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Abstract: With the development of artificial electromagnetic structures, defective grounding structures
(DGS), defective microstrip structures (DMS), and electromagnetic bandgap (EBG) have been widely
used in the design of microstrip filters. In this paper, a triple notches ultra wideband bandstop
microstrip filter based on Archimedean spiral electromagnetic bandgap structure (ASEBG) structure
is proposed. Firstly, the equivalent circuit of ASEBG is analyzed, and L and C values are extracted by
using Advanced Design System (ADS). Secondly, the correctness of the lumped parameter model is
verified by comparing the High Frequency Structure Simulator (HFSS) simulation results with the
measured results. Finally, the influence of ASEBG structure parameters on resonant performance
is analyzed by HFSS simulation, and the filter parameters are further optimized. By coupling
ASEBG structure to existing double notch microstrip filters, a triple notches ultra wideband bandstop
microstrip filter is realized. This method can also be used in the design of other microstrip devices
with stopband characteristics. The three bandgap center frequencies of the proposed triple notches
ultra wideband bandstop microstrip filter are 3.5, 5.2, and 7.4 GHz, respectively. The corresponding
maximum attenuation of the three stopbands is 33.6, 24.8, and 21.7 dB, respectively.

Keywords: microstrip notch filter; Archimedean spiral; electromagnetic bandgap structure

1. Introduction

With the development of artificial electromagnetic structures such as electromagnetic bandgap
structure and defective microstrip structure, which are widely used in the design of microstrip
antennas, microstrip filters, microstrip couplers, and other RF devices. The ultra wide band
(UWB) approved by the Federal Communications Commission (FCC) is 3.1–10.6 GHz [1]. It
covers narrowband communication systems such as WIMAX band (3.3–3.7 GHz), WLAN band
(5.15–5.35 GHz and 5.725–5.825 GHz) and C band (7.25–7.75 GHz). In order to filter the interference
of a multi-narrowband system whose transmitting power is obviously higher than UWB, the design
of multi-notch microstrip band-stop filter has become a research focus. Generally speaking, artificial
electromagnetic structures generally include defective ground structure (DGS), defective microstrip
structure (DMS), electromagnetic bandgap structure (EBG) and so on. So far, scholars have applied
artificial electromagnetic structures to the design of microstrip filters. The traditional methods to
realize notch microstrip filters such as using open or short stub loaded resonators [2,3]; using stepped
impedance resonators [4,5]; using multimode resonators [6–8] such as T shaped resonators [9–11], E
shaped resonators [12,13], ring resonators [14], Hilbert-Fork Resonators [15]; coupling resonators are
designed by coupling structure between microstrips [16,17]. In addition, microstrip notch filters can
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be realized by constructing a defective grounding structure (DGS) [18,19]. The defective grounding
structure changes the distribution inductance and capacitance of the transmission line by etching the
structure on the grounding metal plate, and obtains band-stop and slow-wave characteristics, but it
leaks floor energy. In order to solve the problem of floor energy leakage, a defective microstrip structure
is proposed. [20,21], which can also generate slow wave characteristics. In [22], the authors proposed a
microstrip notch filter based on electromagnetic bandgap structure, which realized a high rejection
broadband filter. At present, the realization of UWB tri-notch band-stop filters mainly focuses on the
following aspects: a stub loaded resonator [23], square ring short stub loaded resonators [24], a stepped
impedance resonator (SIR) [25], a coupled-line sub-loaded shorted stepped impedance resonator
(SIR) [26], multiple resonant and defected ground structure [27], hexagonal metamaterials split ring
resonators [28], the wave cancellation technique [29], using cascaded and multi-armed methods [30],
using controlled coupling of open-loop-ring defected ground structure [31], using the U-resonator and
suspended multilayer-technique [32], using the multilayer technique and coupled octagonal defected
ground structure [33]. Most methods for designing triple notches bandstop microstrip filters mentioned
above are based on a single resonant structure, and the 3 dB bandwidth of the stopband are narrow for
filtering narrow-band interference.

