i\;lg electronics m\py

Article

Protein Subnuclear Localization Based on
Radius-SMOTE and Kernel Linear Discriminant
Analysis Combined with Random Forest

2,3,% and

Liwen Wu 209, Shanshan Huang %, Feng Wu %3, Qian Jiang ?-3*, Shaowen Yao
Xin Jin 23

1 School of Information Science & Engineering, Yunnan University, Kunming 650000, China;

wulw@mail.ynu.edu.cn

Engineering Research Center of Cyberspace, Yunnan University, Kunming 650091, China;
huangshanshan9633@163.com (S.H.); gzwf@mail. ynu.edu.cn (EW.); xinjin@ynu.edu.cn (X.J.)

School of Software, Yunnan University, Kunming 650000, China

*  Correspondence: jiangqgian_1221@163.com (Q.].); yaosw@ynu.edu.cn (S.Y.); Tel.: +86-18487219630 (Q.J.)

check for
Received: 18 August 2020; Accepted: 22 September 2020; Published: 24 September 2020 updates

Abstract: Protein subnuclear localization plays an important role in proteomics, and can help researchers
to understand the biologic functions of nucleus. To date, most protein datasets used by studies are
unbalanced, which reduces the prediction accuracy of protein subnuclear localization—especially
for the minority classes. In this work, a novel method is therefore proposed to predict the protein
subnuclear localization of unbalanced datasets. First, the position-specific score matrix is used to
extract the feature vectors of two benchmark datasets and then the useful features are selected by
kernel linear discriminant analysis. Second, the Radius-SMOTE is used to expand the samples of
minority classes to deal with the problem of imbalance in datasets. Finally, the optimal feature vectors
of the expanded datasets are classified by random forest. In order to evaluate the performance of the
proposed method, four index evolutions are calculated by Jackknife test. The results indicate that the
proposed method can achieve better effect compared with other conventional methods, and it can also
improve the accuracy for both majority and minority classes effectively.

Keywords: protein subnuclear localization; kernel linear discriminant analysis; SMOTE; random
forest; position-specific score matrix

1. Introduction

A biologic cell is a highly ordered whole that can be divided into different organelles according to
spatial distribution and function, such as cytoplasm, nucleus, etc. The proteins in cells strongly correlate
with life activities because proteins are able to perform biologic functions only when the proteins are
transported to the correct nucleus or in a cell [1,2]. The correct protein subnuclear localization can be
used to annotate the structure and function of protein, and it also contributes to the development of
new drugs about genetic disease, even cancer [3].

With the development of life sciences, traditional experiments such as cell fractionation, electron
microscopy, cannot meet the challenge of protein subnuclear localization due to the rapid growth
of protein samples in dataset [4]. To better solve this problem, computational intelligence can be
used for the protein subnuclear localization [5]. The critical issues of protein subnuclear localization
using computational intelligence generally include two aspects: extract the useful features of protein
sequences; select appropriate classification algorithm and evaluate the results [6].

During the last two decades, many techniques about the feature extraction of protein sequences
have been proposed. In 1994, Nakashima et al. established a prediction method according to a
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twenty-amino acid composition (AAC) and the frequency of residue pairs [7] that can calculate the
occurrence frequency of 20 amino acids in protein sequence. Afterwards, AAC has been receiving
a great deal of attention from researchers due to the excellent ability of reflection for the global
sequence of protein. Thus, many prediction methods based on AAC have been proposed and most of
them have achieved good results. For example, Reinhardt et al. constructed the first artificial neural
network prediction system based on AAC [8]; Chou et al. used the AAC to solve the classification of
membrane proteins [9]. However, AAC also has a defect, in that it ignores the interaction between
the order of protein sequence and the residues. Therefore, to address this shortcoming, Chou et al.
proposed the pseudo-amino acid composition (PseAAC) [10] that can include the characteristics
of the physicochemical properties [11] such as negative, hydrophobic, and the order of amino
acids and then the Pse AAC method is widely used in protein structure prediction [12,13], protein
functional prediction [14], protein-protein interaction [15] and subcellular localization [16] nowadays.
The pseudo-amino acid can be calculated freely at online tools (http://bioinformatics.hitsz.edu.cn/Pse-
in-One/) that are established by Liu et al. [17]. Subsequently, the position-specific score matrix (PSSM)—
which can find the evolution information of proteins— was first introduced by Gribskov et al. in
1987 [18]. Along with the post-genome era coming, more studies tend to combine multiple feature
extraction methods together to form a new method for localization purposes, for example, Shen and
Chou proposed a web service for predicting subcellular localization by fusing Pse AAC composition
and PsePSSM [19]; Li et al. established a method which can fuse the features of PSSM, Gene Ontology
(GO) and PROFEAT to predict the subcellular localization of bacterial proteins [20], etc. All of the
above mentioned methods of feature extraction are common, and more methods can be found in these
papers of Yao et al. and Chou et al. [21,22].

