
electronics

Article

Fusion High-Resolution Network for Diagnosing
ChestX-ray Images

Zhiwei Huang 1,2,† , Jinzhao Lin 3,*, Liming Xu 4,†, Huiqian Wang 3, Tong Bai 3 , Yu Pang 3,*
and Teen-Hang Meen 5

1 School of Communication and Information Engineering, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China; hzwnet@swmu.edu.cn

2 School of Medical Information and Engineering, Southwest Medical University, Luzhou 646000, China
3 Chongqing Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology,

Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
wanghq@cqupt.edu.cn (H.W.); baitong03@126.com (T.B.)

4 Chongqing Key Laboratory of Image Cognition, School of Computer Science and Technology,
Chongqing University of Posts and Telecommunications, Chongqing 400065, China; xulimmail@gmail.com

5 Department of Electronic Engineering, National Formosa University, Yunlin 632, Taiwan;
thmeen@nfu.edu.tw

* Correspondence: linjz@cqupt.edu.cn (J.L.); pangyu@cqupt.edu.cn (Y.P.)
† These authors contributed equally to this work.

Received: 11 December 2019; Accepted: 16 January 2020; Published: 19 January 2020
����������
�������

Abstract: The application of deep convolutional neural networks (CNN) in the field of medical image
processing has attracted extensive attention and demonstrated remarkable progress. An increasing
number of deep learning methods have been devoted to classifying ChestX-ray (CXR) images,
and most of the existing deep learning methods are based on classic pretrained models, trained
by global ChestX-ray images. In this paper, we are interested in diagnosing ChestX-ray images
using our proposed Fusion High-Resolution Network (FHRNet). The FHRNet concatenates the
global average pooling layers of the global and local feature extractors—it consists of three branch
convolutional neural networks and is fine-tuned for thorax disease classification. Compared with the
results of other available methods, our experimental results showed that the proposed model yields
a better disease classification performance for the ChestX-ray 14 dataset, according to the receiver
operating characteristic curve and area-under-the-curve score. An ablation study further confirmed
the effectiveness of the global and local branch networks in improving the classification accuracy of
thorax diseases.

Keywords: thorax disease classification; deep learning; ChestX-ray 14 dataset; feature fusion

1. Introduction

ChestX-rays (CXRs) are often included in routine physical examinations. Due to the advantages
of being rapid, simple and economical, X-ray photography has become the most popular method
for performing chest examinations [1]. A ChestX-ray can clearly record gross lesions of the lungs,
including pneumonia, masses and nodules. The interpretation of CXR images in current medical
practice, however, is mainly performed by radiologists, through artificial reading. The ChestX-ray
image of a patient needs to be read by a senior radiologist for at least 10 min to make a diagnosis and
different doctors can make inconsistent diagnoses of the same ChestX-ray image, which means that
the results are affected by the cognitive ability of the radiologist, subjective experience, fatigue and
other factors [2]. Computer-aided diagnosis (CAD) can overcome the deficiencies of radiologists, make
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quick and effective objective judgements, improve accuracy and stability and reduce misdiagnoses and
missed diagnoses [3–5].

Recently, benefitting from deep learning techniques [6], computer vision [7] has had remarkable
success in the fields of target detection [8], image classification [9,10] and image inpainting [11],
for example. This notable progress has led to the development of many medical image
processing applications, including disease classification [12], lesion detection or segmentation [13–15],
registration [16], image annotation [17,18] as well as other examples [19]. Deep learning methods,
particularly deep convolutional neural networks (CNN) [20,21], have quickly become the preferred
approach for processing medical images [22,23]. Large-scale datasets are usually required to train
deep neural networks [24]. The ChestX-ray 14 dataset, released by the National Institutes of Health
(NIH) in 2017 [25], is known as one of the largest hospital-scale ChestX-ray datasets. A series of studies
was conducted to classify thoracic disease using this dataset. Existing CXR image diagnosis with
deep learning [26–33] was used to resize or down-sample the high-resolution or original high-pixel
images and eliminate most of the pixels in the images, with the hope that useful disease information
would not be lost. The mainstream framework of a CNN for diagnosing thorax disease is shown in
Figure 1, in which the input size of the CXR image is normally set to 224 × 224 × 3. For example,
Mao et al. [34] used deep generative classifiers to make the model architecture more robust and to
reduce model overfitting. Guan et al. [35] treated the entire image as a global branch, focused on
local regions with disease specificity, and proposed an attention guided convolutional neural network
(AG-CNN) to fuse complementary information for favourable accuracy. Zhu et al. [36] proposed
the deep-local global feature fusion (DLGFF) framework, for multilevel semantic recognition in high
spatial resolution images, which fused the local and global convolutional features and considered
fully connected features. Lin et al. [37] set the outputs of a trained CNN as fuzzy integral inputs and
proposed evolutionary-fuzzy-integral-based CNNs (EFI-CNN) for improved classification accuracy.
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Medical disease diagnosis, however, often needs to find abnormal disease information from 
dozens of pixels in a picture with millions of pixels to make an accurate disease judgement. Artificial 
downsampling, or discarding pixels, will result in the loss of disease information, missed diagnoses 
and misdiagnoses, leading to the treatment of the patient’s diseases potentially being delayed. 

