝑢𝑟𝑜𝑛𝑠−1 𝑉 (11)

𝐹 () ≃ 𝑊 ∙ 𝐹 ()𝑉 (12)

In Equations (9)–(12), by using matrix notations for the weights and input spike streams of all
synapses for each neuron, where 𝐹 () and 𝐹 () denotes all post-neurons and previous-neurons
firing rates matrixes respectively, 𝑁 is the number of neurons in the post layer, 𝑁 is the
number of neurons in the previous layer, while 𝑊 denotes a floating-point weight matrix. In
Equation (11), 𝑓 () indicates the firing rate of the spike stream T for each synapse j.

Equation (13) represents an estimation of the firing rate after weight quantization process with
N-bits using the integer threshold based on Equation (12).

Figure 9. SNN output layer 4-bit integers weight ranged from (−8) to (7) as shown in the two red
horizontal lines, the integers weights optimized according to Algorithm 2.

3.4. Integer Threshold Compensation

The final step of the proposed SNN optimization method is an integer threshold compensation
algorithm. After applying the weight quantization algorithm, the floating-point threshold should be
compensated to maintain the target accuracy [12,19]. The following equations describe why threshold
compensation is required and derive a simplified formula to directly calculate the integer threshold
compensation. Equation (7) represents total number of spikes fired by each neuron (i) in any layer:

NSpikes(post)i = int

∑T−1

t=0
∑Nneurons

l−1 −1
j=0

(
wi j · S j

)
Vth

 (7)

Fr(post)i =
NSpikes(post)i

T
(8)

In Equations (7) and (8), NSpikes(post)i is the number of generated spikes in one neuron (i),
while Fr(post)i indicates the firing rate using floating-point weights for post-neuron (i), and Vth is the
original threshold voltages.

NSpikes(post)i = int

∑Nneurons

l −1
i=0

∑Nneurons
l−1 −1

j=0 wi j·
∑T−1

t=0

(
S j

)
Vth × T

 (9)

Fr(post) '

∑Nneurons
l −1

i=0
∑Nneurons

l−1 −1
j=0 wi j· int

(∑T−1
t=0 (S j)

T

)
Vth

(10)

Fr(post) '

∑Nneurons
l −1

i=0
∑Nneurons

l−1 −1
j=0 wi j· f j−r(pre)

Vth
(11)

Fr(post) '
W·Fr(pre)

Vth
(12)

In Equations (9)–(12), by using matrix notations for the weights and input spike streams of all
synapses for each neuron, where Fr(post) and Fr(pre) denotes all post-neurons and previous-neurons firing
rates matrixes respectively, Nneurons

l is the number of neurons in the post layer, Nneurons
l−1 is the number

Electronics 2020, 9, 1599 12 of 17

of neurons in the previous layer, while W denotes a floating-point weight matrix. In Equation (11),
f j−r(pre) indicates the firing rate of the spike stream T for each synapse j.

Equation (13) represents an estimation of the firing rate after weight quantization process with
N-bits using the integer threshold based on Equation (12).

Fr(post)−int '
Wint ·Fr(pre)−int

Vth−int
(13)

here, Wint represents a matrix of N-bit quantized weights, while Vth−int denotes the target threshold
to be compensated in integer value for the current layer, while Fr(pre)−int and Fr(post)−int indicate the
pre-synaptic firing rate and post-neuron firing rate, respectively.

The goal of our threshold compensation algorithm is to determine an integer threshold Vth−int for
quantized weights such that the firing rates of Equations (12) and (13) best match; this goal is expressed
by Equation (14).

Wint ·Fr(pre)−int

Vth−int
≈

W·Fr(pre)

Vth
(14)

To determine a fast solution that satisfies Equation (14), we assume that Fr(pre)−int equals Fr(pre)
(pre-synaptic firing rates before and after weight quantization), which derives a solution expressed by
Equation (15):

Vth−int ≈ Vth ×
Wint

W
(15)

To further speed up the computation, we simplify Equation (15) by Equation (16). Equation (16)
enables a simple and fast method to find one common threshold (per layer) for all neurons for each
network layer:

Vth−int ≈

⌈
Vth ×

∣∣∣∣∣∣mean
(

sum(Wint)

sum(W)

)∣∣∣∣∣∣
⌉

(16)

Algorithm 3 summarizes the threshold compensation process for an SNN model of L layers.
Line 2 reads the floating-point and integer weights for the entire layer. In line 4, the algorithm
divides the accumulated (floating-point and integer) weights for each neuron (i) in the current layer l.
Line 5 incrementally calculates the absolute mean of appended results from line 4; the algorithm uses
Equation (16) to calculate the compensated integer threshold Vth−int(l) for each layer l.

