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Abstract: A modified precise-integration time-domain (PITD) formulation is presented to model
the wave propagation in magnetized plasma based on the auxiliary differential equation (ADE).
The most prominent advantage of this algorithm is using a time-step size which is larger than the
maximum value of the Courant–Friedrich–Levy (CFL) condition to achieve the simulation with a
satisfying accuracy. In this formulation, Maxwell’s equations in magnetized plasma are obtained
by using the auxiliary variables and equations. Then, the spatial derivative is approximated by
the second-order finite-difference method only, and the precise integration (PI) scheme is used to
solve the resulting ordinary differential equations (ODEs). The numerical stability and dispersion
error of this modified method are discussed in detail in magnetized plasma. The stability analysis
validates that the simulated time-step size of this method can be chosen much larger than that
of the CFL condition in the finite-difference time-domain (FDTD) simulations. According to the
numerical dispersion analysis, the range of the relative error in this method is 10−6 to 5× 10−4 when
the electromagnetic wave frequency is from 1 GHz to 100 GHz. More particularly, it should be
emphasized that the numerical dispersion error is almost invariant under different time-step sizes
which is similar to the conventional PITD method in the free space. This means that with the increase
of the time-step size, the presented method still has a lower computational error in the simulations.
Numerical experiments verify that the presented method is reliable and efficient for the magnetized
plasma problems. Compared with the formulations based on the FDTD method, e.g., the ADE-FDTD
method and the JE convolution FDTD (JEC-FDTD) method, the modified algorithm in this paper
can employ a larger time step and has simpler iterative formulas so as to reduce the execution time.
Moreover, it is found that the presented method is more accurate than the methods based on the
FDTD scheme, especially in the high frequency range, according to the results of the magnetized
plasma slab. In conclusion, the presented method is efficient and accurate for simulating the wave
propagation in magnetized plasma.

Keywords: auxiliary differential equation (ADE); magnetized plasma; numerical simulation; PITD
method; propagation

1. Introduction

The simulations of the electromagnetic (EM) wave propagation in the magnetized plasma are
attractive and have a wide range of applications, e.g., high frequency components, PCB design,
microstrip antenna, and so on [1–6]. Recently, the finite-difference time-domain (FDTD) formulation is
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the most popular numerical tool in the full wave analysis, and widely used in the simulation of the
magnetized plasma and other dispersive materials. The typical algorithms based on the FDTD method
for modeling the dispersive material include the recursive convolution (RC) FDTD method [7,8],
the auxiliary differential equation (ADE) FDTD method [9–11], and the Z-transform (ZT) FDTD
method [12,13]. Unfortunately, the FDTD method has an inherent drawback on which the above
methods are based, i.e., Courant–Friedrich–Levy (CFL) stability criterion, and it has limited the further
applications of the FDTD method in the dispersive materials as the problem expands. Assume that the
spatial mesh is very fine to obtain the satisfying accuracy, the CFL stability criterion indicates that the
time-step size should be a small enough value to ensure the numerical results are convergent. It is easily
seen that such a small time-step size leads to an increase of the iteration step and a higher computational
memory requirement so as to decrease the effectiveness of the FDTD calculation significantly and
sometimes increase the accumulated error of the simulation.

Prompted by the aforementioned reasons, a number of time-domain algorithms, which have
looser stability conditions, are presented to improve the efficiency of the FDTD simulations, e.g.,
the alternating-direction implicit FDTD (ADI-FDTD) method [14,15], the locally-one-dimensional
(LOD) FDTD method [16–18], the precise-integration time-domain (PITD) method [19], and so on.
Therein, the ADI-FDTD method is established by the alternating-direction implicit technique, and it is
implicit and has complex iterative formulas. The LOD-FDTD method, which is presented by Shibayama,
et al., is based on both the locally-one-dimensional scheme and the split time step technique. Compared
with the ADI-FDTD method, the LOD-FDTD method is more efficient because it has fewer arithmetical
operations. Here, we know both the ADI-FDTD and LOD-FDTD methods are unconditional stable to
solve the EM wave problems. This means that the CFL condition has no restraint on the time step,
and the efficiency of the simulation can be improved significantly by employing a larger time step.
Meanwhile, the numerical dispersion errors of the ADI-FDTD method and the LOD-FDTD method are
comparable and similar. It should be emphasized that the computational errors of these two methods
increase rapidly which leads to the unanticipated results when the time step is increased as shown in
the following description. In recent years, the ADI-FDTD method and the LOD-FDTD method were
also generalized to the application of the dispersive materials [20,21].

