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Abstract: This paper proposes a novel sub-harmonic mixing topology. Based on the proposed
topology and the precise three-dimensional electromagnetic model of the Schottky barrier diode;
a novel 183 GHz solid-state sub-harmonic mixer is designed and measured. By adding a compact
low-pass filter near the ground of the mixer’s circuit, the effect on the mixer’s RF performance of
the random error of the conductive adhesive in assembling is effectively decreased. The test results
show that the optimal single-sideband conversion loss of the mixer is 8.1dB@183GHz when the local
oscillator signal is 4mw@91GHz. In the RF bandwidth from 173 GHz to 191 GHz, the single-sideband
conversion loss is less than −10.6 dB. At the same time, the RF port return loss is less than 9.8 dB.
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1. Introduction

A solid-state terahertz mixer is one of the key components of the terahertz system, which has
been widely used in the fields of remote sensing, communication, and radar. At present, the operating
frequency of radiometers has reached terahertz frequency and has broad application prospects in
the fields of meteorological forecasting, global water cycle observation, and marine environmental
monitoring [1–3]. There are many satellites that carried the terahertz load and are running in orbit.
The highest operating frequency of the radiometer researched by the JPL (Jet Pulse Laboratory) has
reached 2 THz [4].

183 GHz is an important frequency window of atmosphere water vapor absorption, which has
been widely used in remote sensing and atmosphere limb detection [5–7]. In microwave humidity
sounders, the 183 GHz channel is used to judge the convection type of the water vapor, such as the
“Feng-Yun” series polar orbiting meteorological satellites in China [8,9]. In atmosphere limb sounders,
the 183 GHz channel is used to measure the distribution and content of water vapor and ozone in the
stratosphere and intermediate layers, such as EOS-MLS [6] and UARS-MLS [7] in the United States.

The solid-state terahertz receiving system can work at room temperature and does not require
refrigeration equipment, which can effectively reduce the volume and weight of the satellite load.
The heterodyne architecture is widely used in the terahertz radiometer receivers, and the sub-harmonic
mixing method is commonly utilized [10–13]. Currently, mature commercial low noise amplifiers in
the market are unable to obtain excellent noise performance above 150 GHz. The sub-harmonic mixer
acts as the first stage of the receiver, and its performance directly determines the performance of the
receiver system.

Based on the anti-parallel Schottky diode developed by Teratech, a novel 183 GHz solid-state
sub-harmonic mixer is designed and measured in this paper. To reduce the effects of random assembly
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error of the conductive adhesive at the DC ground on the mixer’s performance and stability, this design
adds a grounding LPF (low-pass filter) near the DC ground.

In order to verify the effectiveness of the proposed mixing architecture, simulation, measurement,
and comparison are performed based on a mixer working at the same frequency with no grounding
LPF. First, the variation of conversion loss, RF return loss, and LO return loss on the two mixers are
simulated and compared when using five different shapes conductive adhesive. Second, two same
mixers are assembled of each topology, and the variation on conversion loss and RF return loss is tested
and analyzed.

2. Mixer Design

2.1. Circuit Topology

The mixing principle of the anti-parallel Schottky diode pair is analyzed in [14] by Cohn M.
The frequency components of the mixing current of the anti-parallel Schottky diode can be expressed
as f = mfLO + nfRF, where m + n is an odd number. Mixers using anti-parallel diode can suppress
odd harmonic components, and thus have higher mixing efficiency and dynamic range than a single
diode. For the 183 GHz sub-harmonic mixer designed, the required IF (intermediate-frequency) signal
frequency is fIF = |fRF − 2∗fLO|.

Figure 1 shows the proposed circuit structure of the sub-harmonic mixer in this paper. The RF
signal and the LO (local oscillator) signal are feed by standard rectangular waveguides of WR5.1
and WR10, respectively, and the working mode is TE10. As can be seen from the figure, the mixer
circuit is integrated on a quartz substrate with a thickness of 50 µm, including grounding LPF 1O,
RF coupling probe 2O, LO LPF 3O, LO coupling probe 4O, IF LPF 5O, and anti-parallel Schottky diode.
The anti-parallel Schottky diode is flipped mounted on the quartz substrate, and the substrate is
soldered with the mixer cavity by the conductive adhesive.Electronics 2020, 9, 186 3 of 15 
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Figure 1. The proposed novel circuit topology.