Algorithm 3 Integer Threshold Compensation

Inputs: Trained SNN quantized with N-bits (integer weights), number of layers L, number of neurons Nneurons
l

in each layer l, Vth in floating point, floating-point weights.
Outputs: Integer thresholds Vth−int(l) for each layer
1. for l = 0 to (L− 1) // Calculate Vth(int)(l) for each layer
2. Read floating-point and integer weights; // Wint, W
3. for i = 0 to Nneurons

l //Divide the accumulated weights for each neuron

4. Wdiv[i] = append
(

sum(Wint[:,i])
sum(W[:,i])

)
5. Vth−int(l) =

⌈
Vth ×

∣∣∣∣mean
(
Wdiv

[
0 : Nn−1

l

])∣∣∣∣⌉ // Use Equation (16)

6. Report Vth(int)(l) for each layer

4. Performance Evaluation

To evaluate the proposed optimization method for SNN, we compared SNNs of various structures
for MNIST targeting minimal hardware cost under a target accuracy constraint. We first analyze
the effectiveness of the proposed BSRC SNN model and training method in floating point weights,
and then evaluate the proposed weight quantization and threshold compensation method.

Electronics 2020, 9, 1599 13 of 17

Figure 10 summarizes the accuracy of two SNN structures trained using the proposed BSRC
method compared to the previous works in [1,22]. When we apply the proposed BSRC method to an
SNN structure of (784-800-10) with floating-point weights using the full-scale MNIST dataset, the model
achieves an accuracy of 98.84% after only 84 epochs. In contrast, the previous works, HM2-BP [22]
and STBP [11] require 100 and 200 epochs, respectively, to obtain the same level of accuracy for the
same SNN structure. For a reduced SNN structure of (784-400-10), BSRC outperforms STBP [11] by
0.3% in accuracy with a training of 43 epochs. This evidence proves the effectiveness of the proposed
spike representation and SNN training method. Next, we compare the SNN structural optimization
targeting a hardware cost reduction up to the order of 3. We first shrink the input layer size to 9 × 9
MNIST images and follow by minimizing the number of neurons in each layer. Figure 11 compares the
accuracy and network size (number of synapses and neurons) for various SNN structures by varying
the size of two hidden layers. We chose (81-30-20-10) as the final SNN structure which reduces the
number of neurons to 3230 compared with 4550 neurons for the SNN of (81-50-10) at a cost of only
0.7% loss in accuracy.

Electronics 2020, 9, x FOR PEER REVIEW 13 of 17

proposed spike representation and SNN training method. Next, we compare the SNN structural
optimization targeting a hardware cost reduction up to the order of 3. We first shrink the input layer
size to 9 × 9 MNIST images and follow by minimizing the number of neurons in each layer. Figure 11
compares the accuracy and network size (number of synapses and neurons) for various SNN
structures by varying the size of two hidden layers. We chose (81-30-20-10) as the final SNN structure
which reduces the number of neurons to 3230 compared with 4550 neurons for the SNN of (81-50-10)
at a cost of only 0.7% loss in accuracy.

Figure 10. Accuracy of two SNN structures trained by three different modeling and training
techniques: HM2-BP, STBP, and BSRC (Proposed).

Figure 11. Binary Streamed Rate Coding (BSRC) accuracy and number of synapses for two hidden
layers SNN.

Figure 12 compares the accuracy of the reduced SNNs (81-30-20-10) obtained via our
quantization algorithm. First, note that before the quantization step, the SNN with no decay factor
(no leaky component) leads to an accuracy that is 0.27% higher than the SNN with decay factor. This
result demonstrates that our simplified neuron model with no decay factor (see Equation (4)) has no
accuracy loss. Figure 12 also compares the accuracy of optimized SNNs before and after weight
quantization, which proves the effectiveness of our weight quantization method. For example, while
the SNN (81-30-20-10) with floating point weight gives an accuracy of 95.25%, the SNNs quantized
to 8 bits and 4 bits, respectively, obtain an accuracy of 94.88% and 94.69%. This indicates that a
substantial size reduction can be obtained at a negligible accuracy loss.