The PITD method, which is presented by Ma, et al., has been used to solve Maxwell’s equations
in free space, lossy space, and unmagnetized plasma [19,22,23]. Although the PITD method is not
unconditionally stable, it can still employ a time step which is much larger than the maximum value
allowed by the CFL stability condition in the FDTD method [24]. Moreover, in contrast to the two
unconditional stable methods mentioned above, the dispersion error of the PITD method is almost
invariant when the time step is increased. This means that the PITD method can maintain a satisfactory
computational accuracy when the time step is increased [25,26], and it makes the PITD method more
suitable for the electrically large EM problems. Here, we take the ADI-FDTD method as the example.
Figure 1 shows the numerical velocity of the FDTD, PITD, and ADI-FDTD methods with respect to the
propagation angle when the Courant number is S = 0.5. It is found that the numerical dispersion error
of the PITD method is larger than that of the FDTD method, but smaller than that of the ADI-FDTD
method. Figure 2 shows the numerical velocity of the PITD method and the ADI-FDTD method versus
the propagation angle under different Courant numbers. With the increase of the Courant number,
the numerical dispersion error of the ADI-FDTD method is increased rapidly, however, the numerical
dispersion error of the PITD method is still nearly invariant.

Due to the advantages mentioned above, the PITD method is a promising approach to model
the EM wave propagation in magnetized plasma efficiently. The resulting Maxwell’s equations of
magnetized plasma are firstly obtained by employing the auxiliary variables and equations related to the
current density. Then, the second-order accurate finite-difference formulation is used to approximate
the spatial derivative in the presented method, and several ordinary differential equations (ODEs)
with respect to the time derivative are obtained directly. Finally, we use the PI scheme to solve the
ODEs. After establishing the modified PITD method in magnetized plasma, the stability condition
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and the dispersion error are analyzed numerically. The stability analysis verifies that the numerical
stability criterion of the presented method in magnetized plasma is much looser than the CFL stability
condition of the FDTD methods so as to increase the maximum allowable time step, and the numerical
dispersion errors are almost invariant when the time-step size is increased. Thus, this method has
the potential to balance both the efficiency and the accuracy. The magnetized plasma slab and the
magnetized plasma filled cavity are simulated to validate that the modified PITD method in the paper
is reliable and efficient. The analyses of the numerical results indicate that the presented method can
provide an evident reduction of the execution time by using a larger simulated time step, meanwhile,
the computational error of the presented algorithm is also lower than those of the formulations based
on the FDTD scheme, especially in the high frequency range.Electronics 2020, 9, x FOR PEER REVIEW 3 of 20 
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Figure 1. Numerical velocity of the finite-difference time-domain (FDTD), precise-integration
time-domain (PITD) and alternating-direction implicit FDTD (ADI-FDTD) methods versus the
propagation angle when the Courant number is S = 0.5.
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Figure 2. Numerical velocity of the PITD and ADI-FDTD methods versus the propagation angle under
different Courant numbers.

The rest of this paper is organized as follows. The formulation of the presented method is
introduced in Section 2. The stability analysis and the dispersion analysis are discussed numerically in
Section 3. Numerical results are simulated to verify the efficiency and the accuracy of the presented
algorithm in Section 4. Finally, conclusions are drawn in Section 5.



Electronics 2020, 9, 1575 4 of 18

2. Formulations

2.1. Resulting Maxwell’s Equations of Magnetized Plasma

The curl Maxwell’s equations for describing the magnetized plasma problem is firstly established
by employing the auxiliary variables and equations related to the current density J(t). The resulting
matrix form is shown as follows:

∂
∂t


E(t)
H(t)
J(t)

 =


0 1
ε0
∇× −

1
ε0

−
1
µ0
∇× 0 0

ε0ω2
p 0 −γ+ωb×




E(t)
H(t)
J(t)

, (1)

where ωp and γ are the natural angular frequency and the collision frequency, respectively; ωb = eB0/m
is the electron cyclotron angular frequency, wherein B0 is the applied magnetic field, e is the electric
quantity, and m is the mass of the electron.