In this paper, to take full advantage of neural network architectures and fuse image 
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classification layer into a high-resolution network (HRNet) to improve the classification of CXR 
images. An illustration of HRNet is provided in Figure 2. Specifically, four high-resolution feature 

Figure 1. The mainstream framework of a convolutional neural network for diagnosing thorax disease.

The classic pretrained models, e.g., AlexNet [38], VGGNet [39], ResNet [40] and DenseNet [41],
all use a CXR image that is resized to 224 × 224 × 3 as the input. The model encodes the image to C
feature maps that are sized S × S and outputs them to the transition layer. Each feature map is reduced
to 1 × 1 × D by the transition layer and then transformed into a D-dimensional feature vector by the
sampling layer. A sigmoid function transforms the fully connected layer and then outputs probability
scores for 14 thorax diseases.

Medical disease diagnosis, however, often needs to find abnormal disease information from
dozens of pixels in a picture with millions of pixels to make an accurate disease judgement. Artificial
downsampling, or discarding pixels, will result in the loss of disease information, missed diagnoses
and misdiagnoses, leading to the treatment of the patient’s diseases potentially being delayed.

In this paper, to take full advantage of neural network architectures and fuse image representation
features, we adopt a fusion convolutional neural network and introduce the classification layer into a
high-resolution network (HRNet) to improve the classification of CXR images. An illustration of HRNet
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is provided in Figure 2. Specifically, four high-resolution feature maps are first fed into a bottleneck, and
the number of output channels is increased to 64, 128, 256 and 512. The high-resolution representations
are then downsampled by a 2-stride 3 × 3 convolution layer, which results in 128 channels. Then, all the
channels are compiled into representations of the second-level high-resolution representations, and
this process is conducted twice, to obtain 256 channels at the low resolution. Finally, the 512 channels
are transformed into 1024 channels through one 1 × 1 convolution, which is followed by a global
average pooling operation. The output 1024-dimensional representation is fed into the classifier [42].
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Figure 2. An architectural illustration of the proposed Fusion High-Resolution Network (FHRNet).
The FHRNet is composed of four parallel high-to-low resolution subnetworks that repeatedly exchange
information across multiresolution subnetworks. The vertical and horizontal directions correspond to
the scale of the feature maps and the depth of the network, respectively.

In summary, our contributions in this work are as follows: First, we propose the fusion
high-resolution network as a feature extractor, which produces competitive results compared with
those of other advanced methods. Second, we introduce a fusion CNN that diagnoses ChestX-ray
images by combining local and global cues. The FHRNet improves the performance of thorax disease
classification by reducing the impact of noise and highlighting lung regions. Third, we conduct a
comparative experiment based on the ChestX-ray 14 dataset. The classification results show that the
FHRNet model achieves better performance than other available approaches.

2. Method

2.1. Dataset

Wang et al. [25] released the ChestX-ray 14 dataset in October 2017, and it is the largest available
ChestX-ray dataset by far. The ChestX-ray14 dataset includes 112,120 CXR images, involving
30,805 patients. The pixel size of every CXR image is 1024 × 1024, and all images are saved in PNG
format, with an 8-bit greyscale value. Every image is labelled with 14 different thorax diseases,
with features extracted from radiologist reports. The ground truth data are mined and labelled through
natural language processing (NLP) from patient diagnostic reports, and the label accuracy is estimated
to be greater than ninety percent. Among the 112,120 ChestX-ray images, 51,708 images contained one
or more diseases, and the remaining 60,412 images were considered normal and labelled “No Finding”.
An image example is shown in Figure 3.
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Figure 3. Example of images in the ChestX-ray 14 dataset.