98.93% 98.89%
98.84%

98.34%

98.64%

98.00%
98.10%
98.20%
98.30%
98.40%
98.50%
98.60%
98.70%
98.80%
98.90%
99.00%

Te
st

in
g

ac
cu

ra
cy

Network model and training technique

Figure 10. Accuracy of two SNN structures trained by three different modeling and training techniques:
HM2-BP, STBP, and BSRC (Proposed).

Electronics 2020, 9, x FOR PEER REVIEW 13 of 17

proposed spike representation and SNN training method. Next, we compare the SNN structural
optimization targeting a hardware cost reduction up to the order of 3. We first shrink the input layer
size to 9 × 9 MNIST images and follow by minimizing the number of neurons in each layer. Figure 11
compares the accuracy and network size (number of synapses and neurons) for various SNN
structures by varying the size of two hidden layers. We chose (81-30-20-10) as the final SNN structure
which reduces the number of neurons to 3230 compared with 4550 neurons for the SNN of (81-50-10)
at a cost of only 0.7% loss in accuracy.

Figure 10. Accuracy of two SNN structures trained by three different modeling and training
techniques: HM2-BP, STBP, and BSRC (Proposed).

Figure 11. Binary Streamed Rate Coding (BSRC) accuracy and number of synapses for two hidden
layers SNN.

Figure 12 compares the accuracy of the reduced SNNs (81-30-20-10) obtained via our
quantization algorithm. First, note that before the quantization step, the SNN with no decay factor
(no leaky component) leads to an accuracy that is 0.27% higher than the SNN with decay factor. This
result demonstrates that our simplified neuron model with no decay factor (see Equation (4)) has no
accuracy loss. Figure 12 also compares the accuracy of optimized SNNs before and after weight
quantization, which proves the effectiveness of our weight quantization method. For example, while
the SNN (81-30-20-10) with floating point weight gives an accuracy of 95.25%, the SNNs quantized
to 8 bits and 4 bits, respectively, obtain an accuracy of 94.88% and 94.69%. This indicates that a
substantial size reduction can be obtained at a negligible accuracy loss.

98.93% 98.89%
98.84%

98.34%

98.64%

98.00%
98.10%
98.20%
98.30%
98.40%
98.50%
98.60%
98.70%
98.80%
98.90%
99.00%

Te
st

in
g

ac
cu

ra
cy

Network model and training technique

Figure 11. Binary Streamed Rate Coding (BSRC) accuracy and number of synapses for two hidden
layers SNN.

Figure 12 compares the accuracy of the reduced SNNs (81-30-20-10) obtained via our quantization
algorithm. First, note that before the quantization step, the SNN with no decay factor (no leaky
component) leads to an accuracy that is 0.27% higher than the SNN with decay factor. This result
demonstrates that our simplified neuron model with no decay factor (see Equation (4)) has no accuracy

Electronics 2020, 9, 1599 14 of 17

loss. Figure 12 also compares the accuracy of optimized SNNs before and after weight quantization,
which proves the effectiveness of our weight quantization method. For example, while the SNN
(81-30-20-10) with floating point weight gives an accuracy of 95.25%, the SNNs quantized to 8 bits and
4 bits, respectively, obtain an accuracy of 94.88% and 94.69%. This indicates that a substantial size
reduction can be obtained at a negligible accuracy loss.Electronics 2020, 9, x FOR PEER REVIEW 14 of 17

Figure 12. Accuracy of SNNs with optimized structure (81-30-20-10) trained with decay factor = 1 (no
decay), decay factor = 0.5, and quantized weight (8-bit and 4-bits) resolutions.

