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Abstract: At present, with the explosive growth of data scale, subgraph matching for massive graph
data is difficult to satisfy with efficiency. Meanwhile, the graph index used in existing subgraph
matching algorithm is difficult to update and maintain when facing dynamic graphs. We propose
a distributed subgraph matching algorithm based on Partition Replica (noted as PR-Match) to
process the partition and storage of large-scale data graphs. The PR-Match algorithm first splits the
query graph into sub-queries, then assigns the sub-query to each node for sub-graph matching, and
finally merges the matching results. In the PR-Match algorithm, we propose a heuristic rule based
on prediction cost to select the optimal merging plan, which greatly reduces the cost of merging.
In order to accelerate the matching speed of the sub-query graph, a vertex code based on the vertex
neighbor label signature is proposed, which greatly reduces the search space for the subquery. As the
vertex code is based on the increment, the problem that the feature-based graph index is difficult
to maintain in the face of the dynamic graph is solved. An abundance of experiments on real and
synthetic datasets demonstrate the high efficiency and strong scalability of the PR-Match algorithm
when handling large-scale data graphs.

Keywords: subgraph matching; graph indexing; distributed computing; graph partition

1. Introduction

A graph is a semi-structured data represented by vertices and edges, which is usually represented
as G(V, E), where V represents the set of vertices and E the set of edges between vertices. In the
data analysis area, vertices are usually used to represent objects while edges reflects relationships
among objects. For example, a protein can be viewed as the vertex of a graph and the interaction of a
protein can be regarded as the edge of a graph, while a protein interaction network can be structured
as a STRING.

Graph theories have been applied to many scenarios such as optimal transport path, semantic web
analysis, social network analysis, community discovery, knowledge question and answer, and so on,
which can use an unsupervised embedding learning feature representation scheme by deep Siamese
neural networks [1] for dimension reduction. The graph theories can be applied to many other fields,
like merging with sensory data using the artificial neural networks for prediction [2] or merging with a
Markov Random Field to model the spatial correlation among data [3] for more accurate map matching,
which can use the Gaussian kernel-based method [4] for dimension reduction. Subgraph matching is a
very important research topic in graph theory which can help users to extract valuable information
from graph datasets. There are many important applications of the subgraph matching in the real
world. First, a protein molecular structure can be found to match the virus antibody in a biological
protein network, and knowledge retrieval with subgraph matching can be completed by transforming
the user description into the corresponding subgraph matching template. Also, subgraph matching
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can be used to detect similar organizations by finding the subgraph characteristics of certain groups in
social networks, thus providing useful information for public security and to investigate and solve
incidents. All in all, the subgraph matching is a very meaningful research field that has been used in
all walks of life, whose range of field is from biomedicine to artificial intelligence.

Subgraph matching has been proven as an NP complete problem by Ullmann [5]. With the
explosive growth of data scale in the big data era, the problem of subgraph matching for the
massive graph data has brought more challenges. The worst time complexity of the traditional
subgraph matching algorithm is close to the exponential level, which is very weak in the face of
large-scale data, and the traditional subgraph matching algorithms are mostly for the small-scale
graphs of the single-computer version, which do not consider the problem of the data graph split
and distributed query when the computing power and storage capacity of the single computer are
insufficient. At present, most of the subgraph matching algorithms utilize recursive backtracking
methods to match the query vertex continuously, and filter the query candidates with the graph
index. However, most of the algorithms lack extensibility and scalability for large-scale dynamic
graph data. Accompanying the increment of graph size, a single machine has difficulty in holding and
computing a large graph, therefore, distributed graph storage and matching present the significance
and necessity for massive graph datasets. Importantly, a large graph means that both the the numbers
of vertices and edges are large, and usually contain hundreds of millions of vertices and billions of
edges; large graph data partition is a very important research direction in the distributed graph data
processing. Existing distributed subgraph matching mainly uses an RDF graph engine and map-reduce
computing framework, which can hardly achieve satisfying efficiency.

To solve these problems, we propose a distributed subgraph matching algorithm based on
Partition Replica (noted as PR-Match) to process the subgraph matching of large-scale data graph.
The PR-Match algorithm mainly consists of four stages: data graph partitioning and storage, query
graph splitting, subquery matching, and subquery matching result merging. For the proposed
PR-Match algorithm, we design a large-scale data graph partition and storage scheme based on
the theory of equilibrium separation of large graphs, develop a high efficient vertex code index to
process fast updating and maintenance on dynamic graphs, and establish the heuristic rules based on
the prediction overhead to determine the merging sequence of subquery matching results.