In the traditional terahertz sub-harmonic mixer structure, the RF probe is directly coated with
conductive adhesive through a transmission line to realize DC ground. The DC grounding is one
part of the matching circuit in the design. The phase of the grounding part changes randomly if the
conductive adhesive is random. Besides, the conductivity of conductive adhesive is not ideal and
cannot be accurately characterized in simulation, as the conductive adhesive is the self-made mixture
of epoxy and silver. Moreover, the random smear of the conductive adhesive on the transmission line
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changes the impedance and electrical length characteristics of the line. The error mentioned above
directly leads to circuit mismatch and deteriorates the performance on conversion loss, bandwidth,
and return loss.

In order to solve the problem mentioned above, a grounding low-pass filter is added near the DC
ground, as shown in Figure 1 of 1O. The grounding LPF acts open to the RF signal and suppresses
the coupling of the RF signal to the ground. This can effectively reduce the influence of the random
assembly error of the conductive adhesive at the grounding on the conversion loss. At the same time,
the low pass filter provides short for the LO signal.

2.2. Anti-Parallel Diode Model

The Schottky diode is the majority carrier device that has fast electronic response and is suitable
for high-frequency applications [15]. The anti-parallel Schottky diode is the core component of the
mixer circuit, and its performance directly determines the conversion loss characteristics and noise
characteristics of the mixer. The characteristic of a Schottky junction is usually characterized by DC
parameters such as zero-bias junction capacitance (Cj0), series resistance (Rs), saturation current (Is),
ideal factor n, and barrier height (Vb). Small Rs produces lower conversion loss and lower noise, while
small Cj0 leads to smaller shunts for the nonlinear resistance. An AP1-G2-0p64 anti-parallel Schottky
diode pair of Teratech with high performance is utilized for the proposed mixer. The DC parameters
are shown in the following Table 1.

Table 1. Parameters of the AP1 anti-parallel Schottky diode.

Cj0 Rs Is n Vb

1.42 fF 12 1.75 fA 1.12 0.74 V

The cut-off frequency of a Schottky diode can be calculated by the following Equation (1).
Combined with Equation (1) and the parameters shown in Table 1, the cut-off frequency of the diode
used in this design is 9.34 THz, which fully meets the design requirement.

fc =
1

2πC j0Rs
(1)

Since the mixer designed works in the terahertz band, the physical size of the diode is comparable
to the signal wavelength. Therefore, the physical structures of the diode package (pad, metal finger,
etc.) have large effect on the electric field distribution of the signal. The traditional equivalent circuit
model cannot meet circuit design in the terahertz band, so it is necessary to establish an accurate
3-D (three-dimensional) electromagnetic model based on the actual physical structure and material
parameters of the diode.

The 3-D electromagnetic model of the Schottky diode is built in the full-wave HFSS (high-frequency
structure simulation) software. As shown in Figure 2, the Schottky diode is composed of anode/cathode
pads, anode metal fingers, the oxide layer, the epitaxial layer, the buffer layer, and GaAs (gallium
arsenide) semiconductor substrate. The anode metal and the epitaxial layer form a Schottky junction.
The ohmic contact is formed by the contact of the cathode pad and the buffer layer. In HFSS, the lightly
doped epitaxial layer is set as gallium arsenide material, and the heavily doped buffer layer is set as
PEC (perfect electric conductor). The ring coaxial wave port is set to characterize the Schottky junction.
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Figure 2. Layer structure of the anti-parallel Schottky diode utilized.

2.3. Low-Pass Filter Design

From the above analysis of the mixer’s structure, the grounding LPF, the LO LPF, and the IF
LPF are the core components of the mixer proposed. The high-low-impedance LPF is widely used,
which has the advantages of simple structure and simple design method, while the disadvantage of
longer size that causes large transmission loss and dispersion. The LPF of CMRC (compact microstrip
resonant cell) structure has a small physical size, high out-of-band rejection, and small dispersion
characteristics [16].