Figure 13 compares three performance metrics (accuracy, number of synapses, and circuit area)
for four different SNNs. The first two groups of bar graphs show the performance metrics of the
previous SNNs of 784-800-10 (HM2-BP [22]) and 784-400-10 (STBP [11]), respectively. These SNNs
require a large number of synapses, which lead to excessive hardware cost. Here, the SNN circuit
size is represented by the silicon size in mm2. In contrast, the third and fourth groups of the bar graphs
represent our optimized network structure of (81-30-20-10) for 9 × 9 MNIST images. Compared with
the previous SNNs, they drastically reduce the hardware size by 183.19 times (for SNN with floating
point weights) and 764.73 times (for SNN with 4-bit quantized weights) at a small accuracy loss of
4.24%, which still satisfies our target accuracy constraint of 94.60%. Compared with HM2-BP SNN of
(784-800-10), our SNN of (81-30-20-10) optimized by the proposed BSRC method achieves a
significant reduction in the number of synapses from 635,200 to 3230 synapses at a small accuracy
loss from 98.93% to 95.25%.

Figure 13. SNN circuit area mm and accuracy using different models.

We use Equation (17) to estimate the relative area of the circuit implementation for the SNN
model:

C𝑖𝑟𝑐𝑢𝑖𝑡 𝐴𝑟𝑒𝑎 = 𝑁 × 𝑆𝑖𝑧𝑒 + 𝑁 × 𝑆𝑖𝑧𝑒 + 𝐻 , (17)

95.25%

94.98%
94.88%

94.69%

94.40%
94.50%

94.60%

94.70%
94.80%

94.90%
95.00%

95.10%
95.20%

95.30%

Te
st

in
g

ac
cu

ra
cy

Network model

Figure 12. Accuracy of SNNs with optimized structure (81-30-20-10) trained with decay factor = 1
(no decay), decay factor = 0.5, and quantized weight (8-bit and 4-bits) resolutions.

Figure 13 compares three performance metrics (accuracy, number of synapses, and circuit area)
for four different SNNs. The first two groups of bar graphs show the performance metrics of the
previous SNNs of 784-800-10 (HM2-BP [22]) and 784-400-10 (STBP [11]), respectively. These SNNs
require a large number of synapses, which lead to excessive hardware cost. Here, the SNN circuit size
is represented by the silicon size in mm2. In contrast, the third and fourth groups of the bar graphs
represent our optimized network structure of (81-30-20-10) for 9 × 9 MNIST images. Compared with
the previous SNNs, they drastically reduce the hardware size by 183.19 times (for SNN with floating
point weights) and 764.73 times (for SNN with 4-bit quantized weights) at a small accuracy loss of
4.24%, which still satisfies our target accuracy constraint of 94.60%. Compared with HM2-BP SNN of
(784-800-10), our SNN of (81-30-20-10) optimized by the proposed BSRC method achieves a significant
reduction in the number of synapses from 635,200 to 3230 synapses at a small accuracy loss from 98.93%
to 95.25%.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 17

Figure 12. Accuracy of SNNs with optimized structure (81-30-20-10) trained with decay factor = 1 (no
decay), decay factor = 0.5, and quantized weight (8-bit and 4-bits) resolutions.

Figure 13 compares three performance metrics (accuracy, number of synapses, and circuit area)
for four different SNNs. The first two groups of bar graphs show the performance metrics of the
previous SNNs of 784-800-10 (HM2-BP [22]) and 784-400-10 (STBP [11]), respectively. These SNNs
require a large number of synapses, which lead to excessive hardware cost. Here, the SNN circuit
size is represented by the silicon size in mm2. In contrast, the third and fourth groups of the bar graphs
represent our optimized network structure of (81-30-20-10) for 9 × 9 MNIST images. Compared with
the previous SNNs, they drastically reduce the hardware size by 183.19 times (for SNN with floating
point weights) and 764.73 times (for SNN with 4-bit quantized weights) at a small accuracy loss of
4.24%, which still satisfies our target accuracy constraint of 94.60%. Compared with HM2-BP SNN of
(784-800-10), our SNN of (81-30-20-10) optimized by the proposed BSRC method achieves a
significant reduction in the number of synapses from 635,200 to 3230 synapses at a small accuracy
loss from 98.93% to 95.25%.

Figure 13. SNN circuit area mm and accuracy using different models.

We use Equation (17) to estimate the relative area of the circuit implementation for the SNN
model:

C𝑖𝑟𝑐𝑢𝑖𝑡 𝐴𝑟𝑒𝑎 = 𝑁 × 𝑆𝑖𝑧𝑒 + 𝑁 × 𝑆𝑖𝑧𝑒 + 𝐻 , (17)

95.25%

94.98%
94.88%

94.69%

94.40%
94.50%

94.60%

94.70%
94.80%

94.90%
95.00%

95.10%
95.20%

95.30%

Te
st

in
g

ac
cu

ra
cy

Network model

Figure 13. SNN circuit area mm2 and accuracy using different models.