The ChestX-ray 14 dataset includes multilabel classification and is large enough for deep learning;
therefore, it was used to evaluate and validate the FHRNet model. In this experiment, we divided the
whole dataset into a training set (total 75,708 images), a validation set (total 10,816 images) and a test
set (total 25,596 images), at the hospital scale. All images from the same patient only appeared once in
the training set, the validation set and the test set.

2.2. Network Framework

As shown in Figure 4, the proposed FHRNet has three branches: the local feature extractor,
the global feature extractor and the feature fusion module. The local and global feature extractors are
disease classification networks that output disease classification probabilities from the corresponding
images. In contrast, the input image of the local feature extractor is a small lung region that is cropped
using a mask inference generated from the global feature extractor. Two of the HRNets were adjusted
to obtain the distinguishing features of the local lung region and whole image.

The HRNets are connected to global average pooling layers, a fully connected layer, a sigmoid
layer and a loss function. The feature fusion module concatenates the global average pooling layers
after two feature extraction steps and is then fine-tuned to make a final classification prediction.

2.3. Network Structure

It usually takes three steps to build a model for classifying CXR images, based on the deep learning
of multibranch images. These steps are feature extraction, feature fusion and classification prediction.
The specific descriptions of these steps are provided below.
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Feature extraction from multibranch images. Determining how to better extract features from
multiview medical images is one of the main research topics in the field of medical image processing
based on deep learning methods [43]. Although a variety of advantageous features have been manually
extracted from multiview medical images, for example, HOG, LBP and SIFT, classification predictions
based on these features can lead to incompatibility problems, that is, the extracted features cannot
effectively classify and predict specific organs or diseases. Feature extraction based on a CNN solves
the above problems. With the continuous development of attention mechanisms, feature extraction
from multiview medical images has become increasingly ideal [44].

When we take the feature extraction network f as an example, HRNet can be used to extract
features. Suppose that the network can be expressed as follows:

f (x,θ) = WLa(L−1)(W
(L−1)a(L−2)(W

1x + b1) + b(L−1)) + bL (1)

in which θ :=
{
W1, b1, . . . , WL−1, bL−1, WL, bL

}
are the parameters of network f , al(1 ≤ l < L) represents

the activation function of the lth layer, x represents the input of the network f . f (x,θ) represents an
output that is not processed by the activation function of the last layer [45]. The overall output of the
network is as follows:

Output = A( f (x,θ)) (2)

in which A represents the activation function of feature extraction network f [46].
As shown in Figure 2, the input of feature extraction network f includes the global input image xg

and the local input image xl, and the ith local input image is represented as xi
l = mi

� xi
g. Therefore,

according to the definition of the feature network, the global features and local features can be expressed
as follows:

Og = A( fg(xg,θ)) (3)

Ol = A
(

fl
(
xg �m,θ

))
(4)

Feature fusion from multibranch images. To use the images of different branches for classification
prediction, it is necessary to construct unified fusion features to share the features of different branches.
After different deep neural networks extract the features from different branch images, the shared
fusion features can be obtained by directly concatenating the images from the three branches,

O = w1 ·A( fg(xg,θ)) + w2 ·A( fl(xl,θ)) (5)



Electronics 2020, 9, 190 6 of 12

in which wi(1 ≤ i ≤ 2) represents the weight of a feature that is extracted from the ith network of the
fusion feature [47].

It is not difficult to find that the features extracted from the three branches will result in feature
redundancy. An attention mechanism can be used to reduce feature redundancy. That is, adding
a random mask after the last activation layer and removing redundant features can increase the
classification accuracy.

Classification prediction. At present, the prediction of lung disease is a multiclassification task
that usually adopts the softmax classification function. The classification function is expressed as

[p1, p2, . . . , p14] = So f max(W × F) (6)

in which O represents the fusion feature, W represents the mapping matrix that is used to map the
high-dimensional fusion feature to a low-dimensional probability distribution representing the disease
information and pi(1 ≤ i ≤ 14) represents the probability of identifying the ith disease [48].