The grounding LPF and the LO LPF are designed as the same filter since they have the same
function of preventing leakage of the RF signal. The LPF is designed by using a two-stage “I-shape”
CMRC structure, which introduced more capacitors and inductors compared with the traditional
high-low impedance filter.

Figure 3a shows the structure and equivalent circuit of the LPF, where capacitors and inductors are
introduced by stripeline branches, gaps, and edge effects. As shown in Figure 3b, there are two resonant
poles in the rejection band, which is located at 159 GHz (resonator 1) and 250 GHz (resonator 2).
Resonator 1 locates in the main rejection band of the LPF. Gap coupling between the two “I-shape”
brings two coupling capacitors (C4), which establish resonator 1 with inductors (L1, L2, L3, L4) that
are produced by high impedance lines shown. The capacitors produced by coupling of branches (C2)
and edge effect (C1) resonate with inductance (L1, L4) to form the resonator 2 shown in Figure 3a,
which eliminates the first parasitic rejection band and broaden the rejection band. Because of the two
resonate poles, the S(2,1) of the LPF is less than −25 dB in the band of 150 GHz to 280 GHz, which can
effectively suppress the leakage and coupling of RF signal. At the same time, the insertion loss is lower
than 0.3 dB in the band of 0 GHz~110 GHz.Electronics 2020, 9, 186 5 of 15 
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Figure 3. (a) Structure of the grounding low-pass filter (LPF) and local oscillator (LO) LPF. (b) 
Simulation performance of the grounding LPF and LO LPF. 

The function of the IF LPF is to suppress the leakage of the LO signal to the output port, which 
improves the utilization of the LO signal. The structure, equivalent circuit, and the simulated result 
of the IF LPF are depicted in Figure 4. As shown in Figure 4b, there is only one resonant pole at 83 
GHz because of the one-stage CMRC structure. The S(2,1) simulated is less than −20 dB in the 75 
GHz~120 GHz band, which can effectively suppress the leakage of the LO signal to the IF output 
port. 
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performance of the grounding LPF and LO LPF.

The function of the IF LPF is to suppress the leakage of the LO signal to the output port, which
improves the utilization of the LO signal. The structure, equivalent circuit, and the simulated result
of the IF LPF are depicted in Figure 4. As shown in Figure 4b, there is only one resonant pole at
83 GHz because of the one-stage CMRC structure. The S(2,1) simulated is less than −20 dB in the
75 GHz~120 GHz band, which can effectively suppress the leakage of the LO signal to the IF output port.Electronics 2020, 9, 186 6 of 15 
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3. Simulation 

The overall simulation and optimization process of the 183 GHz sub-harmonic mixer is divided 
into four steps. Step 1, the S parameters of each discrete passive structure are obtained by the 
electromagnetic simulation software HFSS. Step 2, the mixer circuit is built in the circuit simulation 
software ADS, and the harmonic balance algorithm is used to optimize the mixer matching circuit. 
Step 3, the complete passive mixer circuit is modeled in HFSS, and then combines the harmonic 
balance algorithm with and the S parameters extracted from HFSS to simulate the overall mixer’s 
performance. Step 4, the final mixer circuit is obtained by iterative optimization. 

Figure 5 shows the simulation results of the proposed 183 GHz sub-harmonic mixer. When the 
LO signal is fixed at 4mw@91GHz, the optimal SSB (single-sideband) conversion loss of the mixer is 
8.25dB@182GHz, and the SSB conversion loss is better than 8.7 dB among 170 GHz~190 GHz. It can 
be seen that the return loss of the RF port is less than −9 dB in the band of 170 GH~190 GHz. Because 
the LO frequency is fixed at 91 GHz, the return loss of the LO port is fixed at −7.7 dB. 
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3. Simulation

The overall simulation and optimization process of the 183 GHz sub-harmonic mixer is divided
into four steps. Step 1, the S parameters of each discrete passive structure are obtained by the
electromagnetic simulation software HFSS. Step 2, the mixer circuit is built in the circuit simulation
software ADS, and the harmonic balance algorithm is used to optimize the mixer matching circuit.
Step 3, the complete passive mixer circuit is modeled in HFSS, and then combines the harmonic balance
algorithm with and the S parameters extracted from HFSS to simulate the overall mixer’s performance.
Step 4, the final mixer circuit is obtained by iterative optimization.