Electronics 2020, 9, 1599 15 of 17

We use Equation (17) to estimate the relative area of the circuit implementation for the SNN model:

Circuit Area =
(
Nsyn × Sizesyn + Nneuron × Sizeneuron

)
+ Hw,R (17)

here, Nsyn indicates the total number of synapses, while Sizesyn represents the total size of synapse
circuits including the memories for quantized weights. Nneuron denotes the total number of neurons,
while Sizeneuron indicates the size of a neuron circuit. Hw,R is the wiring and routing overhead.

As we can see in Figure 13, the proposed optimization method reduces the hardware area from
3089.49 mm2 for HM2-BP SNN (784-800-10) with 32-bit floating-point weights to 16.86 mm2 for SNN
(81-30-20-10) with 32-bit floating-point weights. The 4-bit quantization method provides an additional
size reduction of 4 times from 16.86 mm2 to 4.04 mm2 with a negligible accuracy loss of only 0.56%.
These implementation and evaluation results demonstrate that the proposed optimization method
using BSRC SNN model is a highly effective approach to minimizing the hardware size and tradeoff

between accuracy and hardware size.
We implemented the final optimized SNN model BSRC (81-30-20-10) using analog circuits for

synapse and neuron cells and digital standard cells for weight and image memories. Figure 14a
illustrates the overall block diagram of the SNN chip based on BSRC (81-30-20-10), while Figure 14b
shows the full chip layout design of the silicon. The SNN chip is currently under fabrication using
CMOS 65 nm process. We plan to report the test results of the silicon in a future paper.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 17

here, 𝑁 indicates the total number of synapses, while 𝑆𝑖𝑧𝑒 represents the total size of synapse
circuits including the memories for quantized weights. 𝑁 denotes the total number of neurons,
while 𝑆𝑖𝑧𝑒 indicates the size of a neuron circuit. 𝐻 , is the wiring and routing overhead.

As we can see in Figure 13, the proposed optimization method reduces the hardware area from
3089.49 mm for HM2-BP SNN (784-800-10) with 32-bit floating-point weights to 16.86 mm for
SNN (81-30-20-10) with 32-bit floating-point weights. The 4-bit quantization method provides an
additional size reduction of 4 times from 16.86 mm to 4.04 mm with a negligible accuracy loss of
only 0.56%. These implementation and evaluation results demonstrate that the proposed
optimization method using BSRC SNN model is a highly effective approach to minimizing the
hardware size and tradeoff between accuracy and hardware size.

We implemented the final optimized SNN model BSRC (81-30-20-10) using analog circuits for
synapse and neuron cells and digital standard cells for weight and image memories. Figure 14a
illustrates the overall block diagram of the SNN chip based on BSRC (81-30-20-10), while Figure 14b
shows the full chip layout design of the silicon. The SNN chip is currently under fabrication using
CMOS 65 nm process. We plan to report the test results of the silicon in a future paper.

(a) (b)

Figure 14. (a) The overall block diagram of the SNN chip optimized with BSRC 81-30-20-10 (4-bit
quantized); (b) The full chip layout photo of the SNN chip under fabrication.

5. Conclusions

Although the artificial neural networks can achieve high testing accuracy for the MNIST dataset,
most of these models tend to incur excessive hardware code, and thus are not suitable for edge AI
and mobile systems. In this work, we have developed an SNN model and optimization method by
introducing a new spike representation scheme called Binary Streamed Rate Coding (BSRC). BSRC
improves the model generality, eliminates the need for random noise, and consequently offers
efficient training and high accuracy. Our optimization method consists of SNN structure
optimization, BSRC spike generation, weight quantization, and threshold compensation algorithms.
We applied the proposed optimization method to an SNN for MNIST dataset and obtained 764.73
times reduction in circuit size with accuracy loss of 4.24% compared with the previous SNN reported
in [22]. This result envisages that the proposed method can offer a breakthrough to design an
extremely compact and low power SNN hardware with a reasonable accuracy aimed at edge AI
applications. For future work, we plan to extend the proposed method and apply to a larger SNNs
with different datasets such as CIFAR-10 which contain color images and CIFAR-100 for more classes.
We also plan to extend it for hybrid neural networks comprising convolutional layers as well as
spiking synapse layers.