We conduct abundant evaluations and comparative experiments on the proposed PR-Match
algorithm. We choose a proper data cleaning strategy based on the relationship of data volume,
completeness, time-dependence and correctness [6], and take the privacy of datasets into account [7].
The experimental results and analyses demonstrate that the PR-Match algorithm has good scalability
with different sizes of graph datasets. In addition, the performance of the PR-Match algorithm is
greatly improved when the vertex average degree of the data graph is large and the lables are more
signed, which shows the feasibility and efficiency of the vertex code index. At the same time, the query
response time of the PR-Match algorithm can be only slowly increasing with the size of graph datasets.
Accordingly, the PR-Match algorithm has obvious advantages over the high performance graph
database Neo4j, which shows that the PR-Match algorithm can be competitive for large-scale graph
data matching.

The remaining parts of this paper are organized as follows. Section 2 discusses the related work.
Section 3 illustrates problem definitions about subgraph matching. The proposed PR-Match algorithm
is elaborated in Section 4. The experiments are elaborated in Section 5. Section 6 concludes the paper.

2. Related Work

Subgraph matching usually uses the index strategy which establishes the inverted index according
to some features in the graph data to reduce the search space. iGraph [8] has made a related summary
and introduction to the index-based subgraph matching algorithm. iGraph divides the graph index set
into a mining index [9] part and a non-mining index [10] part. Mining index uses the high frequency
subgraph mining algorithm to find high frequency subgraphs, subtree, path and so on as the key
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of the index. The Tree+Delta and SwiftIndex [10] take subtree as index structure. Tree+Delta uses
the ring structure in the graph query as the online index and obtains a good retrieval effect for the
graph query containing the ring. Non-mining index uses the graph inherent structure information to
establish the index structure. C-Tree [10,11] puts forward the concept of the closure graph, and uses
this concept to build a hierarchical tree. Moreover, the equivalent vertices can be found by a two-time
sequential search in a graph [12] and large data graphs can be partitioned based on structures and
labels [13]. iGraph has concluded that (1) although gIndex is the oldest index method, it has the best
index effect (the pruning ability and I/O overhead in query); (2) the index effect is better in the dense
data graph with fewer lables; (3) the results of C-Tree is a little poor in most cases; (4) the complex
query Tree+delta on dense data graph is the best.

Previous algorithms based on the recursive backtracking and graph index target at small scale
graph datasets, while large-scale social networks and bioinformatics network are common at present,
a lot of researchers study the matching problem of super large-scale graphs. The Turboiso [14]
algorithm proposes a plan merging candidate region detection and joint arrangement that makes
the algorithm applicable to various query graphs with different structures and distribution. Similar
paper [15] avoids the Descartes Cartesian product by means of using paths. Liang et al. [16] design
a very clever index structure, which can take advantage of the powerful anti-monotone pruning,
horizontal pruning and vertical pruning of the index structure to greatly reduce the candidate set.
On this basis, a subgraph matching algorithm SMS2 is developed to handle subgraph queries over tens
of millions of vertices. Splitting a query graph into multiple sub query graphs accelerates the query
procedure. Based on that, SGMatch [17] realizes high performance large-scale subgraph matching by
optimizing the query graph decomposition and prediction-based subquery sequence.

Cloud computing and distributed computing are becoming more and more popular. For example,
the CAGW_PD dynamic replication strategy was applied to reduce file access time [18] in the
distributed environment, FD was applied to some distributed applications for improving QoS [19],
MR-M was applied to achieve the intrasession fairness and intersession fairness [20], and cloud
computing brought great convenience for smart energy management [21], and so on. More and more
large-scale data processing and analyses are moving to the distributed environment which makes
the research on distribution subgraph popular. There are two main patterns of graph expression,
simple graph and RDF graph, which can be transformed into each other although each of them has
different data presentation. Distributed RDF graph matching methods are divided into three categories
according to [22]: a cloud-based method [23–25] , a partition-based method [26–28] and a joint-based
method [29]. Cloud computing methods mostly use map-reduce computing framework and HDFS-like
distributed storage systems. Partition-based methods divide an RDF graph into multiple subgraphs
and each subgraph is maintained by a cluster node. When an SPARQL query is proposed, it is split
into multiple subqueries, and then the sub results are merged to obtain the complete matching result.
GraphPartition [28] splits the data graph by a hash partition algorithm. The subgraph is extended by
n-hop so that each subquery does not need to communicate with other cluster nodes. The joint-based
method needs to get metadata for each RDF graph endpoint, which is suitable for data sharing among
multiple organizations. When choosing a cloud-based method, multi-clouds can perform better than
a single cloud under a loose deadline with MCPCPP algorithms [30]. Furthermore, when network
congestion occurrs in a distributed environment, the NPD-RED [31] whose core idea is probability for
packet dropping is a useful choice.

3. Problem Definition

We consider the subgraph matching problem on the labeled undirected graphs, and the relevant
problem definitions are presented as follows:
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Definition 1. Label graph A labeled graph is a quadruple of the form G(V, E, L, F), where V is a set of
vertices, e(ui, uj) ∈ E is a set of edges, L is a set of label on vertices and edges, and F is a labeling function of the
form F : V ∪ E→ L, such that it gives a label to each vertex and edge.