A key step of protein subnuclear localization is building a high-quality prediction model by using
a machine learning method. For example, ] et al. used deep neural networks to predict the subcellular
localization only according to protein sequence information [23]; Chou and Shen established a novel
ensemble classifier called Hum-PLoc using the K-nearest neighbor (KNN) algorithm [24]; Yu et al.
used support vector machine (SVM) to predict the subcellular localization of Gram-negative bacterial
protein [4]. According to the studies mentioned above, it can be found that an excellent classifier
algorithm is useful to improve the performance of prediction, such as deep neural networks [25],
SVM [26,27].

The above works focused on how to extract the feature information of protein sequences and
construct classification models. However, the imbalance of protein datasets is generally ignored.
Because of the rapid growth of protein sequences and their imbalanced development, protein datasets
are seriously imbalanced. This could severely reduce the performance of any protein subnuclear
localization methods. Therefore, the imbalance of protein datasets is a concerned problem in this work.
In this study, a classification model is constructed. First, obtaining a PSSM by PSI-BLAST from two
high-quality datasets which are widely used. Second, the dimension reduction method of kernel linear
discriminant analysis (KLDA) is used to arrive at an optimal expression. Third, an oversampling
method Radius-SMOTE is proposed to generate samples of minority classes. Finally, all of the samples
are classified by random forest (RF).

The following content is arranged as follows: In Section 2, the proposed method Radius-SMOTE
and some vital background knowledge will be introduced. Section 3 reports experimental results and
related analysis. The last is a summary of this study.

2. Methods

Concerning the imbalance of the datasets used in protein subnuclear localization, an effective
classification model based on Radius-SMOTE was proposed for subnuclear. The proposed classification
model can be divided into three parts (Figure 1). First, PSSM is selected to extract the information of
protein sequence that can capture evolution information more sufficient than any other method. Second,
KLDA is used to get the feature vectors by removing the redundant information of PSSM. Because
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PSMM is a higher dimensional matrix that includes much redundant information and nonlinear
characteristics, KLDA is much suitable for processing this kind of biologic data. Third, since the protein
datasets are seriously imbalanced, the proposed Radius-SMOTE is used to alleviate the problem of
imbalanced data by creating samples of minority classes. Finally, all test samples are classified by RF.
RF can balance errors of different classes to a certain extent, which can further reduce the negative
effects of dataset imbalance.

Input protein
sequence

Sample formulation  [JEPRRES
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y
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Figure 1. Flowchart of prediction process.

2.1. Position-Specific Score Matrix

Many homologous proteins may have the same structures and functions, thus PSSM is used to
find the evolution information of protein sequence [28,29] in this study. PSSM, denoted by P, is defined
by Equation (1).

Ein1 Eimp ... Eisj ... Eiopo
Ey1 Exo ... Eosj ..o Epsno
Eis1 Eino ... Eisj ... Eisno @
Ers1 Ep—2 ... Epsj ... Epsno

where E;_,; represents the score of amino acid residue in the i — th protein P being mutated to amino
acid type j during the evolution process; L is the length of protein sequence; the numbers 1 to 20 are
used to represent the native amino acid types.