In this paper, a triple notches bandstop microstrip filter based on Archimedean spiral EBG
structure and existing dual notch microstrip filter is presented. By analyzing the lumped circuit
model of Archimedean spiral EBG structure, the lumped parameter model of triple notches bandstop
microstrip filter coupled with Archimedean spiral EBG structure is analyzed. The validity of the model
is further verified by comparing the actual measurement results of the filter with the simulation results
by using Advanced Design System (ADS) software (Agilent Technologies Inc., KSanta Clara, CA,
USA) and High Frequency Structure Simulator (HFSS) software (ANSYS, Inc., Canonsburg, PA, USA).
Without changing the existing dual notch filter structure, the proposed filter achieves the third stop
band by coupling the ASEBG structure on the realized dual notch filter [9].

2. Performance Analysis of Archimedean Spiral EBG Structure

2.1. Structural Dimensions

Figure 1a,b shows the top and side views of mushroom electromagnetic band gap (MEBG)
structure, respectively. The equivalent circuit diagram of MEBG is shown in Figure 1c. There is a
potential difference between the electromagnetic bandgap structure and the microstrip line and the
contact floor. C0 is the capacitance between the feeder and the EBG patch. C1 is the capacitance
between the EBG patch and the ground plate. L1 is the inductance value on the metal hole.
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In the above equations, f is the resonant frequency, which is determined by capacitance and
inductance. h is the thickness of dielectric substrate. r is the metal hole radius of electromagnetic
bandgap structure. W is the edge length of electromagnetic bandgap structure patch. d is the gap
between electromagnetic bandgap structure and feeder. ε0 is the dielectric constant of vacuum medium



Electronics 2019, 8, 964 3 of 15

substrate; εr is the relative dielectric constant of dielectric substrate; The inductance mainly depends
on h and µr, and the capacitance mainly depends on the side length W and the spacing d.
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Figure 1. (a) The top view of the MEBG structure; (b) the side view of the MEBG structure; (c) the 
equivalent circuit diagram of the MEBG structure. 
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Figure 1. (a) The top view of the MEBG structure; (b) the side view of the MEBG structure; (c) the
equivalent circuit diagram of the MEBG structure.

The size of traditional MEBG resonator is too large. Adding Archimedean spiral inductance to
the surface of the EBG unit can reduce the size of the EBG structure. Archimedean spiral equation is
as follows:

X(t) = (r + at) cos(t), (5)

Y(t) = (r + at) sin(t), (6)

t = end_t− start_t. (7)

In which, X(t) is the transverse coordinate of Archimedean spiral; Y(t) is the axis coordinate
of Archimedean spiral; t is the extreme angle, the unit is the degree, indicating the total number of
degrees of Archimedean spiral rotation; r is the radius, at t = 0o, the unit is mm; a is Archimedean
spiral coefficient, the unit is mm/◦, which indicates the increase (or decrease) of polar diameter per 1◦

rotation start_t is the starting angle of polar angle; end_t is the maximum angle of polar angle.
Figure 2a,b are the top and side views of Archimedean spiral electromagnetic bandgap structure

(ASEBG), respectively, in which dr represent the difference between the inner and outer diameters of
Archimedean spiral inductors. The equivalent circuit diagram of ASEBG structure and equivalent
circuit for calculating resonance frequency are shown in Figure 2c,d. A new inductance L2 is introduced
by loading Archimedean spiral on the surface of mushroom-type EBG patch, which is equivalent
to the inductance produced by adding Archimedean spiral to the equivalent circuit of traditional
mushroom-type EBG.
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Figure 2. (a) The top view of ASEBG structure; (b) the side view of ASEBG structure; (c) the equivalent
circuit diagram of ASEBG structure; (d) the equivalent circuit for calculating resonance frequency of
ASEBG structure.

According to the Wheeler equation [34], the theoretical formula of Archimedean spiral parameters
is as follows:

The capacitance between the microstrip and the EBG patch is C0. The capacitance between the
EBG structure and the microstrip line and the contact floor is C1. The inductance value on the metal
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through hole is L1. The inductance produced by helix in EBG structure is L2. N is the number of coils
of inductance. K1 and K2 are the coefficients related to layout, and davg is the average of din and dout.