Definition 2. Subgraph Given graphs G1 < V1, E1, L1, F1 > and G2 < V2, E2, L2, F2 >, graph G1 is the
subgraph of graph G2 if and only if:

(1) V1 ⊆ V2, E1 ⊆ E2, L1 ⊆ L2;
(2) ∀v ∈ V1, F1(v) = F2(v);
(3) ∀e(v1, v2) ∈ E1, F1(e) = F2(e).

Definition 3. Subgraph matching Given a query graph Gq < Vq, Eq, Lq, Fq > and a graph database
D = {G1, G2 . . . Gn}, subgraph matching problem or subgraph isomorphism problem is to find all data graphs
or subgraphs isomorphism of query graph Gq in graph database D.

Therefore, Subgraph matching aims to find the graph which is isomorphic to the query graph in
the graph datasets. The graph isomorphism definition is defined as follows:

Definition 4. Graph isomorphism Given graphs G1 < V1, E1, L1, F1 > and G2 < V2, E2, L2, F2 >, G1 and
G2 is graph isomorphism if and only if there is an injective function f : V1 → V2 such that the conditions hold:

(1) ∀v ∈ V1, F1(v) = F2( f (v));
(2) ∀e1(v1, v2) ∈ E1, ∃e2( f (v1), f (v2)) ∈ E2, F1(e1) = F2(e2).

For convenience, we use Q to represent the query graph, D to represent the graph database, G to
represent a data graph, u to represent the vertex in the query graph, and v to represent the vertex in
the graph data.

4. Proposed PR-Match Algorithm

This section gives a detailed illustration about our proposed PR-Match algorithm, mainly
involving data graph partition and storage, query graph split, subquery match, and intermediate
results merge.

4.1. Graph Data Partition

For the graph data partitions which are stored on multiple machines, the time cost of each
subgraph matching is different. Considering the storage space overhead and the characteristics of
the data access, we choose the neighbor vertex replication strategy to reduce the cost of subgraph
matching. The graph data is firstly divided into the hash partition graph according to the specific
vertex information. Then, the neighbor vertices of the core vertices in the partitioned graph and the
direct adjacency edges are copied to the current partition graph. A distributed graph definition is
given below:

Definition 5. Distributed graph A distributed graph G < V, E, L, F > consists of a set of partitions
F = {F1, F2, · · · , Fk}, where each Fi is specified by < Vi

c ∪Vi
e , Ei

c ∪ Ei
e, Li, Fi > (i ∈ 1, 2, · · · , k) such that :

(1) V1
c , V2

c , · · · , Vk
c is a partition of V, ∀i, j ∈ 1, 2, · · · , k, i 6= j, Vi

c ∩V j
c = ∅ , and Ui∈1,2,··· ,kVi

c = V, Vi
c is

called as core vertex of Fi;
(2) e(v1, v2) ∈ Ei

c, where v1 ∈ Vi
c , v2 ∈ Vi

c , Ei
c is called as core edge of Fi;

(3) Ei
e is a set of crossing edges between Fi and other partitions, Ei

e is called as extended edge of Fi;
(4) e(v1, v2) ∈ Ei

e, where v1 ∈ Vi
c , v2 ∈ V j

c and i 6= j, Vi
e is called as extended vertex of Fi.

The data graph is divided into multiple partitions after being hashed. Each machine stores a
partition graph. A specific description of the hash partition and vertex neighbor replication on graph
data is described in Algorithm 1.
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Algorithm 1: Graph Data Partition Algorithm
input :a data graph G < V, E >; the number of subgraphs k
output :a set of Partitions F = {F1, F2, · · · , Fk}

1 for vi ∈ V do
2 p = hash(vi)mod k + 1;
3 Vp

c = Vp
c ∪ {vi};

4 for ei(vm, vn) ∈ E do
5 if hash(vm) = hash(vn) then
6 p = hash(vm)mod k + 1;
7 Ep

c = Ep
c ∪ {ei(vm, vn)};

8 else
9 x = hash(vm)mod k + 1;

10 y = hash(vn)mod k + 1;
11 Ex

e = Ex
e ∪ {ei(vm, vn)} , Ey

e = Ey
e ∪ {ei(vm, vn)};

12 Vx
e = Vx

e ∪ {vn} , Vy
e = Vy

e ∪ {vm};

Firstly, Algorithm 1 determines which partition the current vertex vi belongs to according to
the vertex hash value, at the same time, the vertex vi is the core vertex of the partition Fi. Secondly,
Algorithm 1 obtains the edge set of the partition. If the vertices of the current edge ei(vm, vn) are both
in the same partition Fi, add the edge ei to the partition Fi as the core edge of this partition. If the
vertices vm and vn of the current edge belong to different partitions Fi and Fj, then the edge is added
to the partition Fi and Fj as their extended edges. Furtherrmore, Algorithm 1 adds vm to partition
Fj as extended vertex of partition Fj, adds vn to partition Fi as extended vertex of partition Fi. Also,
both the number of the vertices and edges are very large, whose numerical units are both 100 million.
The time complexity of Algorithm 1 is O(|V|+ |E|), where |V| is the number of vertices in the graph
data, and |E| is the number of edges in the graph data.

