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Abstract: Despite its remarkable capability in handling arbitrary cluster shapes, support
vector clustering (SVC) suffers from pricey storage of kernel matrix and costly computations.
Outsourcing data or function on demand is intuitively expected, yet it raises a great violation
of privacy. We propose maximized privacy-preserving outsourcing on SVC (MPPSVC), which, to the
best of our knowledge, is the first all-phase outsourceable solution. For privacy-preserving, we exploit
the properties of homomorphic encryption and secure two-party computation. To break through the
operation limitation, we propose a reformative SVC with elementary operations (RSVC-EO, the core
of MPPSVC), in which a series of designs make selective outsourcing phase possible. In the training
phase, we develop a dual coordinate descent solver, which avoids interactions before getting the
encrypted coefficient vector. In the labeling phase, we design a fresh convex decomposition cluster
labeling, by which no iteration is required by convex decomposition and no sampling checks exist
in connectivity analysis. Afterward, we customize secure protocols to match these operations for
essential interactions in the encrypted domain. Considering the privacy-preserving property and
efficiency in a semi-honest environment, we proved MPPSVC’s robustness against adversarial attacks.
Our experimental results confirm that MPPSVC achieves comparable accuracies to RSVC-EO, which
outperforms the state-of-the-art variants of SVC.

Keywords: privacy-preserving cluster analysis; support vector clustering; outsourcing; cloud
computing; homomorphic encryption

1. Introduction

Clustering forms natural groupings of data samples that maximize intra-cluster similarity and
minimize inter-cluster similarity. Inspired by support vector machines (SVMs), support vector
clustering (SVC) has attracted many studies for remarkably handling clusters with arbitrary shape [1–4].
Various application areas are closely related to it, e.g., information retrieval and analysis, signal
processing, traffic behavior identification, etc. [2,4–6]. However, building a good clustering model
requires a large number of valid training samples and a substantial iterative analysis under specific
metrics; hence, it is frequently hard for individuals or small organizations to build their model on those
quickly accumulated data. The pricey storage of the kernel matrix and costly computations by the dual
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problem solver and a large number of sampling checks set big barriers to its applications [4,7,8]. To
tackle this issue, a viable solution is to outsource its heavy workloads to the Cloud [9] with sufficient
computing resources. With suitable outsourcing techniques, the excess requirements of computational
and storage resources for data owners can be mitigated to the Cloud.

By introducing Cloud computing, a server (in logical) in the Cloud takes the place of the client
(data owner) to finish either the training phase or the labeling phase, or both. After all, as a third-party,
the credibility of servers cannot be fully guaranteed. The undertaken tasks are remotely based on
privately owned data samples. Furthermore, there is no need for the server to disclose any details or
negotiate parameters of the analysis, even if it offers a clustering service to the client. Hence, using a
third-party to build or utilize models on sensitive data is risky even if the service provider claims that
it will not observe the analysis [10,11]. It is crucial to develop a privacy-preserving SVC which seeks a
server to train the model and label data samples while guaranteeing the privacy, i.e., the input data,
the coefficient vector, and the labeling results.

In this paper, we propose, to the best of our knowledge, the first known client–server
privacy-preserving SVC architecture, namely maximized privacy-preserving outsourcing on SVC
(MPPSVC), to maximize the benefits of the emerging Cloud computing technology in cluster analysis.
As shown in Figure 1, the client first sends a protected diagonal matrix to the server; then, the server
employs a reformative SVC framework to perform the dual problem solver in the encrypted-domain
(ED) and sends the encrypted coefficient vector back. To let the client know the cluster prototype and
the labeling results, we first cut off the traditional iterative analysis for efficiency and securely exploit
the homomorphic encryption properties. Then, we design lightweight secure protocols which require
a limited number of interactions. We assume that both the client and the server execute the protocol
correctly to maintain their reputation; hence, they will behave in a semi-honest manner, i.e., they are
honest but curious, thus privacy is a real issue. The main contributions of this work lie in:

(1) A reformative SVC with elementary operations (RSVC-EO) is proposed with an updated dual
coordinate descent (DCD) solver for the dual problem. In the training phase, it prefers a linear
method to approach the objective without losing validity. Furthermore, it easily trades time for
space by calculating kernel values on demand.

(2) A fresh convex decomposition clustering labeling (FCDCL) method is presented, by which
iterations are not required for convex decomposition. In connectivity analysis, the traditional
segmer sampling checks in feature space are also avoided. Consequently, to complete calculations
in each step of the outsourcing scene, a single interaction is sufficient for prototype finding and
connectivity analysis. Without a mass of essential iterations, the labeling phase will not hurt the
outsourcing.

(3) Towards privacy-preserving, MPPSVC is proposed by introducing homomorphic encryption,
two-party computation, and linear transformation to reconstruct RSVC-EO. Although these
protocols limit the calculation types, MPPSVC works well with maximized outsourcing
capability. In the field of SVC, to the best of our knowledge, it is the first known
client–server privacy-preserving clustering framework solving the dual problem without
interaction. Furthermore, it can securely outsource the cluster number analysis and cluster
assignment on demand.

The remainder of the paper is organized as follows. Section 2 briefly describes the classic SVC
and the homomorphic encryption and discusses the privacy violation and limited operations of SVC
outsourcing. In Section 3, we first reformulate the dual problem and propose the DCD solver to
it. Meanwhile, we present FCDCL that completes convex decomposition without iterative analysis
and finishes connectivity analysis irrespective of sampling. By integrating these designs, we give an
implementation of RSVC-EO in plain-domain (PD). Section 4 proposes MPPSVC for the client–server
environment in ED, and presents the core idea of securely outsourcing the three crucial tasks of
RSVC-EO. Section 5 gives performance and security analysis for these ED techniques. Section 6
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reviews the related works. Finally, the conclusions are drawn in the Section 7, as well as the future
works to be investigated.
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Figure 1. Architecture of secure outsourcing each phase of SVC.

2. Preliminaries

2.1. Support Vector Clustering

2.1.1. Estimation of a Trained Support Function

Assume that a dataset X has N data samples {x1, . . . , xN}, where xi ∈ Rd with i ∈ [1, N].
Through a nonlinear function Φ(·), SVC maps data samples from data space to a high-dimensional
feature space and finds a sphere with the minimal radius which contains most of the mapped data
samples. This sphere, when mapped back to the data space, can be partitioned into several components,
each enclosing an isolated cluster of samples. In mathematical formulation, the spherical radius R is
subject to

min
R,α,ξi

R2 + C ∑
i

ξi

s.t. ||Φ(xi)− α||2 ≤ R2 + ξi

(1)

where α is the sphere center, ξi is a slack variable, and C is a constant controlling the penalty of
noise. Following Jung et al. [12], the sphere can be simply estimated by a support function that is
defined as a positive scalar function f : Rn → R+. After solving the dual problem in Equation (2),
we estimate the support function by support vectors (SVs) whose corresponding coefficients βi ∈ (0, C)
for i = 1, . . . , N.

min
β j

∑
i,j

βiβ jK(xi, xj)−∑
j

K(xj, xj)β j

s.t. ∑
j

β j = 1, 0 ≤ β j ≤ C, j = 1, . . . , N
(2)



Electronics 2020, 9, 178 4 of 30

By optimizing Equation (2) with Gaussian kernel K(xi, xj) = e−q||xi−xj ||2 , the objective trained
support function is formulated by

f (x) = 1− 2 ∑
j

β jK(xj, x) + ∑
i,j

βiβ jK(xi, xj). (3)

Theoretically, the radius R of the hypersphere is usually defined by the square root of f (xi) where
xi is one of SVs.

2.1.2. Cluster Assignments

Since SVs locate on the border of clusters, a simple graphical connected-component method can
be used for cluster labeling. For any two samples, xi and xj, we check m segmers on the line segment
connecting them by traveling their images in the hypersphere. According to Equation (3), xi and xj
should be labeled the same cluster index if all the m segmers are always lying in the hypersphere, i.e.,
f (xm̃) ≤ R2 for m̃ ∈ [1, m]. Otherwise, they are in two different clusters.

2.2. Homomorphic Encryption

Multiplication is critical for SVC. Although the fully homomorphic encryption protects
multiplicative items well, the existing schemes are far from practical use. Since multiplication can be
replaced by addition, we prefer using the Paillier cryptosystem [13]—an additively homomorphic
public-key encryption scheme—to secure clustering analysis and data exchange. It was also adopted
by the authors of [14–18] for simplicity and generality. Based on the decisional composite residuosity
problem, the Paillier cryptosystem is provable semantic security. It means that, for some composite n,
we cannot decide whether there exists some y ∈ Z∗n2 such that an integer z satisfies z = yn mod n2. A
brief description of the Paillier cryptosystem is given as follows.

Let n = pq where p and q are two large primes, r is randomly selected in Z∗n , and g is randomly
selected in Z∗n2 , which satisfies gcd(L(gλ mod n2), n) = 1 with L(u) = u−1

n and λ = lcm(p− 1, q− 1).
We assume that plaintext m ∈ Zn is the numeric form of a feature value in xi(i = 1, . . . , N); its ciphertext
is denoted by [[m]], i.e., [[m]] ∈ Z∗n2 . The Paillier cryptosystem’s encryption, decryption, and additively
homomorphic operations are as follows:

(1) Encryption: Ciphertext [[m]] = gm · rn mod n2.
(2) Decryption: Plaintext m = (L([[m]] mod n2)/L(gλ mod n2)) mod n.
(3) Additive homomorphism: [[m1 + m2]] = [[m1]] · [[m2]], [[α · m1]] = [[m1]]

α. Here, m1 and m2 are
two numeric features in PD and α is an integer constant. In practical situations, if α < 0,
its equivalence class value α mod n can be a substitution.

Before outsourcing data, in this study, the client should distribute his public key (i.e., (n, g))
of the predefined Paillier cryptosystem to the server while keeping his private key (i.e., (p, q, r) or
(λ, r)) secret. Then, the server performs a series of clustering tasks on ciphertexts by exploiting the
homomorphic properties. Only the client can decrypt all the encrypted messages that encapsulate
clustering results by using his corresponding private key.

2.3. Privacy Violation and Limited Operations of SVC Outsourcing

2.3.1. Privacy Violation of SVC

Undoubtedly, to conduct the essential computations of SVC correctly in the Cloud, we have
to face the possibility of privacy leakage in either the training phase or the labeling phase, or both.
Otherwise, there is no feasibility.

For the training phase, the core work is to solve the dual problem in Equation (2). After
being transferred to the Cloud, in PD, either the data samples or the kernel matrix is undoubtedly
retrievable for the server. Based on privacy-preserving policy, this situation raises several critical
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problems. (1) Letting the server know the data samples as plaintext is unacceptable. (2) Only having
separately encrypted data samples, the server cannot generate the required kernel matrix by itself,
since calculating the Gaussian function needs the help from the client, as discussed by Rahulamathavan
et al. [17]. However, more than N2 times interactions between the server and the client are required
before the server constructs a N × N kernel matrix. Besides, the widely used SMO solver for solving
the dual problem needs approximately O(N2) kernel evaluations to construct the support function [8].
Taking the number of iterations ` into account, far more than N2 times interactions are also essential for
the SMO solver. Therefore, it is inadvisable to encrypt data samples separately. (3) To make the solver
iterate effectively, the intermediate results of the coefficient vector should be in PD. Unfortunately,
this would leak the final index of SVs with their importance to the server. (4) Although no plain data
samples appear, the constructed kernel matrix is not suitable to be sent to the server directly. If the
server knows any data sample, it can recover all the data samples since the kernel function is exactly a
type of similarity measure [19].

For the labeling phase, labeling the remaining data samples, usually based on the Euclidean
distances in data space, is not a time-consuming work if the cluster prototypes have been obtained.
Samanthula et al. [20] presented a good idea for it, even though we have to do it in an outsourced
environment. However, in the most recent studies, prototype finding and sampling calculation for
connectivity analysis generally are based on iterative analysis, which raises frequent interactions to
get help from the client because exponent arithmetic is the fundamental operation, and SVs are the
component of the exponent function (i.e., support function). Otherwise, privacy cannot be guaranteed.
It is worth mentioning that Lin and Chen [21] presented a method of releasing the training SVM
classifier without violating the confidentiality of classification parameters, e.g., SVs. Although replacing
the trained SVM classifier by the support function appears to be a good solution, unfortunately, we still
have to send the plain data samples for decisions made by the outsourced service in the server.
Undoubtedly, this results in a privacy violation.

2.3.2. Limited Operations of Homomorphic Encryption

As described in Section 2.2, additively homomorphic encryption is characterized by its additive
homomorphism. However, this fundamental operation only expedites the addition operation for
two ciphertexts and the multiplication operation between a plaintext and a ciphertext. Therefore,
without outside assistance, it still cannot complete multiplication/division operations for two plaintext
or complex functions, e.g., Gaussian function. Unfortunately, multiplication/division operations are
frequently invoked by both the SMO solver and iterative analysis for cluster prototypes. Furthermore,
calculating values of Gaussian function with different sample pairs is a fundamental operation in
the SMO solver, iterative analysis for cluster prototypes, and sampling for connectivity analysis.
Since the client is the only legal assistance provider outside, this will dramatically raise the huge
scope of interactions that lead to heavy load to network bandwidth and degrade the usability of
SVC outsourcing. Therefore, it is critical to explore practical ways of avoiding too many complex
computations and massive interactions.

3. Reformative Support Vector Clustering with Elementary Operations

Traditionally, iterative analysis and complex operations cause massive interactions that reduce the
usability of outsourcing. Towards balancing privacy, efficiency, and accuracy, we design the DCD solver
by reducing unnecessary operations and replacing complex functions by elementary ones, and we also
design the FCDCL to avoid iterative analysis in convex decomposition and connectivity analysis.

3.1. DCD Solver for SVC’s Dual Problem

Derived from [22], we reformulate the nonlinear dual problem in Equation (2) by a linear model.
Let Q be the original kernel matrix with element Qij = K(xi, xj)(i, j ∈ [1, N]), Q̃ = 2 × Q, β =
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[β1, β2, · · · , βN ]
T , and e = [1, 1, · · · , 1]T . Since K(xi, xj) = 1 for xi = xj, we have ∑j K(xj, xj)β j = 1.

Then, the dual problem in Equation (2) can be reformulated by

min
β

1
2

βTQ̃β− 1

s.t. ∑
j

β j = 1, 0 ≤ β j ≤ C, j = 1, . . . , N.
(4)

Let Dsvc denote {β|∑j β j = 1, 0 ≤ β j ≤ C, j = 1, . . . , N}. Obviously, we can relax Dsvc by
D′svc = {β|0 ≤ β j ≤ C, j = 1, . . . , N} in which an equivalent globally optimal solution can be achieved.
We thus get an equivalent form of the problem in Equation (2) as

min
β

1
2

βTQ̃β

s.t. 0 ≤ β j ≤ C, j = 1, . . . , N.
(5)

Without any prior knowledge of labels, we fix the label yi of xi to +1 or −1 for i = 1, · · · , N.
To solve the problem in Equation (5), the optimization process starts from an initial point β0 ∈ RN

and generates a sequence of vectors {βk}∞
k=1. We refer to the process from βk to βk+1 as an outer

iteration. In each outer iteration, we have N inner iterations, so that sequentially β1, β2, · · · , βN are
updated. Each outer iteration thus generates vectors βk,i ∈ RN , i = 1, 2, · · · , N + 1, such that βk,1 = βk,
βk,N+1 = βk+1, and βk,i = [βk+1

1 , . . . , βk+1
i−1 , βk

i , . . . , βk
N ]

T for ∀i = 2, . . . , N. To update βk,i to βk,i+1,
we fix the other variable and then solve the following one-variable sub-problem:

min
d

f (βk,i + θei)

s.t. 0 ≤ βk
i + d ≤ C,

(6)

where ei = [0, . . . , 0, 1, 0, . . . , 0]T . Then, the objective function of Equation (6) is a simple quadratic
function of θ:

f (βk,i + θei) =
1
2

Q̃iid2 +∇i f (βk,i)θ + constant, (7)

where ∇i f is the ith component of the gradient ∇ f . Therefore, based on a decision function definition
of y = wTΦ(x) + b for SVC, we can solve problem in Equation (7) by introducing Equations (8)–(9).

Q̃ii = 2× K(xi, xi) = 2. (8)

∇i f (β) = (Q̃β)i =
N

∑
j=1

Q̃ijβ j = wTΦ(xi). (9)

Along with the update of βi, we can maintain w by

w← w + (βi − β̂i)Φ(xi), (10)

where β̂i is the temporary coefficient value obtained in the previous iteration. Thus, we have

∇i f (βk,i)←∑
j

β̂ jK(xj, xi)︸ ︷︷ ︸
(k−1) iter.

+(β− β̂i). (11)

Therefore, similar to the DCD method in [22], we propose a DCD solver detailed by Algorithm 1
for solving the problem in Equation (2). Briefly, we use Equation (11) to compute ∇i f (βk,i), check the

optimality of the single-variable optimization in Equation (6) by ∇P
i f (βk,i)

?
> 1× 10−12, and update
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βi. The cost per iteration from βk to βk+1 is O(Nd), and an appropriate ε controls the iteration number
well for efficiency. Notice that the memory requirement is flexible. With sufficient memory, we can
afford O(N2) for the full kernel matrix, and use search on demand to finish the calculation of line 5
in Algorithm 1; otherwise we can either store X or split them into blocks (requirement reduced to
≤ O(N)), and then calculate the values of required kernel function sequentially for later use in the
outer iterations.

Algorithm 1 DCD solver for SVC’s dual problem in Equation (2).

Require: Dataset X , kernel width q, and penalty C
Ensure: Coefficient vector β

1. Randomly initialize the coefficient vector β
2. while true do

3. Max ← −∞, Min ← ∞
4. for i = 1, 2, . . . , N do

5. Ĝ = 2×∑N
j=1 β jK(xj, xi)

6. G ← Ĝ + (βi − β̂i)

7. PG =


G if 0 < βi < C

min(G, 0) if βi = 0

max(G, 0) if βi = C
8. Max ← max(Max, |PG|), Min ← min(Min, |PG|)
9. if |PG| > 1E-12 then

10. β̂i ← βi
11. βi ← min(max(βi − 1

2 G, 0), C)
12. end if
13. end for
14. if (Max −Min) ≤ ε then

15. break
16. end if
17. end while

3.2. Convex Decomposition without Iterative Analysis

Derived from [22], in the labeling phase, we take convex hull as the cluster prototype for both
efficiency and accuracy. However, it usually requires `(� 1) iterations to get a stable equilibrium
vector (SEV) from an SV. If we let the server do this, the client has to finish the exponential function by
itself. Combining with the uncertain number of SVs NSV, more than `NSV rounds of interactions bring
a heavy burden to the network bandwidth. Therefore, we prefer achieving the same object without
iterative analysis.

Theorem 1. If a cluster is decomposed into multiple convex hulls, the best division positions should be those
SVs whose locations link up two nearest neighboring convexity and concavity.

Proof. From the convex decomposition strategy [23], theoretically, the decomposed convex hulls are
constructed by SVs without exceptions. Taking Figure 2a as an example, S1 and S2, respectively, denote
the two convex hulls in a cluster and the corresponding SEVs. Obviously, the cluster is stroked SVs
{x11, · · · , x17; x21, · · · , x25}. {x11, x17} and {x21, x25} constitute the division position (termed division
set) for linking up two nearest neighboring convexity and concavity. To confirm this, we consider the
two situations:

(1) If the division position is not in the SVs subset in which each one links up two nearest neighboring
convexity and concavity, for instance, x21 is replaced by x22, then the corresponding convex hull
S2 has to be further split into two convex hulls enclosed by {x21, x22, x25} and {x′22, x23, x24},
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respectively, even though all these SVs converge to S2. Here, x′22 is an imaginary sample that
is extremely similar to x22. Because no overlapping region or intersection of vertices of convex
hulls is allowed, unfortunately, this result conflicts with the definition that SVs in a convex hull
will converge to the same SEV.

(2) From the other perspective, if x21 is not in the division position which only includes {x11, x17, x25},
we have to find a substitute x′21 to construct the convex hull S2. x′21 might locate between x11 and
x21 or between x21 and x22. For the prior case, it means x21 is not the closest SV to x11 that violates
the premise of x21 linking up two nearest neighboring convex hulls. For the latter case, no matter

x′21 is a new arrival SV or is just x22, the concavity will be formed along
−−−−−→
x12x11x′21 or −−−−−→x12x11x22.

However, it becomes true only when x21 is no longer on the cluster boundary or x11 converging
to S2. Unfortunately, this violates the hypothesis of x21 being a SV and x11 converging to S1.

x11

vimS1

S2
x12

x13

x14

x15

x16

x17
x25 x24

x23

x22

x21

support vectors

convergencedirection

tangent plane

convexity concavity

cluster boundary

x11
S2

x12

x13

x14
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x25
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\~x21x21S1 ¸ \~x21x21S

0
1

~x21

(a) (b)

Figure 2. Diagram for the principles of convex decomposition and connectivity analysis: (a) convex
decomposition; and (b) connectivity analysis.

Using SVs to construct a convex hull, massive iterations in the convergence increase the
communication burden significantly. We first consider the characteristics of convex decomposition:
(1) SVs locate on the cluster boundary; (2) the convergence directions for SVs in a convex hull are close
to the same SEV inside; and (3) after connecting two nearest neighboring SVs, no concavity is in a
convex hull. Then, the core idea behind our method is quite simple and intuitive: Each SV is not only a
vertex of convex hull but also an edge pattern of a cluster. In a convex hull, if an SV’s tangent plane
crossing the SV is perpendicular to its convergence direction, the other SVs will set on one side of the
tangent plane. Therefore, to avoid forming concavity around the SV, the included angle, between its
convergence direction and the line segment connecting it and its nearest neighboring SV in the same
convex hull, has a relatively small value.

As shown in Figure 2a, two tangent planes crossing x15 and x21 can be found, respectively.
Blue arrows show their convergence directions. Apparently, 6 S1x15x16 and 6 S2x21x25 must be small
enough to respectively avoid x16 and x22 entering the other side of the corresponding tangent planes.
Based on this consideration, we do non-iterative convex decomposition in Algorithm 2. Obviously,
calculating the convergence direction in Line 4 is the key.

With β and SVs obtained by Algorithm 1, we can use any optimization method to find a local
minimizer of Equation (3). Different methods lead to different efficiency, i.e., the number of iterations.
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Fortunately, in this study, an approximate convergence direction is sufficient. For the sake of simplicity,
the gradient descent of Equation (3) is preferred and calculated by

∇ f (x) = ∑
j

4qβ jK(xj, x)︸ ︷︷ ︸
coefficient

·
[
xj − x

]︸ ︷︷ ︸
vector

. (12)

Obviously, 4qβ jK(xj, x) scales [xj − x] and contributes to the final convergence direction.
The convergence direction~x in the first step for x is the negative gradient of f (x), i.e.,

~x = −γ∇ f (x), (13)

where γ is a constant factor. Now, we can calculate the cosine function on Line 5 of Algorithm 2 by

cos( 6 ~xixixj) =
~xT

i (xj − xi)

||~xi|| · ||xj − xi||
. (14)

Algorithm 2 Non-iterative convex decomposition.

Require: SVs set XS, decomposition threshold η1
Ensure: Convex hulls SCH, set of triples STri

1. Randomly select xi ∈ XS, Sk = {xi}, XU = ∅, STri = ∅
2. while XS \ XU 6= ∅ do

3. xj ← find the nearest neighboring SV from XS \ XU
4. ~xi ← calculate the convergence direction of xi
5. if cos( 6 ~xixixj) ≥ η1 then

6. Sk ← Sk
⋃{xj}

7. else

8. Sk+1 ← {xj}
9. STri ← STri

⋃{(xi, xj,~xi)}
10. end if
11. XU ← XU

⋃{xi}
12. xi ← xj
13. end while

Notice that, on Line 9, we collect point-pairs which are two nearest neighbors but belonging
to different convex hulls, as well as the convergence direction, into STri. It will be employed in the
following connectivity analysis for directly fetching the nearest neighboring convex hulls.

3.3. Connectivity Analysis Irrespective of Sampling

Based on the decomposed convex hulls, we try to check the connectivity of two nearest
neighbors sequentially.

Lemma 1. For two nearest neighboring convex hulls whose distance is determined by two closest vertices
separately from them, there are two apparent properties. (1) We can always find a tangent plane crossing one of
the two vertices, which makes the two convex hulls locate on different sides of the tangent plane. (2) Taking one
of the two vertices as the original point, we draw an included angle between rays from the original point to its
SEV and the other convex hull’s SEV, respectively. The smaller the included angle is, the higher the possibility of
the two convex hulls are connected.

Proof. Taking Figure 2b as an example, x11 and x21 are the nearest SV-pair in a division set thus far
from two nearest convex hulls S1 and S2, respectively.
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According to the definition, there is no overlapping region between any two convex hulls.
Apparently, the first property is always true. As a typical prototype [24], geometrically, SEV locates
in the convex hull and reflects the relative location well. Thus, we have 6 S2x21S′1 < 6 S2x21S1 if the
convex hull S1 is moved to S′1. This movement uses x21x11 as the radius to keep distance unchanged.
It generates a relative displacement for the SEV along the direction of black arrow, and the moved one
gets closer to the convex hulls S2. Considering a plane shaped by line S′1x21x22, the vertex x21 will have
lower possibility to be a transition point connecting two nearest neighboring convexity and concavity.
That means a higher probability of S1 and S2 being enclosed in one cluster as the the distance reduces.
On the contrary, if we increase 6 S2x21S′1, actually, it is achieved by moving the convex hull S1 far from
the side of S2 with respect to the tangent plane of x21. Then, on the plane shaped by line x11x21x22, x21

must be included in the division set again. Thus, the second property is true.

Definition 1 (Merging Factor). Let x11 and x21 be two nearest vertices, respectively, from two nearest
neighboring convex hulls S1 and S2. In connectivity analysis of S1 and S2, merging factor is defined by the
cosine function of included angle between the convergence direction from one vertex and its ray direction to the
other convex hull’s SEV, i.e., cos 6 ~x21x21S1 or cos 6 ~x11x11S2.

However, Algorithm 2 cannot give us the exact SEV. Based on the local geometrical property
discussed by Ping et al. [25], we define a density centroid as the substitution.

Definition 2 (Density Centroid). The density centroid SDCi of the ith convex hull SCHi is defined by
1

NCHi
∑

NCHi
j=1 xij for xij ∈ SCHi , where NCHi is the number of SVs in SCHi .

On the basis of Lemma 1, the presented connectivity analysis strategy is quite simple: (1) Without
prior knowledge of the cluster number, we merge two nearest neighboring convex hulls if their minimal
merging factor is greater than a predefined threshold η2. (2) Otherwise, to control the number of
clusters for a specific K globally, pairs of nearest neighboring convex hulls are merged into one cluster
as they move up in the hierarchy.

3.4. Implementation of RSVC-EO

Algorithm 3 gives a complete solution of RSVC-EO. Given q and C, CollectSVsbyDCDSolver(·)
obtains β by invoking Algorithm 1 and collects SVs XS. Then, ConvexDecomposedbySVs(·)
constructs convex hulls SCH as the cluster prototypes by employing the non-iterative analysis
strategy presented in Section 3.2. Using the prior knowledge of η2 or K, ConnAnalysisbyNoSamp(·)
checks the connectivity of two nearest neighboring convex hulls and merges them step by step on
demand. It results in an array with size NSV which contains the cluster labels for SVs. Notice that
the frequently used adjacency matrix by the traditional methods are no longer required because
ConnAnalysisbyNoSamp(·) adopts a bottom-up merging strategy. Finally, the remaining data samples
are separately assigned by their nearest convex hulls’ labels.

Algorithm 3 RSVC-EO.

Require: Dataset X , kernel width q, penalty C, and thresholds η1, η2 or the cluster number K
Ensure: Clustering labels for all the data samples

1. {XS, β} ← CollectSVsbyDCDSolver(X , q, C)
2. SCH ← ConvexDecomposedbySVs(XS, η1)
3. Labels← ConnAnalysisbyNoSamp(SCH, η2 ‖ K)
4. for each x ∈ X\XS do

5. inx← find the nearest convex hull from x
6. Labels[x]← Labels[xinx]
7. end for
8. return Labels
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3.5. Time Complexity of RSVC-EO

Before introducing a privacy-preserving mechanism, RSVC-EO works locally in PD. Hence, we
measure only the computational complexity in this section. Let N be the number of data samples,
NSV be the number of SVs, and NCH be the number of the decomposed convex hulls. In the training
phase, whether to use the pre-computed kernel matrix for efficiency at the cost of storage or to calculate
the corresponding row of kernel values on demand depends on the actual memory capacity. If with
sufficient memory, i.e., the space complexity of O(N2) to store the kernel matrix, the computational
complexity is O(N2). The innermost operation is to compute β jK(·, ·). Otherwise, it is up to O(dN2)

whose innermost operation calculates each kernel function’s value of two d-dimensional samples.
Although it seems to be time-consuming, it is much lower than O(N3) required by the traditional
methods which frequently need O(N2) storage (see [4]). Further, the innermost operations for both
situations are simple.

In the labeling phase, time costs for constructing the convex hulls by SVs and completing
connectivity analysis depend on NSV and NCH. By employing the proposed strategy, iterations
to reach the local minimum from SVs are avoided, and the sample rate is replaced by one comparison.
Therefore, to finish the labeling phase, RSVC-EO only consumes O(`N2

SV + ρNCH) where ` = {1, d}
and ρ ∈ (2, 3] are separately determined by whether to store the kernel matrix of SVs and input
parameter η2 or K.

Due to page limitation, we omit the comparisons with the art-of-the-state methods, which can be
found in [22,26].

4. Maximized Privacy-Preserving Outsourcing on SVC

Taking RSVC-EO as the core method, we develop MPPSVC to maximize the capability of selective
service outsourcing.

4.1. Privacy-Preserving Primitives

For privacy-preserving, some elementary operations in Algorithm 3 have to be done with
the client’s help, e.g., multiplication, distance measure, and comparison. We present lightweight
secure protocols in our proposed MPPSVC. All the below protocols are considered under a two-party
semi-honest setting, where the server is a semi-honest party, and the client is an honest data owner.
Meanwhile, a potential adversary might monitor communications. In particular, we assume the
Paillier’s private key Kpri is known only to the client, whereas Kpub is public.

4.1.1. Secure Multiplication

Secure multiplication protocol (SMP) considers that the server, under the client’s help,
calculates [[m1 × m2]] with input {[[m1]], [[m2]]}. Instants m1 and m2 are unknown to the server in
the adversarial environment. In this study, we adopt the SMP described by Samanthula et al. [20].

4.1.2. Secure Comparison

Numeric comparison is critical for the server to finish the connectivity analysis and the
labeling phase in ED. Notice that the intermediate comparison result is a privacy to the adversary
(intermediary in the network), but it is not a secret for the server due to the requirement of procedure
control. Therefore, based on the secure comparison protocols (SCPs) of Rahulamathavan et al. [17]
and Samanthula et al. [20], we customize an SCP in Algorithm 4, which only needs one-round
interaction.

Since r is picked randomly, the ciphertext sent back to the client can be either [[m1 − m2]] or
[[m2 −m1]] in equal probability. The client and the implicit adversary hence cannot guess the actual
result with a probability greater than 1/2. If the execution of Lines 4–9 is honest, [[st+]] and [[st−]] are,
respectively, positive and negative integers protected by the server’s public key. Furthermore, in the
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communication traffic, neither [[m1]] nor [[m2]] can be found by brute force attack, and one cannot find
them out with knowledge of their difference.

4.1.3. Secure Vector Distance Measurement

Euclidean distance measurement between any two vectors is essential for extracting the
convergence direction in Equation (12) and cosine function in Equation (14) and labeling the remaining
data samples (Line 6 in Algorithm 3). For simplicity, in this study, the secure vector distance measure
protocol (SVDMP) adopts the secure squared euclidean distance of Samanthula et al. [20], which
employs SMP for each dimension. It can also be done in batch if necessary.

Algorithm 4 Secure comparison protocol.

Require: Server: [[m1]], [[m2]], Kpub; Client: Kpri
Ensure: Server output [[max(m1, m2)]] or [[min(m1, m2)]]

Server:
1. Pick r ∈ {−1, 1} randomly
2. [[d]]← [[m1]]× [[m2]]

n−1, [[d′]]← [[d]]r mod n

3. {[[d′]]} −→ Client

Client:
4. t

Kpri←−− [[d′]]
5. if t > 0 then

6. {[[st+]]} −→ Server
7. else

8. {[[st−]]} −→ Server
9. end if

Server:
10. if (st+ and r ≡ −1) or (st− and r ≡ 1) then

11. [[max(m1, m2)]]← [[m2]], [[min(m1, m2)]]← [[m1]]
12. else

13. [[max(m1, m2)]]← [[m1]], [[min(m1, m2)]]← [[m2]]
14. end if

4.1.4. Secure 1-NN Query

In ED, phases such as Lines 2 and 6 of Algorithm 3 should be done with the help of secure 1-NN
query (S1NNQ). Given a data sample [[x]], the server finds the nearest neighbor in dataset [[X ]] with
|X | samples, as described by Algorithm 5.

Algorithm 5 Secure 1-NN query protocol.

Require: Encrypted data [[x]] and dataset SVs set [[X ]]
Ensure: the nearest neighbor [[x1NN]] in [[X ]]

1. for i← 1, |X | do

2. [[di]]← SVDMP ([[x]], [[xi]])
3. [[dmax]]← [[min(di, dmax)]] using SCP
4. if [[di]] 6= [[dmax]] then

5. [[x1NN]]← [[xi]]
6. end if
7. end for

4.2. The Proposed MPPSVC Model

In this section, we first reformulate the crucial phases based on the privacy-preserving primitives.
Then, we present the flow diagram for MPPSVC.
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4.2.1. Preventing Data Recovery from Kernel Matrix

In this study, we adopt the Paillier for both efficiency and security. Unfortunately, on Line 5
of Algorithm 1, ∑N

j=1 β jK(xi, xj) brings a chain-multiplications in ED. If we use SMP, the massive
interactions are fatal due to privacy concerns of [[β j]] and [[K(xi, xj)]]. One may consider the acceptation
of K(xi, xj) in PD. That means that the client only sends the values of K(xi, xj) for i, j ∈ [1, N]. However,
they carry the similarities between all the data sample pairs. The server/adversary can easily recover
the whole dataset if it luckily collects any two data samples in plaintext [19].

Since the kernel matrix is sufficient for Equation (5), we design a transformation strategy to hide
the actual similarity in K(·, ·) while protecting β. Let M be an N × N orthogonal matrix satisfying
M−1 = MT , which is kept secret by the client. Let Q̄ = MTQ̃M; the problem in Equation (5) thus
becomes

min
β̄

1
2

β̄
T MTQ̃M︸ ︷︷ ︸

Q̄

β̄

s.t. 0 ≤ β̄ j ≤ C, j = 1, . . . , N,

(15)

which is equivalent to

min
β̄

1
2
(Mβ̄)TQ̃(Mβ̄)

s.t. 0 ≤ Mβ̄ ≤ eC.
(16)

Let β = Mβ̄; the problem in Equation (16) almost achieves the same formulation with Equation (5).
Thus, we can find a fact for Algorithm 1: if the client sends a transformed Q̄ to replace Q̃, we obtain a
corresponding β̄ which is different from β, i.e., β̄ 6= β. In plaintext, the client can obtain the expected
β by multiplying M due to β = Mβ̄. Furthermore, the server cannot recovery Q̃ since M is only held
by the client.

For further computation and communication savings, we suggest decomposing Q̃ to generate
M through Q̃ = MΣeigMT , where Σeig is the eigenvalues of Q̃ and M is the right unitary matrix
satisfying M−1 = MT . We get a diagonal matrix Q̄ = MTQ̃M with N non-zero elements. If N is too
large, outsourcing either the QR decomposition [27] or eigen-decomposition [28] is recommended.
An adversary cannot recover Q̃ from a diagonal matrix Q̄ theoretically.

4.2.2. Privacy-Preserving DCD Solver

Generally, carrying the similarities amongst N data samples needs a N× N matrix. By employing
the transformation strategy in Section 4.2.1, we hide the similarities by splitting them into the private
key M of the client and the diagonal matrix Q̄. In the other perspective, as presented in Equation (16),
this strategy is equivalent to protecting the sensitive coefficients by encrypting them with the private
key M. If we use the transformed Q̄ as input and multiply the returned β̄ by M, Line 5 of Algorithm 1
should be replaced by Ĝ = 2×∑N

j=1 β jQ̄jj, and the other steps will not be changed.

4.2.3. Privacy-Preserving Convex Decomposition

Since SVs are even more sensitive than the other data samples, for Algorithm 2, the client
shows the server the encrypted SVs {[[x1]], [[x2]], · · · , [[xNS ]]}. Due to the exponential function of K(·, ·),
however, calculating the convergence direction for each data sample by Equation (12) in ED is beyond
the server’s ability. A practical choice is querying the result from the client, while all the SVs should be
considered. The client can either store the kernel matrix of SVs for solving Equation (12) by matrix
manipulation or calculate 4qβ jK(xj, x) on demand in each loop body, on the basis of available storage.
Thus, for privacy-preserving convex decomposition, we can reformulate Algorithm 2 by replacing
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Lines 3 and 4 by Algorithm 5 and querying, respectively. Furthermore, the cosine function on Line 4
can be easily implemented by utilizing SMP and SVDMP.

4.2.4. Privacy-Preserving Connectivity Analysis

In this study, connectivity analysis between two nearest convex hulls indicated by the collected
set STri has two strategies for choice. In ED, we present this privacy-preserving connectivity analysis
with cluster number K and threshold η2 by Algorithms 6 and 7, respectively.

Algorithm 6 Connectivity analysis in ED with K.

Require: Server: [[SCH]], [[STri]], Kpub, K; Client: Kpri
Ensure: Server output encrypted array of labels [[LSV]]

1. [[SDC]] = ∅, [[Sdist]] = ∅
2. for i← 1, NCH do

3. [[SDCi ]]← SMP
(

∏
NCHi
u=1 [[xiu]], [[1/NCHi ]]

)
4. [[SDC]]← [[SDC]]

⋃
[[SDCi ]]

5. end for
6. for v← 1, NTri do

7. Pick triple ([[xi]], [[xj]], [[~xi]]) from [[STri[v]]]
8. Pick [[SDCk ]] with [[xj]] ∈ [[SCHk ]]
9. [[Sdist]]← [[Sdist]]

⋃
(l, k, [[cos( 6 ~xixiSDCk )]]) using SVDMP

10. end for
11. Nm ← NCH
12. while Nm > K do

13. for v← 1, NTri do

14. [[dv]]← [[cos( 6 ~xixiSDCk )]] in [[Sdist]]
15. [[dmax]]← [[max(dv, dmax)]] using SCP
16. end for
17. Extract the index k, l where [[dv]] ≡ [[dmax]]
18. Merge the kth, lthconvex hulls by [[SCHk ]]

⋃
[[SCHl ]]

19. [[Sdist]]← [[Sdist]] \ (k, l, [[cos( 6 ~xixiSDCk ]])
20. NTri ← NTri − 1; Nm ← Nm − 1
21. end while
22. [[LSV]]← label all the SVs by their convex hull’s index

Algorithm 6 details the privacy-preserving connectivity analysis with K. Lines 1–5 construct the
density centroid for each convex hull. For efficiency, we suggest the client supplying [[1/NCHi ]] in the
framework of SMP to avoid an additional division protocol. Based on SVDMP, Lines 6–10 obtain the
included angel cosine for each convex hull and its nearest SV of the nearest neighbor. Then, Lines
11–21 merge the nearest convex hulls pair one by one, until the final cluster number reaches K. The last
line labels all the other SVs directly. Similar operations are in Algorithm 7. The major difference is Line
4, which compares [[dv]] with [[η2]] using SCP to determine the mergence.
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Algorithm 7 Connectivity analysis in ED with η2.

Require: Server: [[SCH]], [[STri]], Kpub, [[η2]]; Client: Kpri
Ensure: Server output encrypted array of labels [[LSV]]

1. Do lines 1–10 of Algorithm 6
2. for v← 1, NTri do

3. [[dv]]← [[cos( 6 ~xixiSDCk )]] in [[Sdist]]
4. if [[dv ≥ η2]] using SCP then

5. Merge the kth, lthconvex hulls by [[SCHk ]]
⋃
[[SCHl ]]

6. end if
7. end for
8. [[LSV]]← label all the SVs by their convex hull’s index

4.2.5. Privacy-Preserving Remaining Samples Labeling

If we want the server to supply a service of labeling the remaining samples or determining the
new arrival samples for the others, S1NNQ is recommended. Either the SVs or the density centroids
can be used on behalf of the convex hulls to meet the accuracy or efficiency requirements.

4.3. Work Mode of MPPSVC

By introducing secure outsourcing protocols to the core method of RSVC-EO, Figure 3 gives
the flow diagram of MPPSVC. Arrows on the client side show communications between the client
and the server for successive cluster analysis in ED, while arrows on the server-side illustrate all
the accessible information for the server in each step. All the crucial information is encrypted.
For instance, [[β̄]] is protected by M and the others in the form of [[·]] are encrypted by Kpub. For clarity,
we separate communications based on requirements from each step. To maximize outsourcing
capability appropriately (on demand), MPPSVC allows one to outsource any step or steps without
losing the control of sensitive data.
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Figure 3. The flow diagram for approaches of MPPSVC. To keep consistent with Table 1, we use Steps
1, 2, 3, and 5 to denote the four steps of MPPSVC.

4.4. Analysis of MPPSVC

4.4.1. Time Complexity of MPPSVC

We take the classical SVC [1] as the baseline and separately measure the time complexity of each
step in RSVC-EO and MPPSVC for local use by the data owner and client–server environment. Let N
be the number of d-dimensional data, NSV be the number of SVs, NCH be the obtained convex hulls,
and m be the average sample rate. Due to distance measurement in ED, we introduce d for accurate
comparisons. Table 1 lists the computational complexities.

(1) For step 1, “Pre-computed Q” and “Instance K(·, ·)” denote doing Algorithm 1 of RSVC-EO with
the pre-computed kernel matrix or calculating the row of kernel values on demand, respectively.
Although O(dN2) seems time-consuming, in practice, it is frequently much lower than O(N3)

of the classical SVC, which consumes space O(N2). For MPPSVC, the client is recommended to
outsource a pre-computation in O(N2) for the orthogonal matrix M following [27,28] before Step
1. Then, nothing has to be done by the client except decrypting β̄ by β = Mβ̄ in O(N). The major
workload of O(N2) is moved to the server, which may afford the space complexity of O(N2).

(2) Step 2 is not in the classical SVC. The most recent convex decomposition based method [22]
takes O(ζNSV) and the SEVs based methods [12,29] require O(ζN). Here, ζ is the number of
iterations. For RSVC-EO, the difference brought by the “Instance K(·, ·)” is calculating K(xj, x)
with d-dimensional input before getting the gradient in Equation (12). For MPPSVC, upon
using the kernel matrix of SVs or not, the client’s complexity is O(`N2

SV) where ` = {1, d}.
Meanwhile, the server is designated by a polling program in O(dN2

SV). Notice that the essential
tasks of Algorithm 2 for the client in ED have been cut down even though they have similar time
complexity with that of in PD.
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(3) In Step 3, connectivity analysis of the classical SVC is m times sampling checks for each SVs-pair.
However, calculating Equation (3) requires NSV SVs, the whole consumption is up to O(mN3

SV).
On the contrary, RSVC-EO only requires O(ρNCH) due to the direct use of the convergence
directions. ρ ∈ (2, 3] is because Algorithms 6 and 7 are provided for choice. Similarly, the client
responses SMP, SVDMP, and SCP in Algorithm 6 or SCP in Algorithm 7 with O(NCH).

(4) Step 4 is particular for the classical SVC while the prior leaves an adjacency matrix. Its complexity
is O(N2

SV).
(5) Similar to classification, the traversal of the whole set in Step 5 cannot be avoided for every method.

Its complexity is O(dNNSV) or O(dNNCH) except for the server in MPPSVC. Using S1NNQ,
the major operations are carried out with the client under protocols of SVDMP and SCP.

Table 1. Time complexities of the proposed methods.

Classical SVC [1] RSVC-EO MPPSVC

Pre-Computed Q̃ Instance K(·, ·) Client Server

Step 1. DCD Solver for coefficient
O(N3) O(N2) O(dN2) O(N) O(N2)indicating SVs ∗

Step 2. Convex decomposition in — O(N2
SV) O(dN2

SV) O(`N2
SV) O(dN2

SV)one iter. using SVs

Step 3. Connectivity analysis with
O(mN2

SV · NSV) O(ρNCH) O(NCH) O(ρNCH)prior knowledge

Step 4. Find the connected comp-
O(N2

SV) — — —onents by DFS

Step 5. Labeling the remaining O(dNNSV) O(dNNSV) or O(dNNCH)
O(NNSV) O(dNNSV)

data samples or O(NNCH) or O(dNNCH)

Notice: 1. ∗ For classical SVC, it solves the dual problem in traditional way; 2. ρ ∈ (2, 3], ` = {1, d}, “—”
means a non-existent step.

4.4.2. Communication Complexity of MPPSVC

Regarding communication complexity irrespective of the direction, for MPPSVC, transmissions
for the encrypted matrix Q̄, the coefficient vector β̄, the SVs [[XSV]], and the encrypted labels [[LALL]] are
the major reasons for network bandwidth consumption. Firstly, amongst them, either Q̄ or β̄ only has
N non-zero or valid items for transmission. Generally, the numeric type of float (by C/C++) supplies
enough precision for computation, which requires 4 Bytes for each item. Hence, both sending Q̄ to the
server and receiving β̄ consumes 4N bytes of bandwidth in the communication channel. Secondly,
the cost of transferring [[XSV]] and [[LALL]] depends on the size of Paillier security parameter n; in our
implementation, n = 2048; hence, the size of an encrypted number is 2048 bits. Sending an encrypted
data sample with d features consumes 2048d bits (i.e., 256d bytes) of bandwidth. That means sending
[[XSV]] to the server needs 256d× NSV bytes of bandwidth while receiving [[LALL]] consumes 256N
bytes. For the sake of simplicity and clarity, neither additional methods of reducing transmission nor
additional cost for data encapsulation is taken into account.

4.4.3. Security of MPPSVC under the Semi-Honest Model

In this section, we consider the execution of MPPSVC under the semi-honest model. Due to the
semantic security of the Paillier, messages in ciphertext exchanged in the client–server environment
are securely protected. For each step in Figure 3, the analysis is presented as follows:

(1) According to Sections 4.2.1 and 4.2.2, the execution image of the server is given by Q̄ and C. Q̄
is a diagonal matrix protected by the matrix M secretly held by the client and C is a single-use
parameter without strict limitation. Notice that from Q̄ to the kernel matrix Q̃ is a one-to-many
mapping. No one can recover an N-dimensional vector by only one number. Without any plain
item of Q̃, the server cannot infer any data sample even though it occasionally gets several data
samples. When the server finishes Algorithm 1, the output [[β̄]] is naturally protected by M.
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(2) For the second step, the major works are carried out on the client side as a response to the
server. As marked in Figure 3, the accessible sensitive data are [[XSV]], [[~x]], [[η1]], [[SCH]] and [[STri]].
However, all of them are encrypted by Kpub.

(3) Step 3 depends on the output of Step 2. It includes SMP, SCP, and SVDMP whose prototypes are
proved by [20]. The server can only get the number of clusters, but cannot infer any relationship
between data samples in PD. Furthermore, the client can easily hide the real number by tuning the
predefined parameters K or η2. Then, an uncertain cluster number is meaningless for the server.

(4) Step 5 employs S1NNQ. The server cannot infer the actual label for a plain data sample, even if it
occasionally has several samples.

4.4.4. Security of MPPSVC under the Malicious Model

We extend MPPSVC into a secure protocol under the malicious model where an adversary exists.
It may be the server or an eavesdropper. Since the eavesdropper cannot get more information than the
server, for simplicity, we only consider the server as an implicit adversary.

For the server, it can arbitrarily deviate from the protocol to gain some advantages (e.g., learning
additional information about inputs) over the client. The deviations include, for example, for the server
to instantiate MPPSVC with modified queries and to abort the protocol after gaining partial information.
Considering SCP, the malicious server might either use a fixed r to obtain the ordering of encrypted
numerical values or tamper the two compared numerical values. For the prior, the immediate order
for N ciphertext is meaningless for recovering their plaintext, because of ZN ⊂ Zn2 and N � n2 in
bit. For the latter, without Kpri, any modification of ciphertext might cause a significant change of its
plaintext. The client can easily discover it. Therefore, all the intermediate results are either random or
pseudo-random values. Even though an adversary modifies the intermediate computations, he cannot
gain any additional information. The modification may eventually result in the wrong output. Thus,
if we ensure all the calculations performed and messages sent by the client are correct, the proposed
MPPSVC is secure. It provides the ability to validate the server’s works to the client.

5. Experimental Results

5.1. Experimental Setup

In the premise of security for outsourcing, we demonstrated the performance of RSVC-EO in PD
and MPPSVC in ED. RSVC-EO dominated the validity while MPPSVC supplied the secure outsourcing
framework. Deservedly, we first evaluated the validity and performance of RSVC-EO, and then the
performance of MPPSVC.

In PD, the first experiment was to estimate the sensitivity concerning η1 on accuracy. Since
RSVC-EO is designed for local use, its declared advantage is the flexibility of using the pre-computed
kernel matrix or not. The second experiment was to check the performance related to kernel
utilization. Then, the third series of the benchmark was to give full comparisons of RSVC-EO and
the state-of-the-art methods. Besides, we verified the effectiveness of capturing data distribution by
all the compared methods regarding the discovered cluster number. In ED, eventually, our primary
focuses were the changes in accuracy and efficiency brought by MPPSVC. In this study, the adjusted
rand index (ARI) [4,30] was adopted for accuracy evaluation. It is a widely used similarity measure
between two data partitions where both true labels and predicted cluster labels are given. Let Nij
be the number of data samples with true label i yet assigned by j. Ni· and N·j are, respectively, the
number of data samples with label i and j. ARI is formulated by

ARI =
∑i,j (

Nij
2 )−

[
∑i (

ni·
2 )∑j (

N·j
2 )
]

/(N
2 )

1
2

[
∑i (

Ni·
2 ) + ∑j (

N·j
2 )
]
−
[
∑i (

Ni·
2 )∑j (

N·j
2 )
]

/(N
2 )

. (17)
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5.2. Experimental Dataset

Table 2 shows the statistical information of the employed twelve datasets. Here, wisconsin, glass,
wine, movement_libras, abalone, and shuttle (training version) were from UCI repository [31].
Four text corpora were employed after a pre-processing, namely DCGLI-CCE by Ping et al. [32], i.e.,
four categories of WebKB [33], full twenty categories of 20Newsgroups [34], top 10 largest categories
of Reuters-21578 [35], and Ohsumed with 23 classes [36]. P2P traffic is a collection of 9206
flows’ features that were extracted from traffic supplied by UNIBS [37] following the method
of Peng et al. [38]. Following the work of Guo et al. [39], kddcup99 is a nine-dimensional dataset
extracted from KDD Cup 1999 Data [40], which was used to build a network intrusion detector. Due to
space limitation, thereafter, we use abbreviations in brackets for dataset with long name.

Table 2. Description of the benchmark datasets.

Datasets Dataset Description

Dims Size # of Classes

wisconsin 9 683 2
glass 9 214 7
wine 13 178 3

movement_libras (mLibras) 90 360 15
P2P traffic (P2P-T) 4 9206 4

WebKB 4 4199 4
abalone 7 4177 29

Reuters-21578(Reuters) 10 9990 10
Ohsumed (Oh) 23 13,929 23

20Newsgroups (20NG) 20 13,998 20
shuttle (sh) 9 43,500 7

kddcup99 9 494,021 5

5.3. Experiments in the Plain-Domain

For local use, RSVC-EO in PD means the data owner frequently cannot have sufficient memory
for the required kernel matrix. Consequently, the testbed was a laptop with Intel Dual Core 2.66 GHz
and 3 GB available RAM, which calculates kernel function on demand. RSVC-EO and all the other
compared methods were implemented and fairly evaluated by MATLAB 2016a on Windows 7-X64.

5.3.1. Analysis of Parameter Sensitivity

Algorithm 2 introduces η1 to indicate the convex decomposition which might be directly related
to RSVC-EO’s performance. Figure 4 depicts the ARI variations achieved by RSVC-EO with respect
to η1 ∈ [−0.8, 0.9] with step 0.01. Here, variation for each dataset is represented by the rectangle
in which the square block is the mean value. Apparently, the variations is very small for 9 out of
12 datasets, i.e., wisconsin, glass, mLibras, P2P-T, WebKB, abalone, Reuters, Oh, and kddcup99. In
fact, these variations are lower than 3.21× 10−4. For the other three datasets, i.e., wine, 20NG, and sh,
the variations are lower than 5.5× 10−3, and the rectangles’ locations show that most of them are close
to the peak value. Therefore, parameter selection of η1 is frequently an easy work for the proposed
RSVC-EO to achieve a relatively optimal clustering result. Notice that a preset η1 is not required for
those cases with prior knowledge of the cluster number K, because RSVC-EO can merge convex hulls
until the expected K is obtained.



Electronics 2020, 9, 178 20 of 30

wisconsin glass wine
mLibras

P2P-T WebKB
abalone

Reuters Oh 20NG sh kddcup99

0.0

0.2

0.4

0.6

0.8

1.0

Datasets

A
RI

 25%~75%
 Min~Max
 Median Line
 Mean

Figure 4. Sensitive analysis by variations of ARI with respect to η1 ∈ [−0.8, 0.9] with step 0.01.

5.3.2. Analysis of Iteration Sensitivity

The iterative analysis is essential for both RSVC-EO and MPPSVC. Although the server conducts
the solver independently to get the encrypted coefficient vector Mβ̄, runtime might be pricey if we
have to choose the strategy of immediately calculating kernel function for large-scale data. Therefore,
we concern whether massive iterations are unavoidable. Noticeably, Hsieh et al. [41] proved that the
general DCD solver reaches an ε-accurate solution in O(log(1/ε)) iterations. For the sake of simplicity,
we checked the relationship between the achieved ARI and iteration number in PD. Figure 5 depicts
the results where kddcup99 is omitted due to pricey runtime with great iteration number.

For most of the cases, the achieved ARIs are relatively stable, along with the iteration number
increases. By employing the proposed solver, a useful phenomenon is that, for each case, the best ARI
is usually reached with a small iteration number (≤4). It means that a more precise objective function
value of the problem in Equation (2) is not always required in practice. Therefore, a small iteration
number meets the requirements from both RSVC-EO and MPPSVC for expected results. This will not
bring noticeable computation load to either side.

5.3.3. Performance Related to Kernel Utilization

In this section, we check whether RSVC-EO is flexible to balance the efficiency and usability with
limited memory. For efficiency, the runtime of completing Algorithm 1 with the pre-computed kernel
matrix and with immediate calculating kernel function on Line 5 were separately evaluated. The former
is denoted by “Runtime (Store Kernel)” while the latter is “Runtime (Cal. Kernel)”. Meanwhile, their
memory consumptions are also evaluated, respectively, as “Storage (Store Kernel)” and “Storage
(Cal. Kernel)” (Due to the limited memory (3GB); in fact, the client cannot afford all the experimental
datasets’ requirements. Thus, “Runtime (Store Kernel)” for storage exceeding the supplement was
estimated by “Runtime (Cal. Kernel)” minus the runtime of calculating K(xj, xi).). Figure 6 shows the
results. Apparently, for small datasets with N < 1000 such as wisconsin, glass, and wine, there are
no obvious differences between “Runtime (Store Kernel)” and “Runtime (Cal. Kernel)”. Although the
client affords large dataset analysis well, its “Runtime (Cal. Kernel)” quickly raises as N increases. On
the contrary, based on the immediate calculating kernel function, “Runtime (Cal. Kernel)” is linear
to the data size, whereas “Storage (Store Kernel)” easily exceeds the client’s capability. Gaps become
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significantly for those datasets with N � d. For instance, to deal with sh, the requirement is 7.05 GB
for “Storage (Store Kernel)” while “Runtime (Cal. Kernel)’ only needs 1.49 MB. Therefore, efficiency
and storage consumptions are strongly related to the kernel utilization. It is critical to outsource the
cluster analysis for those resource-limited clients.

Figure 5. ARIs correspond to different iteration numbers.
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Figure 6. Runtime and storage performance with respect to using kernel utilization or not.

5.3.4. Benchmark Results for Accuracy Comparison

To check RSVC-EO’s performance, we compared it with the state-of-the-art methods: the complete
graph (CG) [1], the reduced complete graph (RCG) [24], the equilibrium based SVC (E-SVC) [29,42],
the cone cluster labeling (CCL) [43], the fast SVC (FSVC) [12], the position regularized SVC (PSVC) [44],
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the convex decomposition cluster labeling (CDCL) [23], the voronoi cell-based clustering (VCC) [8],
the fast and scalable SVC (FSSVC) [26], and the faster and reformulated SVC (FRSVC) [22]. Table 3
gives the achieved accuracies regarding ARI, and the corresponding runtime of the training phase and
the labeling phase for each dataset is illustrated in Figure 7. Three points are important to be noted.
First, due to the sampling strategy, VCC cannot achieve a fixed accuracy even though its parameters
are fixed. We use its mean and mean-square deviation of the top ten ARIs. Secondly, runtime for each
dataset is the average time of ten executions. Thirdly, not all methods can finish analysis on the client
while the kernel matrix is too large or too much time (≥4 h. in this study) required by any phase.
For these cases, we use “—” to denote an unavailable ARI and mark the runtime with 0. Meanwhile,
we collect runtime of FRSVC and RSVC-EO by adopting the immediate calculation of kernel function.

Table 3. Accuracies (ARI) achieved by the state-of-the-art methods on 12 datasets.

Dataset CG RCG E-SVC CCL FSVC PSVC CDCL VCC FSSVC FRSVC RSVC-EO

wisconsin 0.7793 0.8035 0.1344 0.9076 0.6687 0.2574 0.8685 0.8029 ± 0.0514 0.9248 0.8798 0.8632
glass 0.2771 0.2823 0.2743 0.2201 0.2458 0.2801 0.2911 0.2771 ± 0.0031 0.2998 0.2582 0.3540
wine 0.5912 0.7928 0.4159 0.8190 0.8042 0.3809 0.8961 0.8088 ± 0.0563 0.8992 0.8483 0.8185

mLibras 0.2422 0.2356 — 0.0899 0.1421 0.2541 0.3320 0.3065 ± 0.0181 0.3703 0.3366 0.3732
P2P-T — 0.8815 — — 0.8367 — 0.8917 0.7389 ± 0.0066 0.8815 0.8678 0.8807

WebKB — 0.3072 — — 0.5144 — 0.4645 0.4434 ± 0.0156 0.5670 0.6395 0.5381
abalone — 0.0332 — — 0.0515 — 0.0603 0.0710 ± 0.0011 0.0587 0.0657 0.0996
Reuters — 0.0148 — — 0.4775 — 0.8064 0.4908 ± 0.0616 0.5831 0.7295 0.8338

Oh — — — — — — — 0.4280 ± 0.0292 0.4514 0.4840 0.5019
20NG — — — — — — — 0.4397 ± 0.0461 0.3628 0.4927 0.6084

sh — — 0.59 [12] — 0.58 [12] — — 0.5898 ± 0.0198 0.6857 0.8050 0.7337
kddcup99 — — — — — — — — — — 0.7621

Note: “—” means not available due to insufficient memory or too much time consumption.

In Table 3, the first rank is highlighted by boldface. Apparently, RSVC-EO reaches the best
performance on 7 out of 12 datasets, especially for the large ones such as Reuters, Oh, 20NG, and
kddcup99, whereas FRSVC performs better on sh and WebKB, FSSVC outperforms the others on wine
and wisconsin, and CDCL gets better results on P2P-T. As data size increases, many traditional
methods cannot run well on our client, e.g., CG, E-SVC, CCL, and PSVC. We directly quoted the results
of E-SVC and FSVC on sh in [12]. Additionally, RSVC-EO frequently gets into the first three ranks in the
other cases, e.g. sh, WebKB, and P2P-T. Thus, regarding the accuracy, we guess that RSVC-EO is suitable
for relatively large datasets. To verify it, we also give the results of pair comparison in Table 4 following
the work of Garcia and Herrera [45]. Here, RSVC-EO is the control method. A nonparametric statistical
test, namely Friedman test, was employed to get the average ranks and unadjusted p values. By
introducing an adjustment method, Bergmann–Hommel procedure, the adjusted p-value denoted by
pHomm corresponding to each comparison was obtained. RSVC-EO reaches the best performance in the
view of average rank. Since the Bergmann–Hommel procedure rejects those hypotheses with p-values
≤ 0.016, together with the values of pHomm, we further confirm RSVC-EO’s better performance.

In Figure 7, some obvious observations for the training phase can be found. (1) For the
cases smaller than WebKB, most of the methods perform similarly, including FRSVC and RSVC-EO.
Although they have to calculate the kernel function, this might be balanced due to more iterations
for the others. However, CCL and PSVC still consume a lot for strict restrictions. CCL requires more
iterative analysis to guarantee R < 1, while PSVC needs a pre-analysis to determine the weight for each
data sample and imposes these weights as additional constraints. (2) Along with data size increases,
e.g., from WebKB to Reuters, runtime for most of the methods raises dramatically. Particularly, CG,
E-SVC, CCL, and PSVC want memory greater than the predefined upper bound. When the kernel
matrix requires memory getting close to or greater than the client’s supplement, such as Oh, 20NG, and
sh, only two groups of methods are valid. The first group includes VCC (sample rate θ ∈ [0.001, 0.5))
and FSSVC, which adopts sampling strategy. Together with accuracies in Table 3, FSSVC obtains better
accuracy and consumes much more memory because of steadily choosing boundaries, whereas VCC
prefers a random strategy. The second group consists of FRSVC and RSVC-EO, which calculate the
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kernel function on demand to avoid huge memory consumption. Despite having greater runtime
than VCC, they are rewarded with better accuracies. A remarkable finding is that benefited by better
performance of the parameter insensitivity; fewer iterations required by RSVC-EO’s learning lead to
less runtime requirement. (3) For kddcup99, the full kernel matrix with approximate size 2.44× 1011

wants 909.18 GB, which is far greater than what the client can afford. VCC and FSSVC fail because
they can hardly select appropriate data samples to describe the pattern, while FRSVC fails for pricey
labeling strategy. Only RSVC-EO finishes the analysis with a suboptimal result because we only use
one iteration in Algorithm 1. Therefore, there still will be a big challenge for RSVC-EO to obtain the
optimal result when the data size continues to increase.

Table 4. Comparison under non-parametric statistical test.

Methods Average Ranks Unadjusted p pHomm
Control Method: RSVC-EO, Average Rank = 2.1667

CG 8.3333 5.2539 × 10−6 4.2031 × 10−5

RCG 6.7500 7.1174 × 10−4 0.0036
E-SVC 8.7083 1.3562 × 10−6 1.3562 × 10−5

CCL 8.0417 1.4315 × 10−5 1.0020 × 10−4

FSVC 7.1250 2.5028 × 10−4 0.0015
PSVC 8.4583 3.3728 × 10−6 2.6982 × 10−5

CDCL 4.6250 0.0694 0.2083
VCC 5.5000 0.0138 0.0553

FSSVC 2.9167 0.5796 0.5796
FRSVC 3.3749 0.3722 0.5796

For the labeling phase, RSVC-EO outperforms the others significantly that confirms the core ideas
of FCDCL. Firstly, FCDCL does not use iterative analysis. Thus, it performs well on high-dimensional
data, such as mLibras and Oh, whereas ESVC fails and the others consume much more. Secondly,
connectivity analysis of FCDCL avoids the traditional sampling checks in feature space. It reduces the
impact of candidate sample pairs. Although the others try to reduce the number of sample pairs and
the sample rate, runtime for the essential sample analysis is longer than the proportional time to the
size of the dataset or the candidate subset.

5.3.5. Effectiveness of Capturing Data Distribution

Following Xu and Wunsch [30], we find that increasing the cluster number sometimes has a
positive impact on the accuracy measures. However, we should try to avoid splitting data samples
of a group into multiple clusters. We intuitively expect an effective method which can accurately
capture data distribution. Therefore, we use the difference between the captured cluster number NC

and the real number of classes NR summarized in Table 2, in terms of percentage (NC
NR
− 1)× 100%.

Comparisons amongst the eleven methods are illustrated by Figure 8. If a method is invalid on a
dataset, the corresponding percentage is assigned by the greatest value amongst the other finished
ones, and its column is gray with slashes. Certainly, the shorter the column for a dataset is, the better
effect the corresponding method performs. As shown in Figure 8, RSVC-EO outperforms the other ten
methods significantly.
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Figure 7. Runtime comparisons of the training phase and labeling phase for the state-of-the-art methods
on 12 datasets: (a) wisconsin; (b) glass; (c) wine; (d) mLibras; (e) P2P-T; (f) WebKB; (g) abalone;
(h) Reuters; (i) Oh; (j) 20NG; (k) sh; and (l) kddcup99.

5.4. Experiments in the Encrypted-Domain

To integrate the Paillier, MPPSVC was implemented by C++ using GNU GMP library version
6.0.0a (https://ftp.gnu.org/gnu/gmp/).Both the server and the client were modeled as different
threads of a single program, which passes data or parameters to each other following the rules shown
in Figure 3. We conducted experiments on a server with Quad-Core 2.29 GHz CPUs and 64 GB main
memory running on Windows 7-X64.

5.4.1. Performance in the Encrypted-Domain

In ED, the Paillier only allows integers. We introduce a scaling factor γ on the input data samples
and the exchanged data to take integers downwardly before encryption. Table 5 shows the accuracies
for various γ in ED. Although better accuracies are not always obtained with greater γ, the clustering
results (marked by underlines) become steadily when γ is above 104. For these cases, the accuracies

https://ftp.gnu.org/gnu/gmp/
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are either the best ones (highlighted by boldface) or very close to the best. Hence, four decimal points
are sufficient for the 12 datasets. Compared with Table 3, we find that γ has little influence on accuracy
in ED because both the input data samples and the intermediate results transmitted from the client to
the server might lose a certain degree of precision. Since the accuracies achieved by MPPSVC are very
close to those obtained by RSVC-EO in PD, we confirm the guaranteed privacy of the input data and
clustering procedure.
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Figure 8. Difference between the captured cluster number (while each method achieve its best accuracy)
and the real number of classes in terms of percentage (+/−%).

Table 5. ARIs achieved in ED for various scaling factor γ.

Dataset Scaling Factor γ

101 102 103 104 105

wisconsin 0.8254 0.8519 0.8519 0.8519 0.8519
glass 0.1817 0.3197 0.3540 0.3540 0.3540
wine 0.4272 0.8185 0.8185 0.8185 0.8185

mLibras 0.3281 0.3264 0.3415 0.3415 0.3415
P2P-T 0.7757 0.7938 0.8048 0.8048 0.8048

WebKB 0.4824 0.5235 0.4428 0.4795 0.4795
abalone 0.0870 0.0915 0.0917 0.0917 0.0917
Reuters 0.7860 0.7284 0.7063 0.7062 0.7062

Oh 0.4851 0.4954 0.4898 0.4898 0.4898
20NG 0.4752 0.5120 0.5171 0.5169 0.5169

sh 0.6586 0.6346 0.6346 0.6596 0.6596
kddcup99 0.6799 0.7629 0.7714 0.7620 0.7620
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5.4.2. Computational Complexity

Table 6 presents the runtime of each step (following Table 1) in ED consumed, respectively, by the
client and the server. “#SVs” and “#Convex Hulls”, respectively, denote the number of SVs and convex
hulls. We omit the consumption of outsourcing the pre-computation for M following Luo et al. [27]
because it is not in the proposed framework.

Table 6. Runtime (s) of each step in ED, respectively, consumed by the client (C) and the server (S).

Dataset Step 1 Step 2 Step 3 Step 5 #SVs #Convex Hulls
C S C S C S C S

wisconsin 1.2524 0.0194 21.6361 43.4891 1.3200 9.4463 0.0200 1.4403 64 30
glass 0.7072 0.0059 14.4307 22.4403 1.2900 9.4809 0.0164 1.3288 44 31
wine 1.1567 0.0567 24.8310 40.4476 1.8900 21.4400 0.0244 3.0628 51 43

mLibras 4.3020 0.0186 195.1682 305.3468 0.8100 67.2533 0.0713 12.9299 62 23
P2P-T 4.6369 0.0805 103.4480 1577.1325 21.1350 356.6295 0.0112 8.0530 661 471

WebKB 0.7981 0.0057 41.7010 267.3922 6.1050 37.9054 0.0031 2.7794 266 137
abalone 0.9594 0.0131 49.0764 225.5012 2.6700 17.8104 0.0052 2.9876 189 69
Reuters 0.5403 0.0148 27.2192 59.0562 0.5250 4.5836 0.0081 1.4473 75 15

Oh 1.9096 0.0171 93.8732 255.4895 1.1250 18.1687 0.0175 4.8598 113 25
20NG 0.8993 0.0140 45.5341 77.9957 0.8250 16.2751 0.0152 2.8590 63 25

sh 1.4285 0.0259 45.9365 166.4430 0.8550 6.2177 0.0103 2.3485 141 22
kddcup99 0.4751 1.3404 24.8795 54.2872 0.6900 4.7367 0.0068 1.3015 74 17

Note: Step 5 can classify all the arrival data one by one or in parallel, and we collect the consumptions for a
single sample for efficiency analysis.

Together with Figure 7, we can make several observations. (1) Step 1 is no longer the first barrier
for the client even though the solver requires a large number of iterations. For example, in Figure 7l,
Step 1 for kddcup99 still consumes 10,846.2134 s although we cut off the iterations to get the suboptimal
result for efficiency. Now, it only requires 0.4751 s by the client without considering the iterations on the
server. (2) Step 2 is the most time-consumption task for both sides, and Step 3 takes the second place.
Comparing the first two time-consuming datasets P2P-T and mLibras with the others, efficiency is
closely related to “#SVs” and “#Convex Hulls”. From Definition 2, “#SVs” also affects “#Convex
Hulls”. Since S1NNQ compares each unlabeled data sample with both SVs and density centroids,
“#SVs” and “#Convex Hulls” directly contribute the computational time of Step 5. (3) Dimensionality
is another critical factor. The evidence can be found on the small data mLibras with 90 dimensions.
Since each dimension should be encrypted/decrypted separately, high dimensionality increases the
computational time in ED and results in more SVs. (4) Similar to the method in [17], Step 5 is a
classification work in ED, which can be conducted one by one or in parallel. It is a light workload to
outsource the encrypted sample for its label. (5) The total time cost is proportional to data size yet
in an acceptable range for the client. However, we do not suggest outsourcing Steps 1–3 for small
data analysis due to the increased costs. Based on a learned model, Step 5 is also suitable for being
outsourced as a service.

6. Related Work

Despite handling arbitrary cluster shapes well, SVC suffers from pricey computation and memory
as data size increases. Generally, exploring ways of optimizing the critical operations and asking for
the Cloud’s help are potential countermeasures. For the former way, the training and labeling phases
are considered, respectively.

(1) For model training, the core is solving the dual problem in Equation (2). Major studies prefer
generic optimization algorithms, e.g., gradient descent, sequential minimal optimization [4], and
evolutionary strategies [46]. Later, studies rewrote the dual problem by introducing the Jaynes
maximum entropy [47], the position-based weight [44], and the relationship amongst SVs [26].
However, conducting a solver with the full dataset suffers from huge consumption of kernel
matrix. Thus, FSSVC [26] steadily selects the boundaries while VCC [8] samples a predefined ratio
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θ ∈ (0, 1] of data. Other methods related to reducing the working set and divide-and-conquer
strategy were surveyed in [4]. However, bottlenecks still easily appear due to the nonlinear
strategy and the pre-computed kernel matrix. Thus, FRSVC [22] employs a linear method to seek
a balance between efficiency and memory cost.

(2) For the labeling phase, connectivity analysis adopts a sampling check strategy for a long time.
Reducing the number of sample pairs thus becomes the first consideration, for instance, using the
full dataset by CG [1], the SVs by PSVC [44], the SEVs by RCG [24], and the transition points by
E-SVC [29,42]. Although the number of sample pairs is gradually reduced, they have a side-effect
of additional iterations in seeking SEVs or TS. Thus, CDCL [23] suggests a compromise way of
using SVs to construct convex hulls, which are employed as substitutes of SEVs. For efficiency,
CDCL reduces the average sample rate by a nonlinear sampling strategy. Later, FSSVC [26] and
FRSVC [22] made further improvements by reducing the average sample m close to 1. Besides,
Chiang and Hao [48] introduced a cell growth strategy, which starts at any data sphere, expands
by absorbing fresh neighboring spheres ,and splits if its density is reduced to a certain degree.
Later, CCL [43] created a new way by checking the connectivity of two SVs according to a
single distance calculation. However, too strict constraints emphasized on the solver degrade
its performance. In fact, for these methods, the other pricey consumption is the adjacent matrix,
which usually ranges from O(N2

SV) to O(N2).

As data size increases, pricey computation and huge space needed by the above solutions raise
the requirement of outsourcing. However, to ask for the Cloud’s help, the risk of data leakage raises
concerns, since both the input data and the learned model memorize information [10]. The major
studies focus on securely outsourcing known SVM classifiers. Generally, the secure outsourcing
protocols prefer introducing homomorphic encryption [15–17,49], reformulating the classifier [50],
randomizing the classifier [51], or finding an approximated classifier [21]. Furthermore, based on
the homomorphic encryption, the existing secure outsourcing methods support the calculation of
rational numbers [52], matrix computations [14,27,28], mathematical optimization [14], and k nearest
neighboring query [20]. However, very few works are related to privacy-preserving model training.
An early work was published by Lin et al. [19], who suggested a random linear transformation for
data’s subset before outsourcing. Later, Salinas et al. [53] presented a transformed quadratic program
and its solver, namely Gauss–Seidel algorithm, for securely outsourcing SVM training while reducing
the client’s computation. According to a primal estimated sub-gradient solver and replacing the SVs
with data prototypes, the most recent work [54] gives a solution of training SVM model with data
encrypted by homomorphic encryption.

In a sense, training an SVM model and making a decision for a data sample is similar to the
training phase and the last labeling step, respectively. However, the known solutions are not suitable
for SVC due to the distinguished iteration/analysis strategy and operations in feature space. To the
best of our knowledge, no practical solution is presented for secure outsourcing SVC despite strong
demand.

7. Conclusions and Future Work

Towards easing the client’s workload, we propose MPPSVC to make all the phases of SVC
outsourceable without worrying about privacy issues. For simplicity and generality, we suggest
using additively homomorphic encryption to protect data privacy. The limited operations motivate
us giving a new design of RSVC-EO based on elementary operations. However, inevitable iterations
for Equation (2) and complex computations in all phases of SVC may cause massive interactions.
For efficiency, we consequently protect the kernel by a matrix transformation, which not only
reduces data transmission but also makes the outsourced solver iterate well. Besides, for the labeling
phase of RSVC-EO, FCDCL is developed without iterative analysis. Taking RSVC-EO as the core,
MPPSVC consists of several customized, lightweight, and secure protocols. Theoretical analysis and
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experimental results on twelve datasets prove the reliability of the proposed methods, i.e., RSVC-EO
for local use and MPPSVC for outsourcing.

Although MPPSVC provides customizable phase outsourcing, security and efficiency are
ever-lasting issues, which should be balanced as data size increases. How to securely control the
iterations while reducing SVs, finding substitutes for the complex operations, avoiding unnecessary
kernel matrix consumption, and making full use of distributed computing are worthy of investigation.
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