Author Contributions: Conceptualization, A.A.A.-H.; methodology, A.A.A.-H.; formal analysis, A.A.A.-H.;
investigation, A.A.A.-H.; writing—original draft preparation, A.A.A.-H.; writing—review and editing, A.A.A.-
H.; supervision, H.K.; project administration, H.K.; funding acquisition, H.K.

Funding: This work was supported by IITP grant (No. 2020-0-01304), Development of Self-learnable Mobile
Recursive Neural Network Processor Technology Project, and also supported by the Grand Information

HL2

weights

N0

N1

N2

N80

Input Layer
S0

S1

S2

S80

N0

N1

N2

N29

HL1Image

4
bi

ts

81

Spike in

N0

N1

N2

N19

HL2

HL1

weights

4 bits

2430

600

Spikes Counter
Counter0

Counter1

Counter2

Counter9

4 bits

*** All neurons of input layer are fully connected all the neurons of HL1

*** All the neurons of HL1are fully connected to all the neurons of HL2

SNN Conceptual diagram

N0

N1

N2

N9

O/P

Output
weights

200

4 bits

Output Layer

Figure 14. (a) The overall block diagram of the SNN chip optimized with BSRC 81-30-20-10
(4-bit quantized); (b) The full chip layout photo of the SNN chip under fabrication.

5. Conclusions

Although the artificial neural networks can achieve high testing accuracy for the MNIST dataset,
most of these models tend to incur excessive hardware code, and thus are not suitable for edge AI
and mobile systems. In this work, we have developed an SNN model and optimization method
by introducing a new spike representation scheme called Binary Streamed Rate Coding (BSRC).
BSRC improves the model generality, eliminates the need for random noise, and consequently offers
efficient training and high accuracy. Our optimization method consists of SNN structure optimization,
BSRC spike generation, weight quantization, and threshold compensation algorithms. We applied the
proposed optimization method to an SNN for MNIST dataset and obtained 764.73 times reduction in
circuit size with accuracy loss of 4.24% compared with the previous SNN reported in [22]. This result
envisages that the proposed method can offer a breakthrough to design an extremely compact and low
power SNN hardware with a reasonable accuracy aimed at edge AI applications. For future work,
we plan to extend the proposed method and apply to a larger SNNs with different datasets such as
CIFAR-10 which contain color images and CIFAR-100 for more classes. We also plan to extend it for
hybrid neural networks comprising convolutional layers as well as spiking synapse layers.

Electronics 2020, 9, 1599 16 of 17

Author Contributions: Conceptualization, A.A.A.-H.; methodology, A.A.A.-H.; formal analysis, A.A.A.-H.;
investigation, A.A.A.-H.; writing—original draft preparation, A.A.A.-H.; writing—review and editing, A.A.A.-H.;
supervision, H.K.; project administration, H.K.; funding acquisition, H.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by IITP grant (No. 2020-0-01304), Development of Self-learnable Mobile
Recursive Neural Network Processor Technology Project, and also supported by the Grand Information Technology
Research Center support program (IITP-2020-0-01462) supervised by the IITP and funded by the MSIT (Ministry of
Science and ICT), Korean government. It was also supported by Industry coupled IoT Semiconductor System
Convergence Nurturing Center under System Semiconductor Convergence Specialist Nurturing Project funded
by the National Research Foundation (NRF) of Korea (2020M3H2A107678611).

Acknowledgments: We appreciate the collaboration and help from Saad Arslan and Malik Summair Asgharon
the optimization of SNN hardware, SNN silicon chip development, and circuit designs forneurons and synapses.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pfeiffer, M.; Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Front. Neurosci.
2018, 12, 774. [CrossRef] [PubMed]

2. Pedroni, B.U.; Sheik, S.; Mostafa, H.; Paul, S.; Augustine, C.; Cauwenberghs, G. Small-footprint Spiking
Neural Networks for Power-efficient Keyword Spotting. In Proceedings of the 2018 IEEE Biomedical Circuits
and Systems Conference (BioCAS), Cleveland, OH, USA, 17–19 October 2018; pp. 1–4.