4.2. Query Decomposition

After partitioning the big graph data into the cluster environment, a subdgraph on a cluster node
is incomplete. If the query request is sent to a cluster node directly, the information of other subgraphs
should be obtained from other cluster nodes, which would increase the communication overhead
among the cluster nodes. According to the neighbor replication strategy, each cluster node has all
the direct neighbor information of its core nodes. Based on this knowledge, the query graph can be
decomposed into several subquery graphs, so that each subquery can be independently calculated on
each cluster node to reduce the communication overhead. Firstly, we give the relevant definitions.

Definition 6. Hopping number Given a graph G < V, E, L, F >, the hop number between vertex vi and vertex
vj is denoted as hop(vi, vj), which is the minimum distance between vi and vj in the graph. Similarly the hop
number between vertex v and edge e is denoted as hop(v, e(vi, vj)), which is “min(hop(v, vi), hop(v, vj)) + 1”
meaning the minimal number of crossing edges that vi reaching to e.

We specify hop(vi, vj) = 0 when vi = vj, otherwise, when vi and vj are not reachable, hop(vi, vj) = ∞.

Definition 7. Star graph Graph G < V, E, L, F > is called as a star graph, if and only if:

(1) ∃v0 ∈ V, ∀v ∈ V when v 6= v0, hop(v0, v) = 1, v0 is called as the center point of graph G;
(2) ∀e ∈ E, hop(v0, e) = 1 where v0 is the center point of the graph G.

We use G∗ to represent the star graph. From the Definition 6, we can find that the star graph G∗ is
a graph composed of a center point and all its direct neighbor vertices, and the edges of a center point
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to its neighbor vertices. To be convenient, the star graph is represented as G∗ < v0 ∪ N(v0), E, L, F >,
where v0 is the center point of G∗, and N(v0) is the neighbor vertex of v0 .

Theorem 1. A data graph G is partitioned into F = F1, F2, · · · , Fk, if the query graph Q is a star graph, query
graph Q can be answered independently on each partitioned graph Fi.

Proof. When the query graph Q is matched with the partition graph Fi, the starting query vertex is
bound to the center point of the partition graph Fi. Because all the neighbors and direct adjacency edge
information of the center point exist in the partition graph Fi, all the match results of the query graph
Q with the partition graph Fi can be obtained.

To avoid the communication overhead between cluster nodes during the process of subgraph
matching, the original query graph is split into several star subgraphs according to the Definition 7.
Although it is an NP-hard problem to split a query graph into multiple star graphs [32], there still
remains a variety of resolution schemes to be obtained. To choose the best decomposition solution,
some conditions should be taken into consideration. One is that the lower the number of subqueries,
the less calculation cost of subgraph matching. Another condition is that the fewer candidate results
for each subquery, the less cost of intermediate result merging. According to these conditions, we
define the center point selection function for a star query graph, which is represented as Selectivity:

Selectivity(u1) =
degree(u1)

f req(u1.label)∗ min
e(u1,u2)∈E

f req(u2.label)

Where the degree(u) represents the degree of vertex u, and f req(u.label) indicates the number of
labels of the vertex u appearing in the graph data. We choose a vertex with bigger degree and fewer
candidate sets as the center point of the query graph. Based on the selection function, we propose a
query graph decomposition algorithm, as shown in Algorithm 2.

Algorithm 2: Query Graph Decomposition Algorithm
input :a query graph Q < V, E, L, F >
output :a set of star graph T

1 while E 6= ∅ do
2 Smax ← 0, u← null;
3 for ui ∈ V do
4 Stmp = Selectivity(ui);
5 if Stmp ≥ Smax then
6 Smax = Stmp;
7 u = ui;

8 T = T ∪ {G∗(u)};
9 E = E/ {e|e ∈ G∗(u)};

10 V = u/ {v|v = u, or deg(v) = 0};

In Algorithm 2, the input is the original query graph, and the output is the decomposition result
of the query graph. Because subquery decomposition is an edge coverage problem, our algorithm
utilizes the edge traversal method to generate a subquery. The algorithm firstly finds the highest
selective vertex, then constructs the star query graph with the current vertex as the center point of
the current subquery. G∗(u) is a star graph with vertex u as its center point. Next, the algorithm
deletes the center point of the current subquery and the involved edges, as well as the vertex with
0 indegree. This algorithm is terminated when all the edges of the query graph are covered by the
subquery. The time complexity of Algorithm 2 is O(|V| · deg(u)), where |V| represents the number
of the vertex in the query graph, and the deg(u) represents the average degree of the vertex in the
query graph.
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4.3. Subquery Matching