Assume that the applied magnetic field is z-direction in the following analysis, and Equation (1)
can be expanded as follows:

∂
∂t



Ex

Ey

Ez

Hx

Hy

Hz

Jx

Jy

Jz


=



0 0 0 0 −
1
ε0

∂
∂z

1
ε0

∂
∂y −

1
ε0

0 0

0 0 0 1
ε0

∂
∂z 0 −

1
ε0

∂
∂x 0 −

1
ε0

0
0 0 0 −

1
ε0

∂
∂y

1
ε0

∂
∂x 0 0 0 −

1
ε0

0 1
µ0

∂
∂z −

1
µ0

∂
∂y 0 0 0 0 0 0

−
1
µ0

∂
∂z 0 1

µ0
∂
∂x 0 0 0 0 0 0

1
µ0

∂
∂y −

1
µ0

∂
∂x 0 0 0 0 0 0 0

ε0ω2
p 0 0 0 0 0 −γ −ωb 0

0 ε0ω2
p 0 0 0 0 ωb −γ 0

0 0 ε0ω2
p 0 0 0 0 0 −γ





Ex

Ey

Ez

Hx

Hy

Hz

Jx

Jy

Jz


. (2)

Here, we know that in the formulations based on the FDTD scheme, both the spatial and time
derivatives are discretized by using the finite difference technique to obtain a set of algebraic equations
from the Maxwell’s equations. However, in the proposed PITD algorithm, only the spatial derivative
is discretized, and several ODEs are obtained temporarily and written as matrix form:

dY
dt

= HY + g(t), (3)

where Y =
[
Ex, Ey, Ez, Hx, Hy, Hz, Jx, Jy, Jz

]T
, the coefficient matrix H is determined by both the EM

parameters of the medium and the spatial step of the simulation, and g(t) is an inhomogeneous term
related to the excitations.

The analytical and discrete solutions of Equation (3) are:

Y(t) = eHtY(0) +
∫ t

0
eH(t−τ)g(τ)dτ, (4)

and

Yn+1 = TYn + Tn+1
∫ tn+1

tn

e−τHg(τ)dτ, (5)

where Yn = Y(n∆t) is the discrete form of Y(t) and T = exp(H∆t) which can be calculated by the the
PI technique.
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2.2. PI Technique Review

The exponential matrix T is firstly reformulated as:

T = [exp(Hs)]l, (6)

where s = ∆t/l, l = 2N, and N is a preselected arbitrary integer. If N is large enough, the interval of s
will be extremely small. Then, the Taylor series expansion is employed to approximate exp(Hs) with a
high precision as shown in the following:

exp(Hs) ≈ I + Ta, (7)

where:

Ta = (Hs) +
(Hs)2

2!
+

(Hs)3

3!
+

(Hs)4

4!
, (8)

and evidently,
T ≈ (I + Ta)

l. (9)

It should be noted that if Ta is added to the identity matrix I directly, Ta will be neglected because
Ta is extremely small, which leads to a precision reduction of the exponential matrix. Therefore, it is
evident that Ta should be operated in the process.

The matrix T is computed as follows:

T ≈ (I + Ta)
l = (I + Ta)

2N
= (I + Ta)

2N−1
× (I + Ta)

2N−1
= · · ·, (10)

and
(I + Ta)

2 = I + 2Ta + Ta ×Ta. (11)

Start with Equation (8) to compute Ta and then run the following instruction, the exponential
matrix T can be calculated:

do. i = 1, N
Ta = 2Ta + Ta ×Ta. (12)

end do
T = I + Ta. (13)

Equations (8), (12), and (13) constitute the whole process of the PI technique to calculate the
exponential matrix. Relying on the previous work, the simulated time step of the PITD method is much
larger than the maximum allowable value of the CFL stability condition of the FDTD formulation in
the lossless or lossy problems, which is very significant in the full wave analysis. For the magnetized
plasma material, we believe the application of the PI technique can achieve the same effect and the
following stability analysis and numerical experimentations will prove this point.