In this work, P can be generated by PSI-BLAST according to protein sequence and non-redundant
(NR) database and the parameters of E-value and iteration are set as 0.001 and 3, respectively. According
to Equation (1), P is a L X 20 matrix, because the value of L is different for different protein sequences,
Chouetal. proposed a representation method to standardize the representation of P for each sample [19],
which is shown in Equations (2) and (3).

— — — —\T

P:(E1 E, ...Ezo), )
— 1wl )
Ej = ZZi—l Ej(j=1,2,...,20), ®3)

where E_] represents the average score of the amino acid residues in the j — th protein P. According to
the Equations (2) and (3), the generated Pis a 20 x 20 matrix [30].

2.2. Kernel Linear Discriminant Analysis

Kernel linear discriminant analysis (KLDA) [31], a dimensionality reduction algorithm based on
kernel method, is used to solve the problem of data linear inseparability in the original space and
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it is a nonlinear extension of linear discriminate analysis (LDA). LDA is a dimensionality reduction
algorithm and its essence is to map the data from the high dimensional space to the low dimensional
linear subspace by the linear combination of features. However, the useful features of data in the
real world are usually not the linear combinations of the original features. When there are a large
number of nonlinear structures in the datasets, the mapping of linear dimensionality method cannot
preserve these structures information, so kernel method is proposed to transform the problem of linear
inseparability in the original space into a linear separable problem in the high dimensional eigenspace.

Next, the idea of KLDA is represented in detail. In this study, X is used to represent the protein
dataset that contains N samples classified in k classes and X = {x1,x2,...,an} = CTUC2... Uy,
where x;(i=1,2,...,N) and C;(i = 1,2,...,k) represent each sample and class of X, respectively.
The process of dimension reduction can be divided into three steps:

1.  Map input samples x1, xp, ..., xN to a higher dimensional space F by nonlinear mapping function
& and the mapped samples can be expressed as &(x1), F(x2),..., 2 (xN) € F;
2. Calculate the mean m? of all mapped samples and the mean ml.@ of the mapped samples for class

C; by the following formulas:
1
g _ i
N 'i E a(x), 4)

m? = N, Z (x), (5)

where N; means the number of samples belonging to the class C;.
3.  Calculate intraclass covariance matrix Sl.fi 1o @nd the interclass covariance matrix Sl‘i oy fOT the
whole mapped samples using the follow formulas:

DI W IR ORI ©
2y = Ly Ni[? = 7| [m? =], @)

4. Find the optimal projection direction v by minimizing the intraclass distance and maximizing the
interclass distance and the process can be expressed as Equation (8).
T58
maxJr(v) = ——Z—, ®)

vIs? v
intra

Moreover, v is the linear combination of @(x1), @ (x2),...,2(xn), which can be expressed
as follows:

N
v=Y a2(x), ©
i=1

In Equation (8), @ is unknown and feature space F may not be unique, which means v cannot be
computed directly. Thus, the kernel trick K(x, y) = < @(x), @(y) > is introduced to solve this
problem and Equations (4) and (5) can be transcribed as Equations (10) and (11).

Vi = 5 Y YooKl a) = M, (10

vim = I%Z;il Yo aik(xx) = a" M, (1)



Electronics 2020, 9, 1566 50f 16

5.

Combined with Equations (6)—(11), the final criterion function of dimension reduction can be
rewritten as follows:

max](a) = = (12)
a

— k —
where M = ¥, Ni(M; - M)(M; -M)", L = ¥ K{I - 1y, )K"
i=1

Obtain the finally rank-reduction projective matrix Y by Y = (a)"X.

2.3. The Proposed Radius-SMOTE

SMOTE was proposed by Chawla et al. in 2002 [32] and it is used to solve the problem of imbalanced

data in this study. Supposing that each sample in minority class can be expressed as x;(i = 1,2,...,n),

the k(k < n) nearest neighbors of x; can be expressed as xf (j=1,2,...,k), the imbalance rate of minority
class is represented by r and the generated sample can be represented as yi(s = 1,2,...,7).

Original SMOTE executes three steps to generate a new instance, as shown in Figure 2a.