L2 = m0N2 K1davg

1 + K2r
, (8)

f =
1

2π
√

LC1
, L = L1 + L2, (9)

ZS =
1

jωC1 +
1

jωL

=
jωL

1−ω2LC1
, (10)

davg = (din + dout)/2, (din = 2r, dout = r + ta), (11)

r = (dout − din)/(din + dout). (12)

In which, ε0 is the dielectric constant of the vacuum medium substrate. εr is the relative dielectric
constant of the dielectric substrate. h is the thickness of dielectric substrate; f is the resonant frequency
(i.e., the stopband frequency center). r1 is the radius of metal through-hole of electromagnetic bandgap
structure. W is the edge length of the EBG patch. d is the electromagnetic bandgap structure and feeder
spacing. According to Equations (8)–(12), inductance L1 mainly depends on h and r1. Capacitance C1

is mainly determined by side length W and spacing d. The resonant frequency center f is determined
by capacitance C1 and inductance L1.

As shown in Figure 2c, Archimedean spiral EBG structure is equivalent to adding spiral equivalent
inductance L2 to the equivalent circuit, making L larger than mushroom EBG of the same shape.
According to Equation (6), the resonance frequency f is inversely proportional to it. Therefore, the
resonant frequency of Archimedean spiral EBG structure is lower than that of traditional mushroom
EBG, thus realizing the miniaturization of electromagnetic bandgap structure.

2.2. Analysis of Resonance Performance of Archimedean Spiral EBG Structure

It is necessary to analyze the effect of different parameters d, W, r, dr, start_t, end_t on resonance
characteristics of Archimedean spiral EBG structure by using HFSS. The Archimedean spiral EBG
structure is modeled by HFSS. The medium of microstrip line is RT/Duorid 5880, the width of microstrip
line is Wml = 3 mm, the edge length of EBG structure square is W = 4 mm, the distance between EBG
and microstrip line is d = 0.1 mm, and the radius of metal through hole of Archimedean spiral EBG
structure is radius = 0.3 mm. start_t = 0 rad, end_t = 9 rad, a = 0.06 mm/◦. The sweep frequency analysis
of the parameters is carried out by using HFSS, and other parameters are kept unchanged when one
parameter is analyzed. The following is an analysis of the simulation results.

2.2.1. The Spacing d between Archimedean Spiral EBG Structure Unit and Microstrip Line

Simulation results with different d by using HFSS are shown in Figure 3a. Figure 3b shows the
curves of resonant frequency, maximum attenuation, and 3 dB fractional bandwidth with varying
d. The simulation results show that d increases from 0.06 to 0.2 mm, the resonant frequency of EBG
structure increases from 4.95 to 5.35 GHz, the fractional bandwidth of 3 dB decreases from 6.5% to
2.8%, and the maximum stopband attenuation decreases from 27.33 to 15.27 dB. With the increase of d,
the 3 dB fractional bandwidth decreases and the maximum attenuation of stopband decreases, and the
resonance intensity of EBG resonator decreases. According to Equations (5) and (6), with the increase
of d, the capacitance C0 decreases, and the resonance frequency f is inversely proportional to

√
C, so f

decreases with the increase of d.



Electronics 2019, 8, 964 5 of 15

Electronics 2019, 8, x FOR PEER REVIEW 5 of 16 

 

d, the 3 dB fractional bandwidth decreases and the maximum attenuation of stopband decreases, and 
the resonance intensity of EBG resonator decreases. According to Equations (5) and (6), with the 
increase of d, the capacitance C0 decreases, and the resonance frequency f is inversely proportional to 

C , so f decreases with the increase of d. 

3 4 5 6 7 8
-30

-20

-10

0

 d=0.06mm
 d=0.08mm
 d=0.10mm
 d=0.17mm
 d=0.20mm

 |S
21

|（
dB

）

Frequency(GHz)
(a) 

0.00 0.05 0.10 0.15 0.20 0.254

5

6

7

M
ax

im
um

 A
tte

nu
at

io
n 

(d
B)

Re
so

na
nt

 F
re

qu
en

cy
 (G

H
z)

 f r (GHz)
 3dB FBW (%)
 |S21| (dB)

d (mm)

2

3

4

5

6

7

3 
dB

 F
ra

ct
io

na
l b

an
dw

id
th

 (%
)

-35

-30

-25

-20

-15

 

(b) 

Figure 3. (a) Simulation results with different d by using HFSS. (b) Resonant frequency, maximum 
attenuation, and 3 dB Fractional Bandwidth with different d. 