Figure 5 shows the simulation results of the proposed 183 GHz sub-harmonic mixer. When the
LO signal is fixed at 4mw@91GHz, the optimal SSB (single-sideband) conversion loss of the mixer is
8.25dB@182GHz, and the SSB conversion loss is better than 8.7 dB among 170 GHz~190 GHz. It can be
seen that the return loss of the RF port is less than −9 dB in the band of 170 GH~190 GHz. Because the
LO frequency is fixed at 91 GHz, the return loss of the LO port is fixed at −7.7 dB.
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To verify the novel topology proposed in this paper, we used the mixer designed before as
comparison which is working at the same frequency. There is no grounding LPF in the topology, as
shown in Figure 6. The conversion loss, RF and LO return loss is shown in Figure 7. The conversion
loss is better than 8 dB at the 170 GHz~190 GHz, which has a minimum of 7.6 dB at 175 GHz. At the
band of 170 GHz~190 GHz, the RF return loss is better than −8 dB, while the LO return loss is the fixed
value of −9.5 dB.
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As listed in Table 2, when the conductive adhesive is randomly changed, the variation of 
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0.05 dB, respectively. However, the variation of mixer 2 is obviously higher than mixer 1, which can 
verify the grounding LPF can decrease the affection of random conductive adhesive. 
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Figure 7. Simulated SSB conversion loss and return loss of mixer 2.

As shown in Figure 8, the conductive adhesive can be divided into two sections. Section 1
is filled of adhesive, while Section 2 is random on the transmission line which affects the mixer’s
performance. In the simulation process, five cuboids are defined to represent Section 2, which has
reasonable random length, width, and height. The size of the five cuboids are (50,80,50), (100,90,30),
(60,120,50), (120,100,30), (110,150,30).
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We defined mixer 1 that used topology shown in Figure 1, while mixer 2 that in Figure 6.
The variation of conversion loss, RF return loss, and LO return loss compared with ideal assembling of
mixer 1 and mixer 2 is illustrated in Figures 9 and 10, respectively. Table 2 shows the variation range of
the comparison presented in Figures 9 and 10.

As listed in Table 2, when the conductive adhesive is randomly changed, the variation of conversion
loss, RF return loss, and LO return loss of mixer 1 are lower than 0.017 dB, 0.02 dB, and 0.05 dB,
respectively. However, the variation of mixer 2 is obviously higher than mixer 1, which can verify the
grounding LPF can decrease the affection of random conductive adhesive.
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4. Measurement and Discussion

The photography of mixer 1 and mixer 2 are shown in Figure 11. The mixer’s circuit is integrated
on a 50 µm thick quartz substrate and packaged in the mixer’s block which is split from the E-plane
and fixed by screws. The block also integrates standard flanges and an SMA connector for the RF
signal, LO signals, and IF signal, respectively. The size of the mixer’s block is 2 cm × 2 cm × 1.5 cm.
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Figure 11. (a) Quartz circuit in the mixer’s block. (b) Photography of the entire block.

Two blocks are fabricated and assembled for each topology, called mixer 1_1, mixer 1_2, mixer
2_1, and mixer 2_2. As shown in Figure 12, the shape of conductive adhesive in the DC ground of four
different mixers is different and random.
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Figure 12. Assembling conductive adhesive of mixer 1 and mixer 2.

The performance of the 183 GHz sub-harmonic mixer is measured by using the down-conversion
method. The test block diagram and test bench are shown in Figure 13. The required RF signal
(small signal) is generated by Farran’s VNA (vector network analyzer) expansion module which has a
multiplication number of 12. The output RF power is maintained at about −15 dBm at the band of 170
to 200 GHz. The standing wave of RF port can be tested at the same time by the VNA (Agilent N5247a).
The LO signal is generated by a frequency multiply and amplify link shown in Figure 13. The LO
chain is composed of the Agilent 8267D signal source (X-band signal) and *8 frequency multiplier
chain (90 GHz–100 GHz). The LO signal produced is greater than 5 mw. The IF signal generated by
the mixer is output to the spectrum analyzer (Agilent 9030A) through the SMA connector and coaxial
cable, and the power of IF signal and the SSB conversion loss are analyzed and calculated.
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Figure 13. Test diagram and test bench of the 183 GHz mixer.