To dynamically determine the weights of the three features and further improve the prediction
accuracy, global and local consistency classification methods can be used. That is, three classifiers for
global, local and fusion features are trained and alternately optimised for classification prediction,

[p1
1, p1

2, . . . , p1
14] = So f max(W ×Og) (7)

[p2
1, p2

2, . . . , p2
14] = So f max(W ×Ol) (8)

[p3
1, p3

2, . . . , p3
14] = So f max(W ×O) (9)

in which p j
i (1 ≤ i ≤ 14, 1 ≤ j ≤ 3) represents the probability that the jth network predicts the ith disease.

According to the mechanism of global–local consistency, the probabilities of patients suffering from the
14 diseases are p1

1p2
1, p1

2p2
2, . . . , and p1

14p2
14. Due to the range of the probability values, the final diagnosis

probability is small and it is processed by a logarithmic function to become useful to doctors.

3. Experimental Setting

In all pretrained models, input images are expected to be normalised by the same means, such as
by creating a minibatch of three-channel RGB images (3 × H ×W), in which either H or W is expected
to be no less than 224. All images in the ChestX-ray 14 dataset are 1024 × 1024, with an 8-bit greyscale
value. We split the dataset into the training set (78,468 images of 21,528 patients), the validation set
(11,219 images of 3090 patients) and the test set (22,433 images of 6187 patients), without the same
patient overlapping among sets. We converted these greyscale images to three-channel RGB images,
cropped them to a 224 × 224 resolution at the centre and then normalised these images by the means
([0.485, 0.456, 0.406]) and standard deviations ([0.229, 0.224, 0.225]). We trained the model by the
Adam optimiser and set the initial learning rate and batch size as 1.0 × 10−4 and 32, respectively.
We completed the training procedure after 50 epochs. After each epoch, we validated, tested and
saved the model with the best classification performance. For multiclass classification, we used the
receiver operating characteristic (ROC) curve and area-under-the-curve (AUC) score to assess the
classification performance. The model weights associated with the best AUC scores, based on the
validation set, were saved and used to extract representative features. In our experiment, we plotted
the ROC curve for each thorax disease and calculated the AUC scores for 14 diseases to evaluate the
classification performance. The FHRNet was implemented with the Pytorch 1.0 framework in Python
3.6 on an Ubuntu 16.04 server. The model was trained, validated and tested on an 8-core CPU and four
TITAN V GPUs.
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4. Results

The classification results for the existing methods and the FHRNet based on the ChestX-ray 14
dataset are presented in terms of the AUC scores in Table 1. The obtained ROC curves of the FHRNet
for each of 14 thorax diseases are shown in Figure 5.

Table 1. The area-under-the-curve (AUC) scores of existing methods and the FHRNet based on the
ChestX-ray 14 dataset. The scores that displayed a relative increase are marked in bold.

Thorax Disease Wang [25] Yao [49] Gundel [50] FHRNet

Atelectasis 0.7003 0.733 0.767 0.794
Cardiomegaly 0.8100 0.856 0.883 0.902

Effusion 0.7585 0.806 0.828 0.839
Infiltration 0.6614 0.673 0.709 0.714

Mass 0.6933 0.718 0.821 0.827
Nodule 0.6687 0.777 0.758 0.727

Pneumonia 0.6580 0.684 0.731 0.703
Pneumothorax 0.7993 0.805 0.846 0.848
Consolidation 0.7032 0.711 0.745 0.773

Edema 0.8052 0.806 0.835 0.834
Emphysema 0.8330 0.842 0.895 0.911

Fibrosis 0.7859 0.743 0.818 0.824
Pleural Thickening 0.6835 0.724 0.761 0.752

Hernia 0.8717 0.775 0.896 0.916
Average 0.7451 0.761 0.807 0.812Electronics 2020, 9, x FOR PEER REVIEW 8 of 12 
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thorax diseases.