2.2.2. Edge Length W of Archimedean Spiral EBG Structure  

Figure 4a shows simulation results with different W by using HFSS. Figure 4b shows the curves 
of resonant frequency, maximum attenuation, and 3 dB fractional bandwidth varying with time. As 
shown in Figure 4b, with the increase of W from 3.4 to 5.2 mm, the resonant frequency f decreases 
from 6 to 4.3 GHz. According to Equation (2), the capacitance C1 and C increase with the increase of 
W, and while the resonance frequency f is inversely proportional to C . Therefore, the resonant 
frequency f decreases with the increase of W. 

(a) 

3.0 3.5 4.0 4.5 5.0 5.5
4

5

6

7

M
ax

im
um

 A
tte

nu
at

io
n 

(d
B)

Re
so

na
nt

 F
re

qu
en

cy
 (G

H
z)

 f r (GHz)
 3dB FBW (%)
 |S21| (dB)

W (mm)

2

3

4

5

6

7

3 
dB

 F
ra

ct
io

na
l b

an
dw

id
th

 (%
)

-35

-30

-25

-20

-15

 

(b) 

Figure 4. (a) Simulation results with different W by using HFSS. (b) Resonant frequency, maximum 
attenuation, and 3 dB Fractional Bandwidth with different W. 

2.2.3. Polar Diameter r of the Archimedean Spiral with at Start_t = 0 rad 

Figure 5a shows the simulation results with different r by using HFSS. Figure 5b shows the 
curves of resonant frequency, maximum attenuation and 3 dB fractional bandwidth varying with 
different r. The results show that the resonant frequency f decreases from 5.45 to 4.85 GHz, and the 
maximum stopband attenuation increases from 17.64 to 23.76 dB with the increasing r from 0.24 to 
0.42 mm. Equations (8) and (9) show that with the increase of r, inductance L2 and L increases and 
resonance frequency f decreases for inverse ratio with L . 

3 4 5 6 7 8
-30

-20

-10

0

 W=3.4 mm
 W=4.0 mm
 W=4.2 mm
 W=4.8 mm
 W=5.2 mm

 |S
21

|（
dB

）

Frequency(GHz)

Figure 3. (a) Simulation results with different d by using HFSS. (b) Resonant frequency, maximum
attenuation, and 3 dB Fractional Bandwidth with different d.

2.2.2. Edge Length W of Archimedean Spiral EBG Structure

Figure 4a shows simulation results with different W by using HFSS. Figure 4b shows the curves
of resonant frequency, maximum attenuation, and 3 dB fractional bandwidth varying with time. As
shown in Figure 4b, with the increase of W from 3.4 to 5.2 mm, the resonant frequency f decreases from
6 to 4.3 GHz. According to Equation (2), the capacitance C1 and C increase with the increase of W, and
while the resonance frequency f is inversely proportional to

√
C. Therefore, the resonant frequency f

decreases with the increase of W.
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2.2.3. Polar Diameter r of the Archimedean Spiral with at Start_t = 0 rad

Figure 5a shows the simulation results with different r by using HFSS. Figure 5b shows the curves
of resonant frequency, maximum attenuation and 3 dB fractional bandwidth varying with different r.
The results show that the resonant frequency f decreases from 5.45 to 4.85 GHz, and the maximum
stopband attenuation increases from 17.64 to 23.76 dB with the increasing r from 0.24 to 0.42 mm.
Equations (8) and (9) show that with the increase of r, inductance L2 and L increases and resonance
frequency f decreases for inverse ratio with

√
L.
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Figure 5. (a) Simulation results with different r by using HFSS. (b) Resonant frequency, maximum 
attenuation, and 3 dB Fractional Bandwidth with different r. 
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Figure 6. (a) Simulation results with different dr by using HFSS. (b) Resonant frequency, maximum 
attenuation, and 3 dB Fractional Bandwidth with different dr. 
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4.89%, and the maximum stopband attenuation decreases from 23.76 to 16.22 dB. Equations (8) and 
(9) show that with the increase of start_t the number of spiral inductor coils decreases, which makes 
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increases with the increase of start_t. 

Figure 5. (a) Simulation results with different r by using HFSS. (b) Resonant frequency, maximum
attenuation, and 3 dB Fractional Bandwidth with different r.