To decide the optimal LO power, the optimal conversion loss at the 183 GHz frequency point
under different LO power is tested when the LO signal frequency is fixed at 91 GHz. Finally, the LO
power is determined to be 4 mw.

Figure 14 shows the measurement performance of mixer 1_1 and 1_2. The test results show that
the optimal SSB conversion loss of mixer 1_1 and mixer 1_2 is about 8.1dB@183GHz when the LO
power is fixed at 4mw@91GHz. It also can be seen that the SSB conversion loss is better than 10.6 dB in
the RF band of 173 GHz~191 GHz. However, when the RF signal is extended to both sides of the center
frequency, the deviation of conversion loss between the test and the simulation increases gradually,
and the deviation reaches 3 dB at 171 GHz.

Figure 14b shows the return loss curve at RF port under test and simulation. The test results show
that the RF port return loss is less than −9.8 dB over the entire test band and the test curve has the
same trend with the simulation.

Mixer 1_1 and mixer 1_2 have the same tendency in conversion loss and RF return loss measurement
curves. And the maximum difference of the conversion loss and RF return loss is 0.2 dB and 3 dB,
respectively. One reason can explain the phenomenon above. The parameters of the Schottky diode
junction utilized are deviated from actual values because the Schottky junction generates parasitic
capacitance and resistance at high frequencies.
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Figure 14. (a) Conversion loss test results of mixer 1. (b) RF return loss test results of mixer 1.

Figure 15 represents the test results of mixer 2_1 and 2_2. From Figure 15a, the tendency of
conversion loss of mixer 2_1 and 2_2 are approximately the same, and the maximum difference is 2 dB
at 175 GHz. However, the trends of RF return loss of mixer 2_1 and 2_2 have no similarity, where the
difference reaches 9.8 dB at 171 GHz.
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Figure 15. (a) Conversion loss test results of mixer 2. (b) RF return loss test results of mixer 2.

The SSB conversion loss under different LO frequency is tested and shown in Figure 16. The optimal
SSB conversion loss is 8.1dB@183GHz, 8.4dB@185GHz, and 8.1dB@187dB when the LO frequency is
91 GHz, 92 GHz, and 93 GHz, respectively. Since the optimal conversion loss is generally achieved at
low IF frequency, the curve in Figure 16 shifts to a higher frequency when the LO frequency is high,
which is similar to simulation. The 3 dB flatness bandwidth is about 20 GHz at the above LO frequency,
which explains the robust performance of the mixer.
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Table 3 lists the comparison of different sub-harmonic mixers working at 183 GHz with the mixer
in this paper. As can be seen from Table 3, the proposed sub-harmonic mixer designed is close to the
international advanced level in terms of performance.

Table 3. Comparison of different sub-harmonic mixers working at 183 GHz.

RF_Freq (GHz) Conversion Loss (dB) LO Power (mw) Ref.

170~192 <6 (DSB, min 4.9) 5 [17]
167~200 <6 (DSB) 2.5 [18]
176~192 <6.8 (DSB, min 4.9) 2 [19]
173~191 <10.6 (SSB, min 8.1) 4 This paper

5. Conclusions

In this paper, a novel sub-harmonic mixing topology is proposed which can effectively reduce
the effect of random assembly error on the mixer’s RF performance by adding a low-pass filter near
the DC ground. A solid-state sub-harmonic mixer with low-conversion loss operating at 183 GHz is
designed and tested based on the proposed circuit topology and anti-parallel Schottky barrier diode.
The effectiveness of the proposed topology is verified based on the comparison and analysis of the
simulation, measurement with a mixer with no grounding LPF at 183 GHz. The test results show that
the minimum SSB conversion loss of the mixer is 8.1dB@183GHz. The SSB conversion loss is less than
10.6 dB in the RF bandwidth of 173 GHz~191 GHz. In the 170 GHz~195 GHz, the return loss of the
mixer’s RF port is better than −9.8 dB. This work lays a foundation for terahertz space applications
in China.
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C.Y.; visualization, G.J. and S.L. All authors have read and agreed to the published version of the manuscript.
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