3. Furber, S.B.; Lester, D.R.; Plana, L.A.; Garside, J.D.; Painkras, E.; Temple, S.; Brown, A.D. Overview of the
SpiNNaker System Architecture. IEEE Trans. Comput. 2012, 62, 2454–2467. [CrossRef]

4. Yan, Y.; Kappel, D.; Neumarker, F.; Partzsch, J.; Vogginger, B.; Hoppner, S.; Furber, S.B.; Maass, W.;
Legenstein, R.; Mayr, C.; et al. Efficient Reward-Based Structural Plasticity on a SpiNNaker 2 Prototype.
IEEE Trans. Biomed. Circuits Syst. 2019, 13, 579–591. [CrossRef] [PubMed]

5. Davies, M.; Srinivasa, N.; Lin, T.-H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.;
Jain, S.; et al. Loihi: A Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 2018, 38,
82–99. [CrossRef]

6. Benjamin, B.V.; Gao, P.; McQuinn, E.; Choudhary, S.; Chandrasekaran, A.R.; Bussat, J.-M.; Alvarez-Icaza, R.;
Arthur, J.V.; Merolla, P.A.; Boahen, K. Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale
Neural Simulations. Proc. IEEE 2014, 102, 699–716. [CrossRef]

7. Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Jackson, B.L.; Imam, N.;
Guo, C.; Nakamura, Y.; et al. A million spiking-neuron integrated circuit with a scalable communication
network and interface. Science 2014, 345, 668–673. [CrossRef]

8. Xu, Y.; Tang, H.; Xing, J.; Li, H. Spike trains encoding and threshold rescaling method for deep spiking
neural networks. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI),
Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–6.

9. Brette, R. Philosophy of the Spike: Rate-Based vs. Spike-Based Theories of the Brain. Front. Syst. Neurosci.
2015, 9, 151. [CrossRef]

10. Kiselev, M. Rate coding vs. temporal coding-is optimum between? In Proceedings of the 2016 International
Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 1355–1359.

11. Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Shi, L. Spatio-Temporal Backpropagation for Training High-Performance
Spiking Neural Networks. Front. Neurosci. 2018, 12, 331. [CrossRef]

12. Wu, S.; Li, G.; Chen, F.; Shi, L. Training and inference with integers in deep neural networks. arXiv 2018,
arXiv:1802.04680. (preprint).

13. Courbariaux, M.; Itay, H.; Daniel, S.; Ran, E.-Y.; Yoshua, B. Binarized neural networks: Training deep neural
networks with weights and activations constrained to +1 or −1. arXiv 2016, arXiv:1602.02830. (preprint).

14. Han, J.; Li, Z.; Zheng, W.; Zhang, Y. Hardware implementation of spiking neural networks on FPGA.
Tsinghua Sci. Technol. 2020, 25, 479–486. [CrossRef]

15. Cheng, J.; Wu, J.; Leng, C.; Wang, Y.; Hu, Q. Quantized CNN: A Unified Approach to Accelerate and
Compress Convolutional Networks. IEEE Trans. Neural Networks Learn. Syst. 2017, 29, 4730–4743. [CrossRef]

http://dx.doi.org/10.3389/fnins.2018.00774
http://www.ncbi.nlm.nih.gov/pubmed/30410432
http://dx.doi.org/10.1109/TC.2012.142
http://dx.doi.org/10.1109/TBCAS.2019.2906401
http://www.ncbi.nlm.nih.gov/pubmed/30932847
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1109/JPROC.2014.2313565
http://dx.doi.org/10.1126/science.1254642
http://dx.doi.org/10.3389/fnsys.2015.00151
http://dx.doi.org/10.3389/fnins.2018.00331
http://dx.doi.org/10.26599/TST.2019.9010019
http://dx.doi.org/10.1109/TNNLS.2017.2774288

Electronics 2020, 9, 1599 17 of 17

16. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized convolutional neural networks for mobile devices.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 4820–4828.

17. Choukroun, Y.; Kravchik, E.; Yang, F.; Kisilev, P. Low-bit quantization of neural networks for efficient
inference. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW), Seoul, Korea, 27–28 October 2019; pp. 3009–3018.