After the original query graph is decomposed into sevaral star query graphs, the subquery
matching requests are distributed to all the nodes in the cluster; therefore, the cluster nodes can
complete the subquery matching according to the local data. Since the subgraph matching is an
NP-complete problem, most algorithms use the “filter-refining” framework to accelerate the response
time of subgraph matching. Firstly, the candidates which cannot satify the conditions are removed
by the pre-designed filtering strategy. Secondly, the subgraph isomorphism test is applied to the
remaining candidate sets. With the thought of the graph index, we design a vertex code to reduce the
search space of the subquery.

The vertex candidate set of the query vertex u named C(u) in graph database D consists of all
vertices which contains Fv(u) labels in the graph database. If the vertex v of the data graph matches
the vertex u of the query graph, |N(v)| is bigger than |N(u)|, where |N(u)| is the number of neighbors
of the vertex u.

Definition 8. Neighbor label signature The neighbor label signature of vertex v is denoted by Sig(v), which
is represented by a tuple < Pn(v), Pe(v) >, where Pn(v) is a label of multiple sets of all its neighbor vertices,
Pe(v) is a label of multiple sets of edges between vertex and its neighbors, that is:

(1) I ∈ Pn(v)⇒ ∃v
′ ∈ N(u), I = Lv(v);

(2) I ∈ Pe(v)⇒ ∃v
′ ∈ N(v), e(v, v

′
) ∈ E, I = Le(e).

Theorem 2. Given graphs Q and G. Under the bijective function f , Q is isomorphic to G. For any vertex u in
graph Q, the neighbor label signature of vertex u is signed to be Sig(u) =< Pn(u), Pe(u) >. If v = f (u) and
its neighbor label signature is signed to be Sig(v) =< Pn(v), Pe(v) >, then they should satisfy:

(1) Pn(u) ⊆ Pn(v);
(2) Pe(u) ⊆ Pe(v).

then, the label of vertex v covers that of the vertex u.

The Theorem 2 clearly states that vertex neighbor label signature contains the label information of
the vertices around the vertex and their rough structure information; thus, the candidate nodes can be
filtered with the vertex label signature. In order to update and verify the signature information of a
vertex label, we map the signature information of the vertex neighbor label to the numerical space.

Definition 9. Label code Given a label l, the number of non-negative hash functions m, the label code of label
l is denoted by Encode(l) which is a binary string I with a length of K, where I is initialized to 0, and each of
the values satisfies the following formula: where I[j] represents the value of the jth bit in the binary string I.

I[hashi(label)]mod K + 1 = 1, i ∈ 1, 2, · · · , k;

Definition 10. Vertex code Given a vertex v, the neighbor label signature of point v is signed to Sig(v) =<

Pn(v), Pe(v) >, and the vertex code of vertex v is denoted by Encode(v) = p � q, where p is a counting string
of all labels encoded in Pn(v), and q is a counting string of all labels encoded in Pe(v). � is a join operation for
counting strings, and |Encode(v)| = 2k, that is:

(1) p[i] = ∑
l∈Pn(v)

Encode(l)[i], i ∈ 1, 2, · · · , k

(2) q[i] = ∑
l∈Pe(v)

Encode(l)[i], i ∈ 1, 2, · · · , k

Theorem 3. Given graphs Q and G, under the bijective function f , Q is isomorphic to G. For any vertex u in
graph Q, the vertex code of vertex u is signed to be Encode(u) = p1 � q1, if v = f (u) and its vertex code is
signed to be Encode(v) = p2 � q2, then they should satisfy:
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(1) p1[i] ≤ p2[i];
(2) q1[i] ≤ q2[i].

According to the above definitions and theorems, the subquery matching algorithm is presented
in Alogirthm 3.

Algorithm 3: Subquery Matching
input :star query graph Q∗ < u0 ∪ N(u0), Eq, Lq, Fq >, partition graph Fi on clusters i
output :a set of matching graph PMq

i graph
1 PMq

i ← ∅ ;
2 get candidate vertices C(u0) of query vertex u0 ;
3 for v0 ∈ C(u0) do
4 if |N(v0)| ≤ |N(u0)| then
5 Break ;

6 if v0 ∈ Vi
c then

7 Get vertex code of vertex v0 as Encode(v0) ;
8 if Encode(v0)[i] ≥ Encode(u0)[i], i ∈ {1, 2, 3, · · · , 2k} then
9 for um ∈ N(u0) do

10 for vn ∈ N(v0) do
11 if Fq(um) j Fi(vn) and Fq(u0, um) j Fi(v0, vn) then
12 Sm → Sm ∪ {(um, vn)};

13 PMq
i = PMq

i ∪
{
{(u0, v0)} × S1 × S2 × S3 · · · Sp

}
;

The star graph matching mainly includes two processes: namely, off-line operation and online
operation. In off-line operation, vertex code is generated for each vertex in the graph database D.
The online operation is divided into two stages: candidate filtering and subgraph connectivity testing.
The Algorithm 3 firstly obtains the candidate set of a center point of star query graph based on the label,
then removes the vertex candidates which are not the center point of the partition Fi. Next, the pruning
operation is carried out according to the vertex degree and the vertex code, then the connectivity test
of the star graph is terminated. Finally, the Cartesian product of the neighbor matching vertices of the
center points is computed and all the matching results are expanded. The worst time complexity of
Algorithm 3 is O(n · (m− 1)!), where n represents the number of candidate sets of the center point of
the star query graph in the graph database Di, and m represents the number of vertices contained in
the query graph.

4.4. Intermediate Result Merge

After completing the previous work, the matching results of the subqueries of the original query
graph are obtained. In order to achieve the result of the original query graph, it is necessary to merge
the intermediate results of the subquery. The merge operation of the subquery matching results is a
time-consuming task and a large number of previous work [14,33–35] shows that the matching order of
processing units and the merging order of subquery matching results have a very significant impact on
the performance of subgraph matching. This section mainly discusses the optimization of the merging
order of subquery matching results.

Definition 11. Merge plan The partition result of the query graph Q is T = q1, q2, · · · , qn, and its matching
result on all cluster nodes is M = M1, M2, · · · , Mn, and Ω = Ms1 ./ Ms2 ./ · · · ./ Msn represents a merge
plan for the matching result of subquery. The star graph corresponding to the Msi has intersecting vertices with
a subquery graph before Msi in the merge plan sequences. Msi ∈ M, ./ represents the merge operation.
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In the Definition 11, the subquery located in the merge plan is intersected with a certain subquery
before its location, which can make sure that each merge performs a connectivity check and avoids the
invalid merge overhead.

Definition 12. Merge cost A graph database D has been stored on m machines, the query graph Q is
decomposed into n star query graphs, the matching results of subquery qi on the node k is PMi

k, then the
merge overhead of the merge plan Ω is:

Cost(Ω) = O(∏n
i=1(∑

m
j=1(|PMi

j|+ 1)))

Definition 13. Optimal merge plan Given the matching results of all subqueries on the partition, the merge
plan is the optimal merge plan if and only if for any merge plan Ω

′
, Cost(Ω) ≤ Cost(Ω

′
).

Since finding the optimal merge plan is an NP-complete problem, many researcheres have used
dynamic programming and greedy strategy to obtain the suboptimal merge plan. The methods to
obtain the suboptimal merge plan are mainly divided into two categories. The first one is to determine
the merge sequence before the actual merge conduction accroding to a static overhead prediction model,
so the merge sequence will not be modified during the merge process. Actually, a well performed
static overhead prediction is a key point in this method. The other one is to firstly choose an initial
matching set, and the next matching set is dynamically selected according to the current merged state.
This method requires a dynamic merging cost calculation model. Although the dynamic methods
have better merging performance, the static methods have better results for specific datasets or specific
query graphs. In this paper, we use the static method to determine the merging order of the subquery
matching results, and design a static cost prediction function called P− Cost. Based on the above,
this paper is different from other papers that also use the Partition Replication, such as [36].

Definition 14. Prediction merge cost A graph database D has been stored on m machines, the partition
result of the query graph Q is T = q1, q2, · · · , qn, and its matching result on all cluster nodes is
M = M1, M2, · · · , Mn, and Ω = Ms1 ./ Ms2 ./ · · · ./ Msn represents a merge plan for the matching
result of subquery, then the prediction merge cost of the merge plan Ω such that:

(1) The prediction merge cost of the matching result Msi and the matching result Msj is:

P− Cost(Msi ./ Msj) = (∑m
i=1(|PMsi

i |+ 1))× (∑m
i=1(|PMsj

i |+ 1))

(2) The prediction merge cost of merging operation Oi and matching result Msi+1 is:

P− Cost(Oi ./ Msi+1) = p− Cost(Oi × (∑m
i=1(|PMsi

i |+ 1))× ( 1
2 )

α)

(3) The prediction merge cost of merge plan Ω is:

P− Cost(Ω) = ∑i∈1,2,··· ,n−1(P− Cost(Oi ./ Mi+1))

α is the number of intersecting vertices of the subquery qsi+1 and the merging result Oi, represents the matching
results of subquery qi on the node k, and the Msi ∈ M, ./ represents the merge operation.

Since the size of the query graph is small, we can list all possible merging plans in a reasonable
time; then, we can choose the merging plan with the lowest prediction cost as the optimal merger plan.

After the merging sequence is determined, we can use the nested loop to complete merging of the
matching results of the subquery. The illustration about the intermediate result merge is presented
in Algorithm 4. The Algorithm 4 mainly completes the merge process of the matching results of the
subquery by calling the merge subroutine recusiveJoin which is presented in Algorithm 5 based on
the depth first traversal. The Algorithm 5 firstly checks whether the current depth has reached the
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maximum depth (that is, the merge result is the matching graph of the original query graph). If the
maximum depth is reached, the current result is added to the final result set, otherwise, a connectable
test will be conducted between the current depth subquery matching results and the merged results.
The merge state will be updated when one of the current subgraph matching results is connectable
with the merged result; we then proceed to the next layer’s recursive merge operation. Note that
after each merge is completed, the state that needs to be restored before the merge would be returned.
The worst time complexity of the matching result merge is O(∏m

i=1(|Msi |), where|Msi | represents the
number of matching graphs of the subquery qsi on all partition graphs.

Algorithm 4: Subquery Matching Result Merge
input :optimal merge plan Ω = Ms1 ./ Ms2./···./Msn , the matching results of all subqueries

on all partitions PM =
{
∪PMs1

i ,∪PMs2
i , · · · ,∪PMsn

i
}

output :all the matching subgraph MG of original query graph on graph database D
1 MG ← ∅, M← ∅, curDepth← 1, maxDepth← n + 1;
2 Call recusiveJoin (curDepth, maxDepth, M, MG) ;
3 return MG;

Algorithm 5: Merge Subroutine recursiveJoin
input :curDepth, current recursive depth; maxDepth, the max recursive depth, M,

intermediate matching result; MG, matching subgraph
output :

1 if curDepth == maxDepth then
2 MG ← MG ∪M ;

3 Get the subquery matching results of qcurDepth as ∪PMcurDepth
i ;

4 for G∗i ∈ ∪PMcurDepth
i do

5 if G∗i is joinable with M then
6 Merge G∗i with intermediate result M, as M← M ./ G∗i ;
7 recursiveJoin (curDepth + 1, maxDepth, M, MG) ;
8 Remove G∗i from M, and restore the state before merge ;

5. Experiments

The proposed PR-Match algorithm runs in a distributed cluster with six machines, each of the
machines is configured with 8G DDR3 memory, an Intel i5-4590 CPU of 3.3 GHz, four cores per
CPU; the network adapter is the RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller with a
capacity of 1Gbps, a ST1000DM003-1ER162 disk with a capacity of 1TB. All the codes of the algorithm
are implemented by Java, the operating system of the machine is Ubuntu Linux, and the version
number of the neo4j graph database used by the comparison experiment is neo4j-community-3.1.7.
The experiments datasets are illustrated as below:

(1) The subgraph matching on the small graph set uses the AIDS real data and the synthesized
dataset generated by GraphGen;

(2) The subgraph matching on a single large graph uses the US Patents [37] real dataset and the
synthesized dataset generated by R-Mat [38] .

5.1. Subgraph Matching on Small Graphs

For the subgraph matching experiment of small graph sets, we use the AIDS dataset and the
GraphGen synthesis dataset. GraphGen synthetic dataset contains 20,000 data graphs, 100 vertex
labels and 100 edge labels. The experimental results are shown in Figures 1 and 2. It is found that the
efficiency of the subgraph matching of PR-Match algorithm is similar to that of the Neo4j. When the
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query graph is small, the PR-Match even performs worse than the Neo4j, because Neo4j is a centralized
single machine matching and the PR-Match algorithm is a distribution pattern matching.

Figure 1. Subgraph matching on a set of small graphs-AIDS.

Figure 2. Subgraph matching on a set of small graphs-GraphGen.

5.2. Subgraph Matching on a Single Large Graph

“US Patents” is a patent reference network that recorded the reference relations of patents between
1963 and 1999 in the United States. It is used in [35] . We use the patent “NCLASS” domain as a patent
label, then 714 labels of vertex in total. For the reason that there is only one reference relationship
between the patents, to extend the edge relationship, considering a relationship edge, we use the sum
of the end point patents release year as the edge label, so we get 630 edge labels in total. R-Mat is a
large graph generating tool to simulate large-scale network graphs. The graph generated by R-Mat is
unlabeled graph. For this reason, we randomly assign a label for each vertex and edge. Three types
of query graphs for subgraph matching have been conducted on a single large graph: path query,
clique query and random graph query.

5.2.1. Path Query

In the path query experiment, the query graph is a path consists of vertices. We give a path set
which contains nine kinds of path, the vertex number of path range from 2 to 10. Experiment results on
the US Patents dataset and the R-Mat synthetic dataset are shown in Figures 3 and 4. Accroding to the
Figures 3 and 4, neo4j has advantages in path matching while the response time of PR-Match algorithm
is a little high in the path matching. The main reason is that neo4j uses a unique physical storage mode
and a powerful traverse framework, meanwhile, PR-Match increases the number of sub-queries in the
path query and the pruning ability at the center vertex of the sub-query also decreases.
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Figure 3. Path matching-US Patents.

Figure 4. Path matching-R-Mat.

5.2.2. Clique Query

In clique query, each query graph is a complete graph, which indicates that the query graph
contains 1/2|V|(|V| − 1) edges. The clique query graph set contains six kinds of queries with the
graph vertex number vary from 2 to 7. Experiment results on the US Patents dataset and the R-Mat
synthetic dataset are shown in Figures 5 and 6. With the analysis, Neo4j query response time is rapidly
increased when the vertex number of the query graph goes big. As a comparison, the PR-Match
response time growth maintains as a stable rate. The query efficiency of neo4j is lower than PR-Match
when the vertex number of a query graph is larger than 5. This is because as the query graph density
increases, the number of query resolutions will not be too large but the neighbor label density vertex
increases at the same time. The pruning ability of vertex neighbor label coding is highly improved.

Figure 5. Clique matching-US Patents.
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Figure 6. Clique matching-R-Mat.

5.2.3. Random Query

The vertices and edges of the query graph in the random graph query are randomly selected.
The random query graph set contains a total of six kinds of queries with the number of vertices ranging
from 2 to 7. Experiment results on the US Patents dataset and the R-Mat composite dataset are in
Figures 7 and 8, the PR-Match algorithm does not have advantages over the neo4j in the small-scale
query graph, but as the size of the query graph gradually increases, the gap between PR-Match and
neo4j has been narrowed and surpassed.

Figure 7. Random query-US Patents.

Figure 8. Random query-R-Mat.

5.3. Scalability Test of PR-Match Algorithm

Two sets of experiments are designed to test the scalability of subgraph matching. The first set
is used to study the effect of data graph size on the efficiency of subgraph matching. The second
set aims to study the influence of an average vertex degree of the query graph on the efficiency of
subgraph matching.
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5.3.1. Data Size

To study the effect of different scale data graphs on the efficiency of subgraph matching, we use
GraphGen to generate five sets of small graphs, the graph numbers of each set are 10 K, 20 K, 30 K,
40 K and 50 K, respectively. We also get five large graphs generated by R-Mat, the number of vertices
corresponding to the five large graphs are 2 million, 4 million, 6 million, 8 million and 10 million,
respectively. The used query graph is a random graph. The query graph contains seven vertices.
The experimental results are presented in Figures 9 and 10. Comparative analysis shows that PR-Match
has obvious advantages in large-scale data graphs and query response time increases slowly with the
increase of data graph size.

Figure 9. Data size-GraphGen.

Figure 10. Data size-R-Mat.

5.3.2. Average Vertex Degree

In order to study the influence of the average vertex degree of the query graph on the subgraph
matching algorithm, the experimental evaluation is carried out on the AIDS and US Patents datasets.
The query graph is a random graph, and the query graph contains seven vertices with average vertex
degrees increased from 2 to 6. Experiment results shows in Figures 11 and 12. Comparative analysis
shows that on the small scale data graph AIDS, the performance of Neo4j and PR-Match is similar but
the response time of the PR-Match algorithm increases slower than Neo4j when the average vertex
number of query graph increased. On the large data graph US Patents, PR-Match is not only owns
shorter response time but also has lower response time increament rate when the average vertex degree
of the query graph grows compared with Neo4j. Therefore, we can demonstrate that the PR-Match
algorithm has obvious advantages in a large-scale data graph and dense query graph.
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Figure 11. Average vertex degree-AIDS.

Figure 12. Average vertex degree-US Patents.

5.4. Experiment Summary

Based on the above extensive experimental evaluations and comparative analysis, we find that
the PR-Match algorithm has good performance in two different application environments: small graph
set and single large graph. The PR-Match has more applications and is compared with the previous
subgraph matching algorithms in a single environment. In addition, the performance of the PR-Match
algorithm is greatly improved when both the average vertex degree of the data graph and the number
of graph labels are large, which indicates the feasibility and efficiency of vertex neighbor label coding
in this paper.

6. Conclusions

Our paper proposes a PR-Match algorithm for subgraph matching on large-scale graph
datasets.The main work involves that a vertex neighbor replication strategy is designed to consider
the efficient graph data partition and query decomposition; a vertex code graph index of the vertex
neighbor label is used to prune the query result candidate set; a combined order selection strategy
based on the cost prediction is proposed to greatly reduce the cost of merging. Abundant experiments
are conducted to domonstrate the efficiency and scalability of the proposed PR-Match algorithm.
Meanwhile, the query response time of the PR-Match algorithm only increases slowly with the increase
of data graph scale. Therefore, compared with Neo4j, a high-performance graph database at the
present stage, it has significant advantages and it is capable of sub-graph matching tasks on large-scale
data graphs.
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