Furthermore, for the integration on the right-hand side of Equation (5), a linear variation of the
term g(t) is assumed within the interval (tn, tn+1), expressed as:

g(t) = r0 + r1(t− tn), (14)

Substitute the above expression in the integration, we have the following recursive form solution:

Yn+1 = T
[
Yn + M−1(r0 + M−1r1)

]
−M−1

[
r0 + M−1r1 + r1∆t

]
. (15)

In most cases, Equation (15) is unavailable directly since the matrix M is noninvertible. To
mitigate this problem, the three-points Gauss integral formula is adopted to calculate the integration in
Equation (5), and the recurrence formula is obtained as follows:
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Yn+1 = TYn +
5∆t
18 exp

[(
∆t
2 + ∆t

2

√
3
5

)
H

]
g
(
tn +

∆t
2 −

∆t
2

√
3
5

)
+ 8∆t

18 exp
[

∆t
2 H

]
g
(
tn +

∆t
2

)
+ 5∆t

18 exp
[(

∆t
2 −

∆t
2

√
3
5

)
H

]
g
(
tn +

∆t
2 + ∆t

2

√
3
5

) (16)

3. Stability Analysis and Numerical Dispersion Analysis

3.1. Stability Analysis

In this subsection, the amplitude of the eigenvalues of the exponential matrix T is used to discuss
the numerical stability of the presented PITD algorithm in the magnetized plasma. Von Neumann
stability criterion indicates that if the amplitudes of all the eigenvalues of the exponential matrix T are
no larger than unity, the update equations of the presented PITD algorithm will be stable.

We consider the 2-D case in the following analysis. The preselected integer N is selected as 20, and
l = 220 in the proposed method. The natural angular frequency of the magnetized plasma discussed
is 2π × 28.7 × 109 rad/s, the collision frequency is 20 GHz, and the electron cyclotron frequency is
set as 1.0× 1011 rad/s. Figure 3 graphs the comparison of the unit circle and the eigenvalues of the
exponential matrix T in the complex plane when the time-step size is 106∆tCFL. Here, ∆tCFL is the
upper limit time-step size of the conventional FDTD method. It is clear seen that all the eigenvalues are
within or on the unit circle, which means that the presented PITD method of the magnetized plasma is
stable under such a large time-step size. Therefore, the proposed formulation can use a time-step size
much larger than the maximum value of the CFL stability condition to achieve the simulation of the
magnetized plasma problems.
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3.2. Numerical Dispersion Analysis

In this subsection, the dispersion performance of the presented PITD method in magnetized
plasma is discussed numerically by adopting the Fourier approach. The dispersion performance of the
presented formulation is described by the differences between the numerical wave number knum and
the analytical wave number kanal. Suppose c is the velocity of light in the vacuum, the analytic wave
number of the left-hand circularly polarized (LCP) EM wave is:

kL =
ω
c

√√√
1−

ω2
p

ω2
[(

1− j γω
)
+

ωb
ω

] , (17)

and the analytic wave number of the right-hand circularly polarized (RCP) EM waves is:

kR =
ω
c

√√√
1−

ω2
p

ω2
[(

1− j γω
)
−
ωb
ω

] . (18)
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Assuming that the monochromatic plane wave propagates in the magnetized plasma, the field
components are expressed as:

X = X0e− j(kz−ωt), (19)

where k is the wave number, X0 and ω are the amplitude and the angular frequency of the EM wave,
respectively. The discrete form of Equation (19) is obtained as follows:

Xk = X0e− j(km∆z−ωn∆t), (20)

where m and n are the space index and the time index, respectively.
Here, we consider the 1-D case, and the vector X includes the field components Ex, Ey, Hx, Hy,

Jx, and Jy. Substituting the discrete form of the field components into Equation (2) for the 1-D case, a
homogenous system of ODEs can be obtained and written in matrix form as:

dX
dt

= H1X. (21)

Here, the coefficient matrix H1 is:

H1 =



0 0 0 jW
ε0
−

1
ε0

0

0 0 −
jW
ε0

0 0 −
1
ε0

0 −
jW
µ0

0 0 0 0
jW
µ0

0 0 0 0 0
ε0ω2

p 0 0 0 −γ −ωb

0 ε0ω2
p 0 0 ωb −γ


, (22)

where:

W =
2 sin

(
1
2 k∆z

)
∆z

. (23)

The following discrete iterative formula is used to solve the ODEs Equation (21):

Xk+1 = T1Xk, (24)

where the exponential matrix T1 is:

T1 =

I + (H1s) +
(H1s)2

2!
+

(H2s)3

3!
+

(H3s)4

4!

l

. (25)

Then, we have: (
e jωtI−T1

)
X0 = 0. (26)

Since it is true for any X0 that is nonzero, the determinant of the coefficient matrix
(
e jωtI−T

)
should be zero: (

e jωtI−T1
)
= 0. (27)

In the following analysis, the numerical dispersion error and the numerical dissipation error
are defined to describe the precision of the presented PITD method in the magnetized plasma.
The definition of the relative dispersion error is (Re(knum)−Re(kanal))/Re(kanal), and it is related to the
phase error. The definition of the relative dissipation error is (Im(knum)−Im(kanal))/Im(kanal), and it is
related to the amplitude error [27].

It is assumed that ∆z = 75 µm, ∆t = 0.125 ps, and ωb = 3.0× 1011 rad/s. The preselected integer
N is chosen as 20, and l = 220 in the presented PITD method. The solutions of numerical wave number
are computed by Equation (27).
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3.2.1. Effect of Wave Frequency on Numerical Error

The natural angular frequency of the magnetized plasma isωp = 2π× 50× 109 rad/s. The collision
frequency is 20 GHz. Figure 4a,b graphs the relative dispersion and relative dissipation errors with
respect to the wave frequency ω for both the LCP and RCP waves, respectively. We can see that both
the dispersion and dissipation errors increase monotonically with the wave frequency. Furthermore,
the relative dispersion error is higher than the relative dissipation error in the LCP wave, and is lower
than the relative dissipation error in the RCP wave. In addition, the relative error range of the proposed
PITD method is 10−6 to 5× 10−4 when the EM wave frequency is from 1 GHz to 100 GHz.
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Figure 4. Relative dispersion and relative dissipation errors with respect to the electromagnetic (EM)
wave frequency: (a) The left-hand circularly polarized (LCP) wave. (b) The right-hand circularly
polarized (RCP) wave.

3.2.2. Effect of the Natural Angular Frequency on Numerical Error

The EM wave frequency is set as 50 GHz. The collision frequency of the magnetized plasma
is 20 GHz. Figure 5a,b graphs the relative dispersion and relative dissipation errors with respect
to the natural angular frequency ωp for both the LCP and RCP waves, respectively. For the LCP
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wave, the relative dispersion error curve has lower-peak error when ωp/2π is 18 GHz, and the relative
dissipation error curve has lower-peak errors when ωp/2π are 4 GHz and 21 GHz. For the RCP wave,
the relative dispersion error curve has no lower-error peak, and the relative dissipation error curve has
lower-peak error when ωp/2π is 6 GHz. Moreover, both the relative dispersion and relative dissipation
errors increase monotonically with the natural frequency when ωp/2π is larger than the frequency of
the lower-peak error.
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3.2.3. Effect of the Plasma Collision Frequency on Numerical Error

The EM wave frequency is set as 50 GHz, and the natural angular frequency is ωp = 2π× 50×
109 rad/s. Figure 6a,b graphs the relative dispersion and relative dissipation errors with respect
to the collision frequency γ for both the LCP and RCP waves, respectively. It is found that the
relative dispersion and relative dissipation errors are slightly decreased when the collision frequency
is increased.
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3.2.4. Effect of the Time-Step Size on Numerical Error

It is assumed that the natural angular frequency is 2π× 50× 109 rad/s, and the collision frequency
is 20 GHz. Figure 7 graphs the relative dispersion and relative dissipation errors with respect to the
wave frequency ω for both the LCP and RCP waves under different Courant number S, respectively.
It is clear that all the curves are in agreement. Figure 8 shows the relative dispersion and relative
dissipation errors with respect to the Courant number when the EM wave frequency is 50 GHz. Figure 8
indicates that the relative dispersion and relative dissipation errors are almost invariant when the
Courant numbers is increased. These mean that the proposed method can maintain a lower numerical
dispersion error in the simulations when the time step is increased.
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Figure 7. Relative dispersion and relative dissipation errors with respect to the wave frequency under
different Courant numbers: (a) Relative dispersion error of the LCP wave. (b) Relative dissipation error
of the LCP wave. (c) Relative dispersion error of the RCP wave. (d) Relative dissipation error of the
RCP wave.
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4. Numerical Experiments

The performance of the presented PITD method are verified by two typical magnetized plasma
examples which are also solved by the analytical formulas and the formulations based on the FDTD
method, respectively, for comparison.

4.1. Magnetized Plasma Slab

As the first example, a magnetized plasma slab is simulated to validate the efficiency and the
accuracy of the modified PITD algorithm in this paper. The diagram of the infinite magnetized plasma
slab in infinite free space is shown in Figure 9. The numerical reflection coefficient and transmission
coefficient are computed by the presented method, the JEC-FDTD method and the ADE-FDTD method,
respectively. The results are also compared with the analytical solution.
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Figure 9. The diagram of the magnetized plasma slab in free space.

The magnetized plasma slab is 1.5 cm thick, and divided into 200 cells, i.e., the space step is 75 µm.
The main computing region is composed of 600 free space cells (the space indexes are from 1 to 300,
and 501 to 800) and 200 magnetized plasma cells (the space indexes are from 301 to 500). Perfectly
matched layer (PML) is employed as the absorption boundary condition to eliminate the reflection error.
The time-step size of the methods based on the FDTD formulation is set to ∆tFDTD = 0.125 ps, and
the time-step size of the proposed PITD method is 5 times of ∆tFDTD (i.e., ∆tProposedPITD = 0.625 ps).
The parameters of the magnetized plasma are shown as follows:

ωp = 2π× 28.7× 109rad/s, (28)

γ = 20.0 GHz, (29)

ωb = 1.0× 1011 rad/s. (30)

Figures 10–13 show the magnitude and the phase of the complex reflection coefficient and
transmission coefficient of the magnetized plasma slab calculated by the JEC-FDTD method,
the ADE-FDTD method, the proposed PITD method, and the analytical solution, respectively. We
can clearly see that the computational results of the proposed PITD method are coincident with the
analytical solutions on both the magnitude and the phase.
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Figure 13. Calculated complex transmission coefficient of the RCP wave: (a) Magnitude. (b) Phase.

According to Figures 11, 12a and 13, it should be noted that the solutions of the proposed PITD
method is more accurate than those of the JEC-FDTD method and the ADE-FDTD method, especially
in the higher frequency range. Meanwhile, it is also found that larger errors occur in the stopband of
the transmission coefficient for the RCP wave. Figure 13 shows that larger errors occur from 13 GHz to
38 GHz for the FDTD methods, and from 13 GHz to 27 GHz for the proposed method. This means that
the low computational error range of the presented PITD method is larger than the FDTD methods.

The CPU time of the three methods are also recorded. The execution time of the JEC-FDTD
method, the ADE-FDTD method, and the presented method are 8.50 s, 8.09 s, and 4.52 s, respectively.
It can be concluded that a larger simulated time step leads to an appreciably reduction of the CPU time.

4.2. 2-D Magnetized Plasma Filled Cavity

The second example is a 2-D cavity filled with the magnetized plasma as shown in Figure 14.
The main computing region is divided into 20 × 20 cells with a space step 75 µm. The time-step size of
the ADE-FDTD method is ∆t = 0.1 ps. For the proposed PITD method, the time-step size is 6∆t in this
example. Therefore, the simulations are executed by 3000 iterative steps in the ADE-FDTD method
and 500 iterative steps in the presented PITD method. The parameters of the magnetized plasma filled
in the cavity are ωp = 2π× 28.7× 109 rad/s, γ = 10.0 GHz, and ωb = 3.0× 1011 rad/s.



Electronics 2020, 9, 1575 16 of 18

Electronics 2020, 9, x FOR PEER REVIEW 18 of 20 

 

method and 500 iterative steps in the presented PITD method. The parameters of the magnetized 
plasma filled in the cavity are = × × 92 28.7 10  rad/spω π , = 10.0 GHzγ , and = × 113.0 10  rad/sbω . 

 
Figure 14. The diagram of the 2-D cavity filled with the magnetized plasma. 

Figure 15 graphs the time-domain waveforms of the electric field Ex simulated by the presented 
PITD method and the ADE-FDTD method, respectively. It is shown that good agreements are 
achieved between the two methods on the simulated waveform. Table 1 lists the numerical resonant 
frequencies and the execution time of the presented PITD method and the ADE-FDTD method, 
respectively. It can be found that the calculated resonant frequencies are also coincident, moreover, 
the CPU time of the presented method is at least 1/3 less than that of the ADE-FDTD method. The 
simulations of both the FDTD methods and the PITD method in above analysis are achieved by 
MATLAB and performed on Intel(R) Core(TM) i3 CPU M370 2.40 GHz PC (Intel, Santa Clara, CA, 
USA). 

 
Figure 15. The time-domain waveforms of the electric field Ex simulated by the proposed PITD 
method and the auxiliary differential equation FDTD (ADE-FDTD) method. 

Table 1. A comparison of calculated frequencies and execution time between the auxiliary differential 
equation finite-difference time-domain (ADE-FDTD) method and the proposed precise-integration 
time-domain (PITD) method. 

Method Resonant Frequency/GHz Execution Time/s 
ADE-FDTD 30.76 103.5 201.7 12.85 

Proposed PITD 31.25 103.5 201.2 8.07 

Figure 14. The diagram of the 2-D cavity filled with the magnetized plasma.

Figure 15 graphs the time-domain waveforms of the electric field Ex simulated by the presented
PITD method and the ADE-FDTD method, respectively. It is shown that good agreements are achieved
between the two methods on the simulated waveform. Table 1 lists the numerical resonant frequencies
and the execution time of the presented PITD method and the ADE-FDTD method, respectively. It can
be found that the calculated resonant frequencies are also coincident, moreover, the CPU time of the
presented method is at least 1/3 less than that of the ADE-FDTD method. The simulations of both the
FDTD methods and the PITD method in above analysis are achieved by MATLAB and performed on
Intel(R) Core(TM) i3 CPU M370 2.40 GHz PC (Intel, Santa Clara, CA, USA).
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Table 1. A comparison of calculated frequencies and execution time between the auxiliary differential
equation finite-difference time-domain (ADE-FDTD) method and the proposed precise-integration
time-domain (PITD) method.

Method Resonant Frequency/GHz Execution Time/s

ADE-FDTD 30.76 103.5 201.7 12.85
Proposed PITD 31.25 103.5 201.2 8.07
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In conclusion, according to the numerical experiments above, the efficiency of the modified
PITD method in this paper is higher than the algorithms based on the FDTD scheme for modeling
the magnetized plasma. Meanwhile, the solutions of the magnetized plasma slab validate that the
presented method is more accurate than the JEC-FDTD method and the ADE-FDTD method, especially
in the high frequency range.

5. Conclusions

Based on both the auxiliary differential equation and the PI technique, a modified PITD method
has been proposed for modeling the EM wave propagation through magnetized plasma in this paper.
The analyses of the numerical stability and dispersion are discussed respectively, and the superior
performance of the proposed method has been confirmed numerically. It is found that the numerical
stability criterion of the proposed method is much looser than the CFL stability condition of the
FDTD methods so as to increase the allowable simulated time step, and the numerical dispersion
error and the dissipation error are almost invariant when the time step is increased. The numerical
results validate the efficiency and accuracy of the presented algorithm. In the numerical experiments
above, the proposed method can use a time-step size much larger than the value allowed by the CFL
limit of the FDTD method which leads to a reduction of the CPU time in the simulation. Meanwhile,
the accuracy performance of the presented PITD method is better than the JEC-FDTD method and the
ADE-FDTD method, especially in higher frequency range. In conclusion, the proposed algorithm is a
strong numerical tool to solve the EM wave problems in the magnetized plasma.
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