Based on the available published works performed by other researchers, including Wang [25],
Yao [49] and Gundel [50], we recorded and compared the AUC scores they obtained and those of
the FHRNet based on the ChestX-ray 14 dataset. We found that the FHRNet method achieved the
expected effect and provided a superior classification performance. A numerical comparison of the
results for 14 classes of thorax diseases and the average AUC of each method are shown in Table 1.
Compared with the three existing methods, the proposed method increased the average AUC by 8.98%
(from 0.7451 to 0.812). Notably, for “Mass”, the rate of increase in the AUC score reached 19.3% (from
0.6933 to 0.827).
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From Table 1, a horizontal comparison shows that the existing methods and our model obtained
different classification effects, even for the same thorax disease. Among the 14 diseases, 10 thorax
diseases had the best average AUC scores with the FHRNet model: “Atelectasis”, “Cardiomegaly”,
“Effusion”, “Infiltration”, “Mass”, “Pneumothorax”, “Consolidation”, “Emphysema”, “Fibrosis” and
“Hernia”. Table 1 also shows that the FHRNet model achieved the best average AUC score.

A vertical comparison shows that the existing methods and our model obtain different classification
effects for the 14 thorax diseases. The most accurately identified thorax disease was “Hernia”, with an
AUC score of 0.916, and the least accurately identified disease was “Pneumonia”, with an AUC score
of 0.703.

We also plotted the ROC curves of the FHRNet for each of the 14 thorax diseases, as shown in
Figure 5. We can observe that the ROC curve of “Infiltration” was flatter than that of “Hernia”, which
means that the classification of “Pneumonia” was not as good as that of “Hernia”.

5. Discussion

The experimental results show that the proposed FHRNet provides excellent disease classification
performance. Our method can obtain satisfactory results because two significant structures are
introduced: (1) a high-resolution network is adopted as a feature extractor to exchange image
representation features and (2) the local and global branches of the ChestX-ray images are introduced
to obtain the most useful features. To illustrate the effectiveness of local and global branches in our
method, we conducted a further ablation study that correspondingly yielded different AUC scores.
The results of the ablation study of local and global branches are shown in Table 2.

Table 2. The ablation study of local and global branches.

Thorax Disease Global Fusion Local Fusion FHRNet

Atelectasis 0.778 0.783 0.794
Cardiomegaly 0.879 0.894 0.902

Effusion 0.822 0.828 0.839
Infiltration 0.703 0.697 0.714

Mass 0.804 0.816 0.827
Nodule 0.708 0.721 0.727

Pneumonia 0.684 0.692 0.703
Pneumothorax 0.836 0.844 0.848
Consolidation 0.758 0.764 0.773

Edema 0.827 0.821 0.834
Emphysema 0.897 0.903 0.911

Fibrosis 0.815 0.813 0.824
Pleural Thickening 0.735 0.453 0.752

Hernia 0.904 0.908 0.916
Average 0.803 0.806 0.812

We developed a three-branch convolutional neural network for diagnosing CXR images in this
study. The fusion branch used two high-resolution networks to adaptively concentrate on pathologically
abnormal regions, which thus improved the classification accuracy. The model achieved the effective
utilisation of the fusion features extracted from both local lung region images and entire ChestX-ray
images. If the fusion branch were to be eliminated, the performance of the FHRNet model would
degrade. With reasonable confidence, we conclude that the fusion branch plays an important role in
the FHRNet model. Among the existing methods that were trained only on the ChestX-ray 14 dataset,
the FHRNet achieved good AUC scores for the 14 thorax diseases.



Electronics 2020, 9, 190 9 of 12

6. Conclusions

In this work, an innovative architecture, termed the FHRNet, was applied to classify 14 thorax
diseases and diagnose ChestX-ray images. Compared with most previous networks, the difference is
that the FHRNet consists of four parallel high-to-low resolution subnetworks and repeatedly exchanges
information via multiscale fusion processes. Two HRNets were trained by the local and global feature
extraction branches, and the feature fusion module was concatenated and fine-tuned for the final
prediction. Our experimental results for the ChestX-ray14 dataset demonstrated the effectiveness
and accuracy of the FHRNet model. Additional ablation studies showed that the local and global
feature extraction branches affect the classification performance and improve the classification effect
after fusion.

In our future work, we will focus on the pixel-level segmentation of the lung region, from CXR
images, to further improve the classification performance. Then, we will train the model by using
more than 180,000 images from the PLCO dataset [51] as extra training data for applying the model in
computer-aided diagnosis.
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