First, it chooses a random minority sample x;; among its k nearest minority class neighbors,

selecting an instance x randomly; finally, a new instance y? is generated between x; and x] by

y; = xi +rand(0,1) x (x - xl) The generated sample y; can only fall on the line between x; and xi,
this leads to y; containing few useful features and generated samples will overlap as shown in Figure 2b.
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Figure 2. (a) Minority samples synthesized by SMOTE. (b) Overlap problem of minority samples
synthesized by SMOTE.

To address this problem mentioned above, Radius-SMOTE is proposed to synthesize better

samples of minority classes. The process of synthesizing new samples by Radius-SMOTE can be
divided into five steps:

1.
2.

NMajority ~"Minority

Calculate the imbalance rate r by r = VI ;
inority

Select a sample of minority x;, calculate its k nearest neighbors of minority class and select a

neighbor at random represented as x{ ;

Calculate the distance d{ between x; and x{ by Euclidean distance;

Randomly take values from (0, d; ) to generate a vector (d] d{ g s d{ C), where ¢ means the

characteristics dimension of x;. Taking x; as the center and d{ as the radius, thus a circle can be
defined as shown in Figure 3a; at the same time, a new sample y; can be inserted within this circle
by Equation (13).

vi= (2 ) +(d, dy, . d) )0sd <dt=(1,2,...,0) (13)
According to the imbalance rate, repeat Steps 2 to 4 r times. Finally, n X r samples can be
synthesized by Radius-SMOTE, as shown in Figure 3b.
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Figure 3. (a) Minority samples synthesized by Radius-SMOTE. (b) Reasonable distribution of minority
samples synthesized by Radius-SMOTE.

2.4. Random Forest

Random forest (RF) is an ensemble-based algorithm [33] that constructs many decision trees using
original data and classifies the samples by combining the result of each decision tree. The construction
of RF can be divided into five steps:

1.  Randomly select the training subsets from the original dataset;
Set up a decision tree for each training subset, in which each decision tree does not need to
be pruned;

3. Construct RF model by formed forest that is composed of tens or hundreds of decision trees;

4. Classify a new sample, each decision tree in the forest gives an individual result;

5. Calculate the votes of each class and get the final class which has the supreme votes.

3. Experiments

In this section, the experimental results of two datasets based on our proposed method are
introduced and analyzed.

3.1. Datasets

Two different benchmark datasets were chosen to conduct the numerical experiments in this work
and the information could be found in Tables 1 and 2. The first dataset was named Dataset 1 [19],
constructed by Shen and Chou. This set contains 714 protein sequences located at nine subnuclear.
The second dataset was named Dataset 2 [34], constructed by Kumar et al. and contains 669 protein
sequences located at ten subnuclear sites.

Table 1. Constitutions of protein benchmark Dataset 1.

Class Subnuclear Localization Name Number
1 Chromatin proteins (Ca) 99
2 Heterochromatin proteins (Ht) 22
3 Nuclear envelope proteins (Ne) 61
4 Nuclear matrix proteins (Nm) 29
5 Nuclear pore complex proteins (Nc) 79
6 Nuclear speckle proteins (Ns) 67
7 Nucleolus proteins (NI) 307
8 Nucleoplasm proteins (Np) 37
9 Nuclear PML body proteins (Nb) 13

9]
c
2
N
—_
>~
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Table 2. Constitutions of protein benchmark Dataset 2.

Class Subnuclear Localization Name Number
1 Centromere proteins (Cn) 86
2 Chromosome proteins (Co) 113
3 Nuclear speckle proteins (Ns) 50
4 Nucleolus proteins (NI) 294
5 Nuclear envelope proteins (Ne) 17
6 Nuclear matrix proteins (Nm) 18
7 Nucleoplasm proteins (Np) 30
8 Nuclear pore complex proteins (Nc) 12
9 Nuclear proteins (Na) 12
10 PML body Telomere(Pb) 37

Sum 669

3.2. Evaluation Indexes

In this work, the Jackknife test was used to examine the performance of the proposed model.
This model is considered the most reasonable cross-validation method [35,36]. In a dataset, the Jackknife
test supposes n samples which will be selected as test samples one-by-one, and the remaining n — 1
data used as training samples simultaneously.