2.2.4. The Difference of Inner and Outer Diameters of Archimedean Spiral dr

Figure 6a shows the simulation results with different dr by using HFSS. Figure 6b shows the
curves of resonant frequency, maximum attenuation, and 3 dB fractional bandwidth with varying
dr. The simulation results show that the resonant frequency f decreases from 6.15 to 4.6 GHz, 3 dB
fractional bandwidth decreases from 4.23% to 3.55% and the maximum stopband attenuation increases
from 19.07 to 25.28 dB with the increase of dr from 0.1 to 0.28 mm. Figure 5b shows that with the
increase of dr, the resonant frequency decreases, and 3 dB fractional bandwidth tends to narrow, but
the change trend is slower.
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2.2.5. Initial Pole Angle Value of Archimedean Spiral Inductor Start_t

Figure 7a shows the simulation results with different start_t by using HFSS. Figure 7b shows the
curves of resonant frequency, maximum attenuation, and 3 dB fractional bandwidth with different
start_t. The simulation results show that when start_t increases from 0.2 to 2.2 rad, the resonant
frequency f increases from 5.25 to 6.95 GHz, the 3 dB Fractional Bandwidth increases from 4.01% to
4.89%, and the maximum stopband attenuation decreases from 23.76 to 16.22 dB. Equations (8) and
(9) show that with the increase of start_t the number of spiral inductor coils decreases, which makes
L2 and L decrease. In addition, because the resonance frequency f is inversely proportional to

√
L, it

increases with the increase of start_t.
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Figure 7. (a) Simulation results with different start_t by using HFSS. (b) Resonant frequency, 
maximum attenuation, and 3 dB Fractional Bandwidth with different start_t. 
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Figure 8. (a) Simulation results with different end_t by using HFSS. (b) Resonant frequency, 
maximum attenuation, and 3 dB Fractional Bandwidth with different end_t. 

3. Filter Design 

Based on the previous work of dual notch bandpass filter [9], the ultra-wideband tri notch 
bandpass filter is realized by coupling Archimedean spiral EBG structure on the dual notch 
bandpass filter [9]. The design process of the tri notch bandstop filter is shown in Figure 9. 
Archimedean spiral EBG structure resonator frequency is designed to operate at 5.2 GHz. The 
structure of triple notches bandstop microstrip filter using MEBG is shown in Figure 10a. The 
simulation results of the proposed filter by using HFSS are shown in Figure 10b. The structure of the 
designed triple notches bandstop microstrip filter is shown in Figure 11a. The simulation results of 
the proposed filter by using HFSS are shown in Figure 11b. The simulation results show that the 3 
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Figure 7. (a) Simulation results with different start_t by using HFSS. (b) Resonant frequency, maximum
attenuation, and 3 dB Fractional Bandwidth with different start_t.

2.2.6. Maximum Pole Angle of Archimedean Spiral Inductor end_t

Figure 8a shows the simulation results with different end_t by using HFSS. Figure 7b show the
resonant frequency, maximum attenuation, and 3 dB Fractional Bandwidth with different end_t.
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Figure 8. (a) Simulation results with different end_t by using HFSS. (b) Resonant frequency, 
maximum attenuation, and 3 dB Fractional Bandwidth with different end_t. 

3. Filter Design 
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bandpass filter [9]. The design process of the tri notch bandstop filter is shown in Figure 9. 
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Figure 8. (a) Simulation results with different end_t by using HFSS. (b) Resonant frequency, maximum
attenuation, and 3 dB Fractional Bandwidth with different end_t.

The simulation results show that the end_t increases from 8.8 to 10 rad, the resonant frequency
of EBG structure decreases from 5.3 to 4.6 GHz, and the fractional bandwidth of 3 dB increases from
4.52% to 3.91%. Equations (8) and (9) show that the increase of end_t leads to the increase of spiral
inductor coils, while L2 and L increase with the increase of end_t. As the resonance frequency f is
inversely proportional to

√
L, it decreases with the increase of end_t. It can be seen that the resonance

characteristics of Archimedean spiral EBG structure vary with the parameters d, W, r, dr, start_t, and
end_t. Therefore, the stopband resonance frequency, 3 dB bandwidth, and stopband attenuation of
Archimedean spiral EBG structure can be adjusted by adjusting them.

3. Filter Design

Based on the previous work of dual notch bandpass filter [9], the ultra-wideband tri notch
bandpass filter is realized by coupling Archimedean spiral EBG structure on the dual notch bandpass
filter [9]. The design process of the tri notch bandstop filter is shown in Figure 9. Archimedean spiral
EBG structure resonator frequency is designed to operate at 5.2 GHz. The structure of triple notches
bandstop microstrip filter using MEBG is shown in Figure 10a. The simulation results of the proposed
filter by using HFSS are shown in Figure 10b. The structure of the designed triple notches bandstop
microstrip filter is shown in Figure 11a. The simulation results of the proposed filter by using HFSS are
shown in Figure 11b. The simulation results show that the 3 dB bandwidth of BPF is 3.01~10.79 GHz
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and fractional bandwidth is 113.4%. The simulation results of three stopbands of the proposed filter
are shown in Table 1.
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Figure 11. (a) The circuit of the triple notches bandstop microstrip filter using Archimedean spiral
electromagnetic bandgap structure (ASEBG); (b) the simulation results of the proposed filter by
using HFSS.

Table 1. Simulation results of the proposed filter by using HFSS.

Notch Frequency (GHz) 3 dB Bandwidth (GHz) 3 dB Fractional
Bandwidths (FBW) % Rejection Level (dB)

3.5 1.07 15.62 35.61
5.2 0.41 7.81 28.23
7.4 0.61 8.91 24.90
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Figure 12a is the equivalent circuit of Archimedean spiral EBG structure resonant unit. Figure 12b
is the equivalent circuit of the dual notch bandpass filter [9]. Figure 12c is the equivalent circuit of the
proposed triple notches bandstop microstrip filter. The values of L and C of the equivalent circuit are
calculated from Equation (9). The Lumped circuit is simulated and analyzed, and the values of L and C
are optimized by using ADS.
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The structural parameters of the proposed filter are extracted by ADS as shown in Table 2.
Figure 13 shows the comparison of the simulation results by using HFSS and ADS. The simulation
results of the resonant frequencies of the three stopbands are identical at 3.5, 5.2, and 7.4 GHz, which
further verifies the correctness and the validity of the equivalent circuit of the Archimedean spiral
EBG structure and the equivalent circuit of the proposed triple notches bandstop microstrip filter.
The function of notch resonator can be realized by coupling Archimedean spiral EBG structure, in
which the resonance performance can be adjusted by changing the parameters of Archimedean spiral
electromagnetic bandgap structure (ASEBG).

Table 2. The extracted parameters in Figure 10c by using ADS.

C (pF) C (pF) L (nH) L (nH)

Cp1 = 1.0675 C0 = 2.004 L1 = 2.48 Lp1 = 0.871
Cp = 0.06 C1 = 1.200 L2 = 5.07 Ls1 = 0.378

Cp2 = 0.9803 - Lp2 = 0.4688 Ls2 = 2.189
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4. Results and Discussion

In this paper, a tri notch stopband ultra-wideband filter is realized by coupling Archimedean spiral
EBG structure on the basis of designed ultra-wideband dual-notch microstrip filter [9]. Figure 14a
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shows a photograph of the proposed filter. Figure 14b shows the results of comparison between
simulated data and measured data. As shown in Figure 14b, the filter has three notch resonant center
frequencies of 3.5, 5.2, and 7.4 GHz. The 3 dB bandwidths of the proposed filter are 1.2, 0.65, and
0.83 GHz, and the maximum insertion loss of stopband of the filter is 33.6, 24.8, and 21.7 dB by using
Vector Network Analyzer to measure the filter performance, respectively.
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Figure 14. (a) The photograph of the fabricated triple notches bandstop microstrip filter using ASEBG;
(b) the simulation results of the filter by using HFSS.

According to the literature [9], changing L5 can adjust the resonance characteristics of the first
stopband produced by T-shaped resonators. Adjusting L7 can change the resonance characteristics of
the third stopband produced by L-shaped defective microstrip structure. In order to realize the notch
in the 5.2 GHz band, the second stopband is generated by coupling Archimedean spiral EBG structure.
The material of the dielectric substrate is RT/Duorid5880 (Rogers Corporation, Chandler, AZ, USA)
and the thickness is 1 mm. The final size of the filter is optimized by 0.01 GHz stepped scan frequency
using HFSS. The optimized filter structural parameters by scanning frequency analysis of parameters
(d, W, r, dr, start_t, end_t) using HFSSare shown in Table 3.

Table 3. Optimized structural parameters of the proposed filter (the units of length are mm, the units
of angle are radian).

Length Length Width Width Radius Gap Length

L1 = 15 L5 = 5.3 W1 = 1.95 W5 = 0.5 R1 = 0.15 g1 = 0.1
L2 = 5 L6 = 10.6 W2 = 3 W6 = 0.3 R2 = 0.15 r = 0.3
L3 = 4 L7 = 9 W3 = 0.3 W7 = 0.1 W = 4 a = 0.06
L3 = 4 L8 = 0.1 W4 = 1.4 W8 = 0.3 d = 0.1 dr = 0.2

din = 0.6 dout = 1 W11 = 4 W12 = 7.7 start_t = 0 end_t = 9

4.1. First Stopband Analysis

The resonant frequency of the first stopband f 1 can be adjusted by changing the L5 and W5

of the T-shaped resonator while keeping other parameters unchanged and L6 = 2 L5. As shown in
Figure 15a,b, f 1 decreases with the increase of L5. However, f 1 increases with the increase of W5. In
addition, with the increase of L5, the central frequencies of the second stop band f 2 = 5.2 GHz and the
third stop band f 3 = 7.4 GHz, both of which do not change with L5 and W5 of the T-shaped resonator.
Therefore, the first stopband resonance frequency of the tri notch stopband filter can be adjusted by
adjusting L5 and W5 of the T-shaped resonator.
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Figure 15. (a) Simulation results with different L5 (L5 = 4.85 mm, f 1 = 3.87 GHz, L5 = 5.21 mm, f 1 =

3.6 GHz, L5 = 5.3 mm, f 1 = 3.51 GHz); (b) simulation results with different W5 (W5 = 0.51 mm, f 1 =

3.47 GHz, W5 = 0.51 mm, f 1 = 3.5 GHz, W5 = 0.55 mm, f 1 = 3.54 GHz).

4.2. Second Stopband Analysis

According to the analysis in the previous section, the resonant characteristics of the second
stopband can be adjusted by adjusting the parameters W11, r11, dr, d start_t, and end_t of Archimedean
spiral EBG structure. The above parameters are analyzed by sweeping frequency while keeping other
parameters unchanged in turn.

As shown in Figure 16b–d,f with the increase of W11, r11, dr, and end_t, f 2 decreases gradually. As
shown in Figure 16a,e, with the increase of d and start_t, f 2 increases gradually. As d is the distance
between EBG and dual notch filter, the coupling strength between EBG and double notch filter is
directly affected. Therefore, when adjusting parameters of EBG, it is necessary to determine the value
of d first. As shown in Figure 16a–f, when the parameters W11 r11 d, start_t, and end_t of EBG are
changed to adjust f 2, f 3 will also change. This is because the tri notch filter is realized by coupling the
EBG structure to the L-defect structure resonator. The coupling energy between the EBG and the dual
notch filter changes with the structural adjustment of the EBG.

However, with the increase of dr, f 2 decreases significantly, while f 3 remains unchanged, which
indicates that dr does not affect the energy coupling between EBG and L-defect resonators. Therefore,
the second notch resonance characteristics can be independently controlled by adjusting the size of
dr after determining the parameters W11 r11 d, start_t, and end_t. After the above optimization and
adjustment, the parameters of the EBG structure are determined, as shown in Table 3.
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Figure 16. (a) Simulation results with different d (d = 0.05 mm, f 2 = 4.9 GHz; d = 0.10 mm, f 2 = 5.2 GHz;
d = 0.12 mm, f 2 = 5.25 GHz); (b) simulation results with different W11 (W11 = 3.56 mm, f 2 = 5.75 GHz;
W11 = 3.68 mm, f 2 = 5.6 GHz; W11 = 3.78 mm, f 2 = 5.5 GHz); (c) simulation results with different r11

(r11 = 0.3 mm, f 2 = 5.2 GHz; r11 = 0.35 mm, f 2 = 5.1 GHz; r11 = 0.43 mm, f 2 = 5.0 GHz); (d) simulation
results with different dr (dr = 0.14 mm, f 2 = 5.7 GHz; dr = 0.17 mm, f 2 = 5.45 GHz; dr = 0.2 mm, f 2 =

5.2 GHz); (e) simulation results with different start_t (start_t = 0 rad, f 2 = 5.2 GHz; start_t = 0.08 rad, f 2

= 5.25 GHz; start_t = 0.17 rad, f 2 = 5.3 GHz); (f) simulation results with different end_t (end_t = 8.7 rad,
f 2 = 5.4 GHz; end_t = 8.82 rad, f 2 = 5.3 GHz; end_t = 9.04 rad, f 2 = 5.2 GHz).

4.3. Third Stopband Analysis

The resonant frequency of the third stopband f 3 can be adjusted by adjusting L7 and W7 of the
L-shaped defect microstrip structure resonator while keeping other parameters unchanged. As shown
in Figure 17a,b, f 3 decreases with the increase of L7, but f 3 increases with the increase of W7.Electronics 2019, 8, x FOR PEER REVIEW 13 of 16 
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Ref. f1/f2/f3 (GHz) 
MSA1/MSA2/MSA3 

(dB) 
FBW3dB_1/FBW3dB_2/ 
FBW3dB_3 (%) 

[15] 2.4/3.5/5.2 15/13/20 4.2/2.9/4.5 
[17] 5.2/5.85/8 20.1/25.6/27.7 14.4/5.2/10.1 
[21] 5.2/5.8/8.0 20.1/23.2/24.6 1.8/2.3/2.1 
[23] 3.6/5.9/8 15.9/25.6/27.3 2.9/3.7/2.3 
[24] 2.4/3.5/5.25 16.5/18/14.5 5/3.7/4.2 
[25] 1.4/2.4/3.4 51/44/37 40.1/23.1/50.2 
[26] 1.56/2.45/3.46 40.2/35.1/33.2 13.6/8.6/8.1 
[28] 6.1/6.9/7.6 15/14/13 2.3/5.2/1.7 
[29] 5.4/5.8/8.2 18.3/21.2/21.5 13.4/6.4/5.1 
[35] 2.4/3.5/5.25 14.3/15/16.8 6.2/12.2/11.8 

This work 3.5/5.2/7.4 35.61/28.23/24.90  15.62/7.81/8.91 

5. Conclusions 

In this paper, a novel triple notches bandstop microstrip filter is proposed, which is based on 
the realized dual stopband filter and Archimedean spiral EBG structure resonator. The three 
stopband resonant frequencies of the proposed filter are 3.5, 5.2, and 7.4 GHz respectively, and the 
corresponding maximum stopband attenuation of them are 35.61, 28.23, 24.90 dB, respectively. The 
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In addition, with the increase of L7, the first stopband central frequency f 1 = 3.5 GHz and the
second stopband central frequency f 2 = 5.2 GHz, both of which do not change with L7 and W7 of the
L-shaped defect microstrip structure resonator. Therefore, the third stopband resonant frequency can
be adjusted by adjusting L7 and W7.

Finally, Table 4 shows the comparison of the proposed filter with other triple notches bandstop
microstrip filters [15,17,21,23–29,35]. Among them, f 1, f 2, and f 3 represent the central resonance
frequencies of the first stopband, the second stopband and the third stopband, MSA1, MSA2, and MSA3

represents the maximum stopband attenuation of the first stopband, the second stopband, and the
third stopband, FBW3dB_1, FBW3dB_2, and FBW3dB_3 represent 3dB fractional bandwidth of the first
stopband, the second stopband, and the third stopband. FBWT represents total fractional bandwidth of
the UWB filter. The simulation results show that the three stopband center frequencies of the proposed
filter are 3.5, 5.2, and 7.4 GHz, and 3 dB Bandwidth is 1.07, 0.41, and 0.61 GHz, respectively. The 3
dB FBW of the filter is 15.62%, 7.81%, and 8.91% respectively. The maximum stopband attenuation is
35.61, 28.23, 24.90 dB, and the total fractional bandwidth of the UWB filter is 112.8%.

Table 4. