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Abstract: Cyberttacks are becoming increasingly sophisticated, necessitating the efficient intrusion
detection mechanisms to monitor computer resources and generate reports on anomalous or suspicious
activities. Many Intrusion Detection Systems (IDSs) use a single classifier for identifying intrusions.
Single classifier IDSs are unable to achieve high accuracy and low false alarm rates due to polymorphic,
metamorphic, and zero-day behaviors of malware. In this paper, a Hybrid IDS (HIDS) is proposed by
combining the C5 decision tree classifier and One Class Support Vector Machine (OC-SVM). HIDS
combines the strengths of SIDS) and Anomaly-based Intrusion Detection System (AIDS). The SIDS
was developed based on the C5.0 Decision tree classifier and AIDS was developed based on the
one-class Support Vector Machine (SVM). This framework aims to identify both the well-known
intrusions and zero-day attacks with high detection accuracy and low false-alarm rates. The proposed
HIDS is evaluated using the benchmark datasets, namely, Network Security Laboratory-Knowledge
Discovery in Databases (NSL-KDD) and Australian Defence Force Academy (ADFA) datasets. Studies
show that the performance of HIDS is enhanced, compared to SIDS and AIDS in terms of detection
rate and low false-alarm rates.

Keywords: anomaly detection; hybrid approach; C5.0 Decision tree; Cyber analytics; data mining;
machine learning; Zero-day malware; Intrusion; Intrusion Detection System

1. Introduction

Zero-day intrusion detection is a serious challenge as hundreds of thousands of new intrusions are
detected every day and the damage caused by these intrusions is becoming increasingly harmful [1,2] and
could result in compromising business continuity. Computer attacks are becoming more complicated and
lead to challenges in detecting the intrusion correctly [3].

Intrusion detection systems (IDS) detect suspicious activities and known threats and generate
alerts. Intrusions could be identified as any activity that causes damage to an information system [4].
IDS could be software or hardware systems capable of identifying any such malicious activities in
computer systems. The goal of intrusion detection systems is to monitor the computer system to detect
abnormal behavior, which could not be detected by a conventional packet filter. It is very vital to
achieve a high degree of cyber resilience against the malicious activities and to identify unauthorised
access to a computer system by analysing the network packets for signs of malicious activity.

IDSs use two broad methodologies for intrusion detection: The Signature-based Intrusion
Detection System (SIDS) and Anomaly-based Intrusion Detection System (AIDS). SIDS, also called
Knowledge-Based Detection or Misuse Detection, is a process where a signature identifier is determined
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about a known malware so that malware can be detected in the future [5]. If that specific signature
is identified again, the traffic can be identified as being malware. SIDS usually gives an excellent
detection accuracy, particularly for previously known intrusions.

Since SIDS can be as effective as the update of the signature database, three issues arise. Firstly, it
is easy to trick signature-based systems through the polymorphic behavior of malware. This method
fails the similarity test as it does not match with any signature stored in the IDS database, giving the
attacker a chance to gain access to the computer system. Secondly, the higher the number of signatures
in the database, the longer it takes to analyses and process the huge volume of data. Thirdly and most
importantly, SIDS has difficulty in detecting zero-day malware as the signature is not stored in the
database [6].

AIDS systems have overcome the limitation of SIDS and are being used to identify malicious
attacks on computer systems. The assumption for this technique is that the profile of a malicious
activity differs from typical user behavior activities [7]. AIDS creates a statistical model describing the
normal user activity and any abnormal activity that deviates from the normal model is detected. The
design idea behind AIDS is to profile and represent the normal and expected standard behavior profile
through monitoring activities and then definining anomalous activities by their degree of deviation
from the normal profile. AIDS uses features such as the number of emails sent by a user, the number of
failed logins tries for a user, and the degree of processor use for a host in a given timeframe in learning
the normal behaviors. Anomaly detection techniques have the ability of strong generalizability and
to detect new attacks, while its drawbacks could be in the form of large false alarm rates due to the
changing cyber-attack landscape.

The behaviors of alien users are deemed different to the standard activities and are categorized as
intrusions. AIDS includes two phases: Thee training phase and testing phase. In the training phase,
the normal traffic profile is learned from the data that represent normal behavior, and then the testing
is done on a data set that is not seen by the model during the training phase.

AIDS could be classified into several sub-classes based on the learning methods, for instance,
statistical based, knowledge based, and machine learning based [8].

The key advantage of AIDS is its ability to identify zero-day attacks as it does not have to rely on
the signature database to detect an attack. AIDS triggers an alert signal when the examined behavior
differs from the usual activity [9]. Furthermore, AIDS has various benefits: Firstly, it has the capability
to discover internal malicious activities. If an intruder starts transacting on a stolen account, which
could be misidentified as the normal user’s activity, then it generates an alarm. Secondly, it is very
difficult for a cybercriminal to learn what a normal user’s behavior is without producing alerts, as the
system is constructed from customized profiles [4].

Traditional IDSs have limitations: Inability to differentiate new malicious attacks, the need to be
updated, low accuracy, and high false alarms. AIDS also has shortcomings such as a high number
of false alarms [10]. To overcome those limitations, an innovative IDS model is proposed with the
integration of SIDS and AIDS in order to achieve accuracy and to reduce the false alarm. Well known
intrusions could be detected by SIDS and new attacks could be detected by AIDS.

In this paper, the signature intrusion detection system is built, based on the C5.0 Decision tree
classifier, and the Anomaly intrusion detection system is built, based on one-class Support Vector
Machine (SVM). The target is to understand how the intrusion detection system accuracy can be
enhanced by utilising the ensemble stacking technique. While the traditional intrusion detection
system concentrates on how the performance of a one classifier can be enhanced, this research studies
how diverse machine learning techniques can be integrated to enhance intrusion detection accuracy.
In this research, two machine learning techniques, namely the decision tree c5 and one class SVM
classifier, were chosen to build the intrusion detection system. The decision tree c5 and one class SVM
classifier have been evaluated independently and in combination by using stacking ensemble, which is
tested as well.

Our paper makes the following contributions:
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• Proposes a novel intelligent framework to identify well-known intrusions and zero-day attacks
with high detection accuracy and low false-alarm rates.

• Develops a stacked hybrid IDS based on SIDS and AIDS to harness their respective strengths for
better detection.

• Evaluates Hybrid Intrsuion Detection System (HIDS) on the Network Security Laboratory-
Knowledge Discovery in Databases (NSL-KDD) and Australian Defence Force Academy (ADFA)
datasets benchmark datasets in terms of accuracy and F-measure, and studies and validates its
superior performance.

The rest of the paper is organized as follows: Section 2 reviews a few related works. Section 3
describes the detailed description of the proposed hybrid intrusion detection. Experimental results are
presented in Section 4. Section 5 concludes the paper with a brief discussion and summary.

2. Related Work

There are many IDSs in the literature to identify abnormal activities, but most of these IDSs
produce a large number of false positives and low detection accuracy. However, many hybrid IDSs
have been proposed to overcome the drawbacks of SIDS and AIDS. Sumaiya et al. proposed an
intrusion detection model by applying the chi square attribute extraction and multiclass support vector
machine [11]. Syarif et al. used boosting, stacking, and bagging ensemble techniques for IDS to enhance
the intrusion detection rate and to reduce false alarms [12]. They used four diverse machine learning
techniques: Naïve Bayes, artificial neural networks, decision tree, genetic algorithms, rule induction,
and k-nearest neighbor as the foundation classifiers for the ensemble methods. They highlighted that
their proposed method has an accuracy of 99% in finding known attacks, but could only identify
zero-day attacks at around 60% accuracy rates.

Kim et al. [13] presented a HIDS technique that hierarchically combines SIDS and AIDS models.
Signature detection is developed based on the J48 decision tree classifier. Then, various one-class
support vector machines models are built for the split subsets, which can reduce the profiling capability.

Muniyandi et al. [14] proposed an anomaly detection method that employs “K-Means + C4.5”,
for classifying anomalous and normal activities in a computer system. The K-Means clustering method
is employed to divide the training data into k number of clusters by using the Euclidean distance
similarity. The Hybrid method beats the individual method in terms of accuracy, but it causes high
false alarms.

Al-Yaseena et al. [15] proposed a multi-level hybrid IDS which employs SVM and extreme learning
machine to enhance the detection efficiency for known and unknown attacks. The system performed
well on the KDD Cup 1999 dataset in terms of the false alarm rate, which was 1.87%.

Koc et al. proposed the Hidden Naïve Bayes (HNB) model for IDS issues such as dimensionality,
correlated features, and big data stream [16]. The results showed that this method achieved an overall
performance that was comparable to the Naïve Bayes model. Sivatha et al. proposed a lightweight IDS
to classify abnormal activities in the network using wrapper based feature selection techniques that
create good intrusion detection rates by adding the neural ensemble decision tree classifier [17].

M. Alazab proposed a methodology to extract features statically and dynamically from malware
such as the Windows Application Programming Interface (API) calls and create a malware behavior
profile by extracting malware API calls throughout execution [18].

Table 1 shows the IDS techniques and datasets covered by different intrusion detection system
survey papers. Khraisat et al. presented a survey of current intrusion detection systems, which was a
wide-ranging review of ID technqiues, and the datasets usually employed for evaluation purposes [4].
Several intrusion detection system techniques that have been developed to improve the detection rate.
However, such technques may have difficulty increating and updating the signarture of new malware
and in yielding high false alarms or poor detection rates.
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Table 1. Comparison of intrusion detection systems (IDS) techniques and datasets issue covered
(3: Topic is covered, 5 the topic is not covered).

IDS Methods
Intrusion Detection System Techniques Dataset

Issue

SIDS
AIDS Hybrid

IDS

Supervised
Learning Unsupervised Semi-Supervised

Learning
Ensemble
Methods

Lunt [19] 3 5 5 5 5 5 5

Axelsson [20] 3 3 5 5 5 5 5

Liao, et al. [21] 3 3 3 5 5 3 5

Agrawal and Agrawal [22] 3 3 3 3 3 3 5

Buczak and Guven [23] 3 3 3 5 3 3 3

Ahmed, et al. [24] 5 3 3 5 5 5 3

Khraisat, et al. [4] 3 3 3 3 3 3 3

Ghanem et al. proposed a hybrid detection approach for large datasets using detectors generated
based on different machine learning techniques. Anomaly detectors were developed based on self
and non-self-training data to obtain self-detectors [25]. K-means that clustering is used to decrease
the volume of the training dataset by removing the redundant detector. The key role of AIDS is to
create normal profiles of attacks. If the patterns are general in nature, then it is unable to identify
several intrusions, which results in a poor detection rate. If the profiles are very specific, then it can
identify different intrusions, but several normal behaviors could be classified as attacks. However,
none of the previous works have attempted to strike a balance between accuracy and false positives.
Recent studies focus on decreasing the false positive rate of AIDS by proposing a hybrid IDS. While
earlier studies only integrate the results of both detection models, but in the proposed technique, the
intrusion detection systems are hierarchically combined to improve accuracy. This allows the AIDS to
improve its normal profiling capability with the use of the signature detection model. The details of
the proposed Hybrid IDS are described in Section 3.

3. Hybrid Intrusion Detection System

Hybrid IDS is developed to overcome the disadvantages of SIDS and AIDS as it integrates SIDS
and AIDS to detect both unknown and known attacks. In our approach, we used AIDS to identify
unseen intrusions, while SIDS is used to identify well-known attacks. Our system is based on three
stages process:

• Stage 1: SIDS based C5
• Stage 2: AIDS based One-Class SVM
• Stage 3: HIDS based Stacking Ensemble of C5 and One-Class SVM

Our hybrid IDS (HIDS) ultimately combines the C5 classifier (in the first stage) and One Class
Support Vector Machine (in the second stage). The central idea of this novel approach was to combine
the advantages of both SIDS and AIDS to build an efficient IDS. The Hybrid IDS has two phases; the
SIDS phase and AIDS phase are shown in Figure 1.

Our intrusion detection techniques included online and offline, which means detection intrusion
later and online stages, which means detection intrusions in real-time. In the offline stage, the C5
classifier learning method was used to update the signature database. This stage deals with the stored
signature and passes it through some processes to decide if it is an attack or not. In the online stage,
the initial detection model was created using a one-class SVM. The online IDS deals with the network
in real-time. This stage analyses the network traffic to decide if it is an intrusion or not.
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AIDS profiles normal user activities and raises a malicious alarm when the difference between a
given observation at an instant and the recorded value of the profile exceeds a predefined threshold.
User profiles are created from the records generated from user activities and are marked as benign.
AIDS feedbacks malicious records to SIDS to be saved in the signature database. The principle
reason for storing the intrusion data in the signature database is to mitigate against known intrusions.
The performance of the proposed HIDS and its components (SIDS and AIDS) are evaluated by
conducting experiments separately. In the following, the two phases of the proposed detection system
are elaborated.

3.1. Stage 1: SIDS Based C5

SIDS is used in the first stage as it provides high accuracy in detecting well known intrusions and
generates low false alarms. As a result, false positives are low as all known signatures for malicious
samples are kept in the database. Therefore, attacks can be detected with high accuracy while reducing
false positives.

In SIDS, the C5 classifier is used in this stage to detect well-known intrusions. In our previous
work, C5 was analyzed and contrasted with other machine learning techniques [26]. The results
revealed that C5 performs very well in terms of the detection rate and false alarm rate. The C5 algorithm
is an improved version of the commonly used C4.5 classifier which was developed by Quinlan [27],
based on decision tree [26]. It incorporates variable misclassification costs, handles missing data,
can handle large numbers of input fields, and builds the model very fast. It takes a set of known data
as the input and builds a decision tree from that data. In C5, the decision tree is built in a top-down
fashion. The first attribute and its values are at the top of the tree and the next branch leads to either an
attribute or outcome. C5 decision trees are created in view of a number of features and a set of training
stages, and then the tree could be categorized by using a subsequent set to distinguish other samples.

We have used the C5 classifier for SIDS, as shown in Figure 2. Unknown samples are handled
through pattern matching in order to determine whether they represent normal or abnormal activities.
If the unknown sample is found in the signature database, then it triggers an alarm that it is a malware.
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If no match is found, it will go to AIDS, which is the second stage of the framework, as shown in
Figure 2.
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The first stage of the proposed framework results in one of two possible outcomes: Known attacks
and unknown samples. At the second stage, the unknown samples (branching out at ‘Not Exists’ in
the figure) are then presented to AIDS for further training and analysis to overcome the shortcoming
of SIDS.

3.2. Stage 2: AIDS Based One-Class SVM

To successfully identify new intrusions, the result of the SIDS phase should be used as input data
in the AIDS stage to detect new intrusions. AIDS should be built based on the normal activity of a
user, which could have been used during the training stage. Then, intrusions are detected based on the
measured state of the user profile, which is compared to the normal profile (determined based on the
model), if it varies more than the described threshold, then it is marked as a malicious. The one class
SVM learning model is used to identify normal behavior, as the One-class SVM (OCSVM), which learns
the attributes of benign samples without using any information from the other class. One-class SVM
was suggested by Schölkopf et al. [28] to predict the support of a high-dimensional distribution by
modifying the SVM method to the one-class problem. It involves the first feature processing through a
kernel and then employs relaxation parameters to separate the test point of a class from the rest of
the datasets or origin [29], as illustrated in Figure 3. Relaxation parameters techniques are iterative
approaches for solving large sparse linear systems. It is also used to solve linear least-squares and
nonlinear equations problems. Relaxation parameters help SVM to control the compromise between
the reaching of a low detection rate on the training stage and a low detection rate on the testing stage,
which is the capacity to identify and classify unknown malwares.

The OCSVM classifier transforms instances into a large dimensional attribute space (via a kernel)
and locates the suitable location of the boundary hyperplane, which splits the training data. The
OCSVM is a normal binary-class SVM where all the training data are based on the first class. Thus, we
consider those profiles to be abnormal, which are close to the origin of coordinates in a feature space.
The establishment of the hyperplane needs to follow the categorization rule:

f (x) = (w, x) + b (1)
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where w is the normal vector and b is a bias term. The OCSVM adjusts the hyperplane to find a linear
classifier by optimising the rule f . This classification rule can be used to assign a label to a test example
x. x is classified as an intrusion if the f (x) result is less than zero, or else it is classified as normal. As
presented in Figure 3, the result of f (x) can clarify the classification condition: Positive is considered to
in the normal class, negative is in the intrusion class.
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The one class SVM intrusion detection system can be expressed as mapping the data into a feature
vector H using a suitable kernel function, and then attempts to isolate the mapped vectors from the
origin with a determined margin (see Figure 3).

f (x) =
{

+1, i f x ∈ Normal
−1, i f x ∈ Intrusion

(2)

In stage 2 of the one class SVM, let x1, x2, . . . , xl be the training examples belonging to one class
X, where X is a compact subset of RN. Let Φ: X→ H be a kernel map that transforms the training
examples to another space. Then, to separate the data set from the origin, one needs to solve the
following quadratic programming problem:

min
1
2
||w||2+

1
Vl

∑l

i=1
ξi − p (3)

which is subject to
(w×Φ(xi)) ≥ ρ − ξi i = 1, 2, . . . , l ξi ≥ 0 (4)

If w and ρ are solved in this problem, then the decision function

f (x) = sign((w×Φ(x)) − ρ) (5)

will be normal for most instances xi comprised in the training data set.
The basic idea of OCSVM training is to build the OCSVM intrusion detection system that is able

to detect the intrusions. Initially, both the training set and the test set are pre-processed to acquire the
vector sets based on their unlikely data types. The training vector set at that point is employed to train
the OCSVM intrusion detection system and the OCSVM detector is then used on the test vector set. If
the return value result for the intrusion system OCSVM function f (x) is less than zero, an intrusion is
detected, otherwise it is normal. This entire stage technique is shown in a flowchart in Figure 4.
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3.3. Stage 3: HIDS Based Stacking Ensemble of C5 and One-Class SVM

SIDS and AIDS have complementary strengths and weaknesses, so we developed a hybrid method
using an ensemble of both techniques. In machine learning, ensemble techniques use many learning
algorithms to accurately predict the outcome. In other words, different classifier models are trained on
the same target and then their results are combined. In the first stage, a set of base level classifiers
C1, C2, . . . , Cn are created. In the second stage, a meta-level classifier is built by uniting the base
level classifier.

While many ensemble methods have been proposed in the literature, it is a difficult task to find a
suitable ensemble configuration to detect zero-day attacks. There are three popular ensemble methods:
Bootstrap aggregating, boosting, and stacking. Bootstrap aggregating, known as bagging, employs
the simplest way of combining predictions that belong to the same class. For example, if we had four
bagged decision trees that made the following class predictions for an input sample: Malware, normal,
malware and malware, we would take the most frequent class and predict malware. Boosting steadily
creates an ensemble via preparing each new model, utilizing the misclassified training instance that
past models misclassified. An example of boosting is the AdaBoost algorithm, which uses a boosting
technique. Stacking, also known as stacked generalization, is a technique that combines the other
models’ predictions.

In stacking, predictions of base learners (stage one) are used as input for the meta-learner (stage
two). Stacking is a parallel integration of classifiers in which all the classifiers are implemen-ed parallel
to eatchother and learning takes place at the meta-level. In this paper, two models, namely C5 and
OCSVM, are built and then the predictions of the primary models are combined, as shown in Figure 5.

The focus is on how to enhance IDS accuracy by employing the stacking approach. Meanwhile,
the current conventional data mining approaches focus on how to enhance the performance of a
single model. Our work focuses on how different classifiers can be combined to improve the overall
performance of IDS. It was also observed that this approach yields better accuracy in the area of
intrusion detection, as illustrated in the following section.
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4. Model Evaluation

The NSL-KDD and ADFA datasets are used to evaluate the proposed hybrid IDS. The experiments
have been performed using C5 and LIBSVM, library for Support Vector Machines, implementation of
the support vector machine with default parameters. Details of the datasets are presented below.

4.1. Datasets

4.1.1. ADFA Dataset

Creech and Hu [29] built the ADFA Linux (ADFA-LD) cyber security benchmarks datasets for
assessment of IDSs. Ubuntu Linux version 11.04 was used as the operating system to collect this
dataset. Ubuntu Linux configuration offers several functions including the sharing of files, a database
movement system, network settings, and a web server.

File transfer protocol, secure web server, secure shell protocol, and MySQL database are activated
based on default ports. Personal Home Page (PHP) was used as a server scripting language and to
make the Web pages dynamic and interactive. Apache was installed to enable web-based services.
Apache acted as a middleman between the server and user computer.

The ADFA-LD is freely accessible on the Internet and can be found in Reference [29]. Table 2
shows ADFA-LD features and their types.

The ADFA Windows Dataset (ADFA-WD) offers a modern Windows dataset for HIDS evaluation.
Table 3 presents various system calls in AFDA-LD and AFDA-WD. Table 4 defines each attack in details
in the ADFA-LD dataset.
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Table 2. ADFA-LD (ADFA Linux) dataset features.

Seq. Name of the Category Description

1 Flow features
It represents the v features communication between the machine to
the computer server or server to-client such as source of IP address,
source port number and destination IP address.

2 Basic features
It contains the features that describe the communications of
protocols such as the connection duration, source to destination
transaction bytes and packet count

3 Content features based on data from packet contents.

4 Time features
It comprises the attribute of time such as the total time taken to send
the first packet to the destination as well as the time taken to get the
response packet.

5 Generated features Related with protocols service.

6 Connection features Built based on the chronological order of the last time feature

7 Labelled Features It could be normal or intrusion

Table 3. Number of system calls traces in various categories of AFDA-LD and AFDA-WD datasets.

ADFA-LD ADFA-WD

Dataset Traces System Calls Traces System Calls

Training data 833 308,077 355 13,504,419
Validation data 4372 2,122,085 1827 117,918,735

Attack data 746 317,388 5542 74,202,804
Total 5951 2,747,550 7724 205,625,958

Table 4. ADFA-LD attack classes.

Attack Payload Description

Hydra-FTP Password brute force

This type of attack comprises of an attacker trying
several passwords or passphrases with the hope of
eventually guessing File Transfer Protocol (FTP)
password correctly

Hydra-SSH Password brute force For guessing Secure Shell (SHH) password.

Add user Add new super user Add user command creates a new user

Java
Meterpreter Java based Meterpreter

This is an attack payload that offers a communication
shell to the cybercriminal from which they can
explore the target computer and execute malicious
activities.

Meterpreter Linux Meterpreter Payload Client-side poisoned executable

Web shell C100 Web shell

Web shell is a script running on a server that allows
remote access and provides a set of functions to
execute or a command-line interfaces on the system
that hosts the Web server for the use of cybercriminal.

4.1.2. NSL-KDD Dataset

The KDD 1999 data set has been examined by Tavallaee et al. [30] and found a number of
weaknesses. A few problems were noted, relating to synthesizing the network and attack data (after
sampling the actual traffic) because of privacy issue, an unidentified packet loss caused by network
traffic, and unclear attack definitions. Tavallaee et al. also completed statistical evaluations and
revealed a high number of redundant records resulting in bias in the dataset. Hence, high bias can
cause IDS to be inaccurate in terms of high false alarms. Therefore, machine learning techniques have
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restricted flexibility to learn the true behavior of normal and abnormal activities from the dataset. They
proposed a new data set, NSL-KDD, which contains marked records of the overall KDD data set and
does not encounter the previously mentioned inadequacies. Table 5 shows the list of attacks presented
in NSL-KDD dataset. This dataset has been widely used as a public dataset for the validation of IDS.

Table 5. List of attacks presented in NSL-KDD dataset.

Attack Name Description

Denial of Service (DoS) attack
Make a computer service unavailable to its legitimate users by overwhelming
the computer system. Attacker could send high volume of packet to target
computer so normal traffic cannot be handled.

Buffer overflow Occurs when more data is put into a fixed-length buffer than the buffer
can handle.

FTP writes Add files to ftp directory and eventually gain access to the computer system

Guessing password Aims to find the correct password by trying systematic guessing of passwords
techniques such as dictionary password or brute force attack

IMAP
Internet Message Access Protocol (IMPAP) permits cybercriminal to mount
brute force attacks without being locked out or triggering an alert by intrusion
detection system

IP Sweep

Occurs when cybercriminal sends Internet Control Message Protocol (ICMP)
echo requests (pings) to several computer addresses. If a computer receiver
host response, the response discloses the victim’s IP address
to the cybercriminal.

LAND (Local Area Network Denial)

Occurs when cybercriminal submits TCP SYN spoofed datagram where
sender and receiver IPs and ports are be configured the same. When the
victim computer attempts to reply, it enters into a loop, repetitively sending
responses to itself which ultimately sources the victim machine to damage.

load module Attacker aims to load two dynamically loadable kernel drivers into operating
system to gain root access on the target computer.

Multi hop routing Occurs when cybercriminal change routing messages to cause wrong routing
updates which can ultimately lead to network failure.

Neptune (SYN flood) Occurs when cybercriminal generates a SYN Flood attack against a network
host by sending session establishment packets via a fake source IP address.

Nmap (port scanning) Occurs when cybercriminal sends packets to target computer to discover
what services are running on the target computer

Perl scripting Occurs when cybercriminal inject malicious code in a target computer

phf script A script named “phf” which is installed by default in the web server directory
could be used to send illegitimate packets to the web server.

Ping of Death (PoD) Cybercriminal tries to freeze the victim’s computer by sending abnormal or
large packets using a simple ping command.

Port sweep
In Ports weep attack, various hosts are scanned on a particular listening port.
For instance, if the cybercriminal would like to detect all the web servers
which are using ports 80 and 443.

Rootkit This attack is used to obtain root or administrator access

Satan Satan is a tool designed to probe a target computer system

Smurf
It is a distributed denial-of-service attack in which huge amounts of packets
with the intended computer target are tricked as source IP to broadcast to a
victim computer network.

Spy This attack enables to collect data about a target computer without
their knowledge

Teardrop A teardrop attack is DoS attack which sends fragmented packets to a
target computer

Warezmaster
Cybercriminal access on a computer server using guest account. The
cybercriminal creates a hidden file and uploads “warez” (malicious file) onto
webserver. Victim user can then later download these files.

Warezclient Warezclient attack could be executed by victim during an FTP connection
after warezmaster attack.

Normal Not attack

Unknown Unknown attack
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4.2. Evaluation Metrics

Table 6 shows the confusion matrix for a two-class classifier that would commonly be used in an
IDS. Each column of the matrix represents the instances in a predicted class, while each row represents
the instances in an actual class.

Table 6. Confusion matrix of an IDS for evaluation purpose.

Actual Class

Predicted Class

Normal Intrusion

Normal True negative (TN) False Positive (FP)
Intrusion False Negative (FN) True positive (TP)

Usually, the evaluation of the IDS is assessed based on the Confusion matrix measurement
as follows:

• True Positive Rate (TPR): It measures the quantitative relation between the attacks and the overall
attacks number. TPR is 1 when all intrusions are correctly identified, and that is extremely rare for
an IDS. TPR is also called the Detection Rate (DR) and is defined as:

TPR =
TP

TP + FN
(6)

• False Positive Rate (FPR): It measures the quantitative relation between the normal cases that are
detected as attacks and the overall number of normal cases. FPR is calculated as:

FPR =
FP

FP + TN
(7)

• False Negative Rate (FNR): FNR shows that the intrusion detection system could not classify the
intrusion and has classified it as normal. The FNR is calculated as:

FNR =
FN

FN + TP
(8)

• Classification rate (CR) or Accuracy: The CR is the total accuracy of the IDS in classifying both
normal and intrusion attacks and is calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

• Precision (P): P is the percentage of total true positives (TP) instances divided by total number of
true positives (TP) and false positives (FP) instances:

Precision =
TP

TP + FP
× 100% (10)

• Recall (R): Refers to the percentage of total relevant results correctly classified, true positives (TP),
divided by the total true positives and false negatives (FN) instances:

Recall =
TP

TP + FN
× 100% (11)
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• F-measure (FM): The FM is the mean of the precision and recall. F-Measure is favored when only
one accuracy metric is needed as an evaluation measurement:

F−measure =
2 ∗Recall ∗ Precision
Recall + Precision

(12)

4.3. Experimental Results

The effectiveness of our proposed model is evaluated with other machine learning techniques
that use the same datasets mentioned earlier.

In the first instance, for selected classification techniques, the dataset is divided into training and
testing subsets for assessment purposes. For the NSL-KDD dataset, the process of training and testing
the different stages is outlined in Table 7.

Table 7. Steps followed for training and testing the NSL-KDD dataset.

Steps Details

Step 1

For NSL-KDD, we divided the data for training and testing.
KDDTrain+, which is generated from KDD train set, is used as
training set and KDDTest+ is used as testing set. The generated
datasets, KDDTrain+ and KDDTest+, contain 125,973 and 22,544
records, respectively.

Step 2 Trained the SIDS using KDDTrain+; and then tested it using
KDDTest+.

Step 3

Finally, tested the SIDS using KDDTest+. If SIDS classifies a
sample as malware, then labeled it as malware. But, if SIDS
classifies as normal, then those samples are passed to AIDS for
further analysis

Step 4 Trained AIDS with KDDTrain++ and tested the samples labelled
as normal by SIDS

With the ADFA dataset, we used the widely adopted 10-fold cross-validation scheme for training
and testing purpose. In a 10-fold cross-validation, the dataset is split into 10 approximately equal
sized non-overlapping subsets. Nine subsets are used for building the classifier in the training stage,
while the remaining one subset is used to test the model. The test set is employed to estimate the IDS
accuracy. This process is repeated 10 times, each time using a separate fold for testing. In this way,
the whole dataset goes through the testing phase in turns, with each sample being tested once. The
overall accuracy estimate is the mean of 10 rounds.

The proposed IDS accuracy has been evaluated for all stages; four statistics evaluation measurement
have been computed: True positive rate, F-measure, false positive rate, and accuracy.

4.3.1. Stage One: SIDS Results

This experiment was conducted by using NSL-KDD Test+ dataset and ADFA dataset. To evaluate
the performance of the proposed technique, the Confusion matrix was used. The Confusion matrix
results for the C5 classifier in stage one is shown in Table 8 for both NSL-KDD Test+ and ADFA.

Table 8. Confusion matrix results with the use C5 classifier on KDDTest+ and ADFA dataset.

Dataset NSL_KDD ADFA

Class Normal Malware Normal Malware

Normal 9488 263 36,065 935
Malware 3900 8933 1250 44,082
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The detailed accuracy for C5 classifier with the use of NSL-KDD Test+ is shown in Table 9 and on
ADFA dataset shown in Table 10.

Table 9. Detailed accuracy of C5 decision tree with KDDTest+.

Class TP Rate FP Rate F-Measure

Normal 0.972 0.311 0.815
Malware 0.689 0.028 0.805

Table 10. Detailed accuracy of C5 decision tree on ADFA dataset.

Class TP Rate FP Rate F-Measure

Normal 0.975 0.028 0.971
Malware 0.972 0.025 0.976

4.3.2. Stage Two: AIDs Results

One-class SVM with an RBF kernel was applied using LIBSVM. Confusion matrix results are
shown in Table 11 for both datasets: NSL-KDD Test+ and ADFA.

Table 11. Performance of the One-Class Support Vector Machine.

Dataset NSL-KDD ADFA

Class Normal Malware Normal Malware

Normal 9500 211 33,079 3921
Malware 6064 6769 15,554 29,778

The detailed analyses of the accuracy of the One-Class SVM classifier on NSL-KDD Test+ and
ADFA datasets are highlighted in Tables 12 and 13, respectively. For AIDS, the detection accuracy is
72.17% with the use of NSL-KDD Test+ dataset and 76.4% for the ADFA dataset.

Table 12. Performance of the One-class SVM on the NSL-KDD Test+.

Class TP Rate FP Rate F-Measure

Normal 0.978 0.473 0.752
Malware 0.527 0.022 0.683

Table 13. Performance of the One-class SVM on the ADFA dataset.

Class TP Rate FP Rate F-Measure

Normal 0.894 0.343 0.773
Malware 0.657 0.106 0.754

4.3.3. Stage Three: Combination of the Two Stages

The Confusion matrix of the mixture of both classifiers in Stage three is shown in Table 14 for both
NSL-KDD Test+ and ADFA.

Table 14. Confusion matrix results for Stage 3.

Dataset NSL-KDD ADFA

Class Normal Malware Normal Malware

Normal 9500 211 36,114 886
Malware 6064 6769 1305 44,027
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The accuracy of Stage 3 with the use of NSL-KDD Test+ and ADFA datasets is shown in Tables 15
and 16, respectively.

Table 15. Detailed accuracy at Stage 3 on the KDDTest+.

Class TP Rate FP Rate F-Measure

Normal 0.972 0.273 0.833
Malware 0.727 0.028 0.832

Table 16. Detailed accuracy at Stage 3 on the ADFA dataset.

Class TP Rate FP Rate F-Measure

Normal 0.976 0.029 0.971
Malware 0.971 0.024 0.976

As revealed in Figure 6, the detection accuracy of the intrusion is 81.5% with the use of NSL-KDD
Test+ dataset and 97.3% for the ADFA dataset at Stage one. Meanwhile, the detection accuracy of the
intrusion is 72.2% with NSL-KDD Test+ dataset and 76.4% for ADFA dataset at Stage two. At Stage
3, the accuracy rates are improved to 83.2% and 97.4%, respectively, for the both datasets. Results
show that our suggested framework yields a superior detection rate and a lower false alarm rate,
as compared with the single stage method.
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To further analyze performance, our approach is compared with different approaches reported in
the literature in terms of the overall accuracy. Table 17 shows this comparison for the NSL-KDD dataset.
Results show that our proposed model, which combines two stages, outperforms other approaches.

Table 17. Accuracy comparison of the proposed model on NSL-KDD (Test+ dataset).

Research Accuracy Rate on KDDTest+

Abbasi, et al. [31] 77.38%

Panda, et al. [32] 81.47%

Abbasi, et al. [31] 79.66%

Proposed Technique 83.24%

According to the results shown in Figure 6, the accuracy obtained by our proposed algorithm on
the KDDTest+ and ADFA datasets are supreme, as compared to the accuracy obtained by different



Electronics 2020, 9, 173 16 of 18

classifiers to obtain the accuracy. Table 18 shows the accuracy rates for different machine learning
techniques, specifically C4.5, Naïve Bayes, Random Forest, multi-layer perception, SVM, CART, and
KNN on the NSL-KDD dataset. The results show that our proposed technique, which combined the
two stages, achieved the best performance, reaching an accuracy of 83.24%.

Table 18. Performance comparison between different classifiers and proposed algorithm on KDDTest+.

Machine Learning Techniques NSL-KDD Accuracy

C4.5 [26] 81%
Naïve Bayes 76.56%

Random Forest 80.67%
Multi-layer perception 77.41%

SVM 69.52%
CART 80.3%
KNN 79.4%

Proposed Technique 83.24%

5. Conclusions

To create attacks in high volume, cybercriminals began using new techniques, like polymorphism,
to change the signature each time and to generate new attacks. Efficient IDSs should be able to
detect known and zero-day attacks reliably. In this paper, a novel framework is developed to build
an intelligent IDS that overcomes the weaknesses of current IDSs, which means including detection
methods for both known and unknown threats. The main contribution of our framework is the
integration of the signature and anomaly intrusion detection systems, which takes advantage of the
respective strengths of SIDS and AIDS. In the proposed IDS, signature-based IDS is applied to identify
previously known intrusions, while an anomaly-based IDS is applied to detect unknown zero-day
intrusions. We have effectively created signatures from anomaly IDSs to identify different intrusions to
add in signature databases. Additionally, the advantage of the proposed IDS is not only the higher
detection rate, but also the enhanced scalability, such as when new intrusions are stored to the signature
intrusion database. We used the C5 classifiers to create an intrusion signature, which is capable of
generating a rule pattern more rapidly and can detect the intrusions with fewer numbers of signatures.
We have shown that an ensemble of the C5 classifier (signature) and one-class SVM (anomaly) can
result in a better detection rate when compared with other machine learning techniques in terms of the
detection rate, false alarms, true negative, false positive, false negative, recall, precision, specificity,
sensitivity, and F-Measure. Compared to the single algorithms, combining multiple algorithms has
given much better results. Our Hybrid IDS has shown superior results, as compared to existing
techniques. Our future research will be focused on the way in which to apply this technique in order
to improve the accuracy of IDSs in detecting different attacks.
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