18. Wang, Y.; Shahbazi, K.; Zhang, H.; Oh, K.I.; Lee, J.-J.; Ko, S.-B. Efficient spiking neural network training
and inference with reduced precision memory and computing. IET Comput. Digit. Tech. 2019, 13, 397–404.
[CrossRef]

19. Wang, Y.; Xu, Y.; Yan, R.; Tang, H. Deep Spiking Neural Networks with Binary Weights for Object Recognition.
IEEE Trans. Cogn. Dev. Syst. 2020, 1. [CrossRef]

20. Courbariaux, M.; Yoshua, B.; Jean-Pierre, D. Binaryconnect: Training deep neural networks with binary
weights during propagations. In Advances in Neural Information Processing Systems; Neural Information
Processing Systems Foundation, Inc.: La Jolla, CA, USA, 2015; pp. 3123–3131.

21. Cao, Y.; Chen, Y.; Khosla, D. Spiking Deep Convolutional Neural Networks for Energy-Efficient Object
Recognition. Int. J. Comput. Vis. 2014, 113, 54–66. [CrossRef]

22. Jin, Y.; Li, P.; Zhang, W. Hybrid macro/micro level backpropagation for training deep spiking neural networks.
In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation,
Inc.: La Jolla, CA, USA, 2018; pp. 7005–7015.

23. Markram, H. Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs. Science 1997,
275, 213–215. [CrossRef]

24. Kheradpisheh, S.R.; Ganjtabesh, M.; Masquelier, T. Bio-inspired unsupervised learning of visual features
leads to robust invariant object recognition. Neurocomputing 2016, 205, 382–392. [CrossRef]

25. Kistler, W.M.; Van Hemmen, J.L. Modeling Synaptic Plasticity in Conjunction with the Timing of Pre- and
Postsynaptic Action Potentials. Neural Comput. 2000, 12, 385–405. [CrossRef]

26. Diehl, P.U.; Neil, D.; Binas, J.; Cook, M.; Liu, S.-C.; Pfeiffer, M. Fast-classifying, high-accuracy spiking deep
networks through weight and threshold balancing. In Proceedings of the 2015 International Joint Conference
on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–8.

27. Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; Roy, K. Going Deeper in Spiking Neural Networks: VGG and Residual
Architectures. Front. Neurosci. 2019, 13, 95. [CrossRef]

28. Rueckauer, B.; Lungu, I.-A.; Hu, Y.; Pfeiffer, M.; Liu, S.-C. Conversion of Continuous-Valued Deep Networks
to Efficient Event-Driven Networks for Image Classification. Front. Neurosci. 2017, 11, 682. [CrossRef]

29. Mostafa, H.; Pedroni, B.U.; Sheik, S.; Cauwenberghs, G. Fast classification using sparsely active spiking
networks. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
Baltimore, MD, USA, 28–31 May 2017; pp. 1–4.

30. Mostafa, H. Supervised Learning Based on Temporal Coding in Spiking Neural Networks. IEEE Trans.
Neural Networks Learn. Syst. 2017, 29, 3227–3235. [CrossRef] [PubMed]

31. Burkitt, A.N. A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input. Boil. Cybern.
2006, 95, 1–19. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/iet-cdt.2019.0115
http://dx.doi.org/10.1109/TCDS.2020.2971655
http://dx.doi.org/10.1007/s11263-014-0788-3
http://dx.doi.org/10.1126/science.275.5297.213
http://dx.doi.org/10.1016/j.neucom.2016.04.029
http://dx.doi.org/10.1162/089976600300015844
http://dx.doi.org/10.3389/fnins.2019.00095
http://dx.doi.org/10.3389/fnins.2017.00682
http://dx.doi.org/10.1109/TNNLS.2017.2726060
http://www.ncbi.nlm.nih.gov/pubmed/28783639
http://dx.doi.org/10.1007/s00422-006-0068-6
http://www.ncbi.nlm.nih.gov/pubmed/16622699
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Structure of Spiking Neural Network
	Overall Structure of SNN
	Spike Signal Representation
	Spiking Neural Network Model

	Optimization of SNN Model
	BSRC Based Training
	SNN Structure Optimization
	SNN Weight Quantization
	Integer Threshold Compensation

	Performance Evaluation
	Conclusions
	References