In order to evaluate the degree of dataset imbalance and the performance of the proposed method,
five different indices of the Jackknife test can be defined as follows:

min(n;)

IR = (i=1,2,...,k), (14)

max ()

where n; means the 7 — th class, IR means the degree of dataset imbalance and the smaller IR means
that the data are more imbalance.

TP

Sensitivity(Se) = TP IIN (15)
e TN
Specificity(Sp) = P+ TN (16)

TP X TN — FP X FN

Matthews Correlation Codf ficient(MCC) = 7 T T T 5 (17)
TP + FP)(TP + FN) (TN + FP) (TN + FN
TP + TN
Accuracy(ACC) = 5 FN T FP T TN (18)

where TP and TN denote the number of true positive and true negative, which are correctly labeled,
and FP and FN denote the number of false positives and false negatives that are incorrectly labeled.
Se denotes the rate of positive samples that are correctly labeled in all positive samples, Sp denotes the
rate of negative samples that are correctly labeled in all negative samples; in addition, ACC denotes
the rate of all correctly labeled samples, and the range of Se, Sp and ACC is [0, 1]. The MCC denotes
the relationship between original classes and prediction classes, and its range is [-1, 1], when the value
of MCC is equal to 1, the performance of prediction is perfect; when the value of MCC is equal to 0,
the performance of prediction is random; when the value of MCC is equal to -1, the performance of
prediction is worst.

3.3. The Analysis of Unbalance Datasets

The imbalance degree of Dataset 1 was calculated in both cases and shown in Figure 4. In the
first case, the value of IR was 0.042 based on the original data; in the second case, the value of IR was
0.769 based on the expanded data by SMOTE or Radius-SMOTE. The IR of Dataset 1 increased to 0.727,
which means that the Radius-SMOTE was effective for reducing the dataset imbalance.
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Original data Generated data

| S —

Figure 4. Analysis of imbalanced Dataset 1.

Based on Dataset 2, the values of IR were calculated (Figure 5), which can be found in the last
column, where 0.041 means the imbalance degree of original data and 0.769 means the imbalance degree
of expanded data by SMOTE or Radius-SMOTE. The IR of Dataset 2 increased by 0.728. According to
the process of Radius-SMOTE, the imbalance of Dataset 2 is solved.

Original data Generated data

N R

Figure 5. Analysis of imbalanced Dataset 2.
3.4. The Overall Accuracy Analysis of the Proposed Method

In this study, the features of protein sequences were extracted by PSSM and the prediction of
subnuclear localization was obtained by RF. To demonstrate the performance of the proposed method,

three experiments were performed on each of two benchmark datasets. The experimental result by the
Jackknife cross-validation is shown in Figure 6.

Dataset-2

W RF W, RF+SMOTE (] RF+Radius-SMOTE |

L L L L
0 10 20 0 a0 50 60 70 80 % 100
Overall accuracy (%)

Figure 6. Overall accuracy of each dataset.

From Figure 6, the maximum accuracies of Dataset 1 and Dataset 2 were 96.1% and 95.7%.
The classification accuracy of RF + SMOTE were all higher than RF, which means the oversampling
method could effectively improve the classification accuracy. The accuracy performed by RF +
Radius-SMOTE were all higher than the accuracy calculated by RF with SMOTE, which means the
method of Radius-SMOTE could achieve good classification performance.

3.4.1. The Relationship between k in Radius-SMOTE with Overall Accuracy

In the process of expanding datasets, the selection of k nearest neighbor plays an important role
in classification. The experimental results influenced by different k in Radius-SMOTE are shown in
Figure 7. The blue polyline denotes the overall accuracy of Dataset 1; the red polyline denotes the
overall accuracy of Dataset 2. In this study, the interval of k is set to [1:9]. For Dataset 1, the minimum
accuracy is 84.8 (k = 1); along with the increase of k, the maximum accuracy is 96.1% (k = 7). For Dataset
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2, the minimum accuracy was 84.3% (k = 1) and the maximum accuracy was 95.7% (k = 5). In general,
the accuracy of each dataset reaches the lowest when k = 1, which means the selection of nearest
neighbor in Radius-SMOTE was significant.

100

——

Overall accuracy (%)

—e— Dataset-1
©— Dataset-2|

1 2 3

l:\n RadlubsfSMOToE
Figure 7. Relationship between overall accuracy of each dataset and the k in Radius-SMOTE.
3.4.2. The Relationship between k in RF with Overall Accuracy

RF was used for classification in this study. The parameter k of RF represents the number of trees
in the process of classification and it had influence on the overall accuracy of the proposed method.
In Figure 8, the interval of k was set in the range of [30:210]. For Dataset 1, the overall accuracy was
lowest 95.1% (k = 30); in addition, the accuracy gradually turns to be stable when k was greater than
30 and achieves the highest value 96.71% (k = 210). For Dataset 2, the overall accuracy was highest
95.7% (k = 150); in addition, the difference of accuracy caused by k was 4.5 higher than that of Dataset
1, which means the effect of k on Dataset 2 was more obvious than Dataset 1. Figure 8 shows that
the blue polyline was above the red polyline, which means that Dataset 1 had a better classification
performance than Dataset 2.

Overall accuracy (%)

& —e— Dataset-1
©— Dataset-2

kin RF

Figure 8. Relationship between overall accuracy of each dataset and the k in random forest (RF).
3.5. The Analysis for Evaluation Indexes of Different Methods

In this part, three experiments were performed on each of two benchmark datasets. All datasets
were mapped into low-dimensional space by KLDA and then classified by RF. Four evolution indices
of datasets were calculated based on the Jackknife tests and shown in Tables 3 and 4. In the first
experiment, the value of evolution indices is found in the third column of Tables 3 and 4, based on
original data; In the second experiment, the value of evolution indices are found in the fourth column
of Tables 3 and 4, based on expanded data by SMOTE; In the third experiment, the value of evolution
indices is found in the fifth column of Tables 3 and 4, based on expanded data by Radius-SMOTE.

As shown in Table 3, for the first experiment, the class N1 (307 samples) had the highest Se value
of 0.958 and the lowest Sp value of 0.766; and the class Nb (13 samples) had the lowest Se value of
0.154 and the highest Sp value of 1, which means that the classification results were easily affected by
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the number of samples in different categories. In addition, most of the value of MCC was less than 0.5,
which means that the classification performance of RF without oversampling was not good. For the
second experiment, the values of MCC were more than 0.83 (only the MCC of N1 was 0.76) and the
values of ACC were more than 0.94, which demonstrated that the classification performance with
SMOTE was good. For the third experiment, the Se of all classed were higher than 0.92 (only the Se of
NI was 0.876) and the values of Sp were higher than 0.988. The values of ACC were higher than 0.98
which were very close to 1 and the values of MCC were higher 0.9, which showed that the classification
performance with Radius-SMOTE was better than that of others.

As shown in Table 4, for the first experiment, the Se values of Ne and Nm were 0.118 and 0.11,
respectively, which was approximately equal to 0.11; the MCC values of all classes were lower than
the 0.52 (only the MCC of NIl was 0.759), which means that the classification performance without
oversampling was bad. For the second experiment, the ACC values of all classes were higher than 0.94
and the MCC values of Cn, Co and NI were between 0.74 to 0.88; and the remaining seven types of
dataset were higher than 0.92. It was found that the MCC and ACC of the first dataset were larger than
that of the second class, which illustrated that the classification with SMOTE was better.

Table 3. Four evolution indices of each class in Dataset 1.

Dataset 1 Index Original Data SMOTE Radius-SMOTE
(KLDA + RF) (KLDA + RF) (KLDA + RF)

Se 0.546 0.815 0.953
c Sp 0.890 0.985 0.988
a ACC 0.832 0.964 0.984
MCC 0.423 0.830 0.925
Se 0.455 0.980 0.984
e Sp 0.99 0.973 0.999
ACC 0.972 0.975 0.997
MCC 0.604 0.897 0.985
Se 0.508 0.882 0.980
N Sp 0.940 0.988 0.992
¢ ACC 0.891 0.974 0.991
MCC 0.451 0.883 0.958
Se 0.31 0.921 0.979
N Sp 0.986 0.994 0.996
m ACC 0.947 0.985 0.994
MCC 0.393 0.928 0.971
Se 0.519 0.798 0.924
N Sp 0.919 0.992 0.998
¢ ACC 0.863 0.972 0.991
MCC 0.436 0.839 0.946
Se 0.388 0.873 0.974
N Sp 0.927 0.996 0.993
s ACC 0.863 0.982 0.991
MCC 0.326 0.907 0.955
Se 0.958 0.886 0.876
NI Sp 0.766 0.949 0.994
ACC 0.872 0.941 0.98
MCC 0.747 0.761 0.901
Se 0.432 0.865 0.983
N Sp 0.985 0.994 0.997
P ACC 0.945 0.978 0.995
MCC 0.522 0.897 0.977
Se 0.154 0.983 1.000
Nb Sp 1.000 0.996 0.999
ACC 0.978 0.994 0.999

MCC 0.388 0.975 0.994
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Table 4. Four evolution indices of each class in Dataset 2.

Dataset 2 Index Original Data SMOTE Radius-SMOTE
(KLDA + RF) (KLDA + RF) (KLDA + RF)
Se 0.698 0.849 0.969
cn Sp 0.858 0.993 0.991
ACC 0.834 0.978 0.989
MCC 0.479 0.878 0.939
Se 0.726 0.774 0.854
c Sp 0.846 0.992 0.992
0 ACC 0.822 0.973 0.980
MCC 0.515 0.821 0.869
Se 0.320 0.900 0.988
N Sp 0.953 0.993 0.994
s ACC 0.893 0.984 0.994
MCC 0.310 0.908 0.963
Se 0.932 0.881 0854
NI Sp 0.817 0.948 0.995
ACC 0.881 0.940 0.979
MCC 0.759 0.742 0.890
Se 0.118 0.965 0.983
Ne Sp 0.998 0.997 0.999
ACC 0.967 0.993 0.998
MCC 0.271 0.967 0.988
Se 0.111 0.962 0.983
Nim Sp 0.992 0.976 0.996
ACC 0.959 0.992 0.995
MCC 0.175 0.961 0.975
Se 0.233 0.926 0.993
Np Sp 0.979 0.990 0.997
ACC 0.934 0.983 0.996
MCC 0.278 0.911 0.980
Se 0.333 0.962 1.000
Ne Sp 0.996 0.997 0.999
ACC 0.979 0.993 0.999
MCC 0.462 0.965 0.994
Se 0.167 0.951 1.000
Na Sp 0.998 0.998 0.999
ACC 0.977 0.993 0.999
MCC 0.326 0.964 0.994
Se 0.460 0.915 0.996
- Sp 0.980 0.993 0.996
ACC 0.941 0.985 0.996
MCC 0.519 0.920 0.979

3.6. Comparisons with Other Methods

We compared the performance between our proposed method and state-of-arts methods based on
two benchmark datasets. Contrast experiments were divided into two categories. These were then
compared with methods of SMOTE-variants and methods of protein subnuclear localization. Based on
the same dataset, the Jackknife test was used to compare the performance of the proposed method
with other methods previously introduced in detail in this section.

3.6.1. Comparison of Dataset 1

Based on Dataset 1, the proposed method was first compared with other oversampling
methods, as shown in Table 5. It was found that Radius-SMOTE had better performance for protein
subnuclear localization.
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Table 5. Prediction results of Dataset 1 based on different oversampling methods.

Oversampling Methods Overall Accuracy (%)
Borderline_SMOTE1 [37] 92.4
Borderline_SMOTE2 [37] 93.3
SVM_balance [38] 93.1
NRAS [39] 89.3
The proposed Radius-SMOTE 96.1

Then the proposed method was compared with six state-of-arts methods of protein subnuclear
localization, as shown in Table 6. Through the comparison, the highest classification accuracy of
Dataset 1 was 96.1% obtained by the proposed method.

Table 6. Prediction results of Dataset 1 obtained by different methods of protein subnuclear localization.

Methods (Jackknife Test) Overall Accuracy (%)

Fusion of PsePSSM and PseAAC-KNN [19] 67.4

PseAAPSSM-LDA-KNN [6] 88.1

DipPSSM-LDA-KNN [6] 95.9

AACPSSM with fused kernel-KLDA-KNN [40] 947
kernel ’

PseAAC-A hybrid-classifier-based SVM [41] 810
classifier ’

CoPSSM-KLDA-based DGGA-KNN [5] 90.3

The proposed PSSM-Radius-SMOTE-KLDA-RF 96.1

The comparison of MCC between proposed method and other prediction methods of protein
subnuclear localization can be found in Figure 9. The biggest difference of MCC for different methods
were 0.39, 0.69, 0.45 and 0.093, respectively. The smallest difference was 0.093 obtained by the proposed
method, which means that the classification results of majority and minority classes are more accurate
than that of other methods (Figure 9).

0.8

07— - [

o | | 1 | | I I N
Fusion of PsePSSM and PseAAC-KNN PseAAPSSM-LDAKNN DipPSSM-LDA-KNN PSeAAC-A hybrid classifier based SVM CoPSSM-KLDA based DGGA-KNN  PSSM-Radius-SMOTE-KLDA-RF
Methods

Figure 9. MCC of each class of Dataset 1 by different methods of protein subnuclear localization.

3.6.2. Comparison of Dataset 2

For Dataset 2, the four comparison methods of oversampling were the same as those in Dataset 1
(Table 7). The performance of Radius-SMOT on Dataset 2 was also the best, which illustrates the
effectiveness of Radius-SMOTE.
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Table 7. Prediction results of Dataset 2 based on different oversampling methods.

Oversampling Methods Overall Accuracy (%)
Borderline_SMOTEI1 [37] 93.8
Borderline_SMOTE2 [37] 93.6
SVM_balance [38] 95.6
NRAS [39] 88.1
The proposed Radius-SMOTE 95.7

At the same time, the proposed method was also compared with three methods of protein
subnuclear localization (Table 8). The results illustrate that the proposed method had better performance
than other methods.

Table 8. Prediction results of Dataset 2 obtained by different methods of protein subnuclear localization.

Methods (Jackknife Test) Overall Accuracy (%)
SSLD and AAC-SVM [34] 81.5
PseAAPSSM-LDA-KNN [6] 84
CoPSSM-KLDA-based DGGA-KNN [5] 87.4
The proposed PSSM-Radius-SMOTE-KLDA-RF 95.7

From Figure 10, the MCC of each class obtained by the proposed method was higher than that of
other three methods. Thus, the classification performance of the proposed method in Dataset 2 was
better than other methods.

i

nnnnnnn

Figure 10. MCC of each class on Dataset 2 by different methods of protein subnuclear localization.
4. Conclusions

This study proposes an effective protein subnuclear localization method, with the aim of
overcoming the imbalance of protein datasets and improving the prediction accuracy of protein
subnuclear localization. First, the features of protein are represented by PSSM, which can extract the
evolution information of proteins. Second, the dimensions of feature vector are reduced by KLDA,
which can reduce the redundant information of protein dataset. Third, Radius-SMOTE, which is
based on SMOTE, is used to solve the imbalance problem of protein dataset. Finally, the subnuclear
localization of proteins is predicted by RE.

According to the Jackknife test, the overall accuracy of the proposed method in two benchmark
datasets can reach 96.1% and 95.7%. From the experimental results, the following conclusions can be
drawn:

1. The imbalance of protein datasets has a great impact on the prediction accuracy of protein
subnuclear localization;
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2. The proposed method can efficiently improve the prediction accuracy of protein subnuclear
localization by solving the imbalanced problem of protein datasets;

3. The combination of KLDA and RF can improve the classification accuracy of protein at the
subnuclear level.
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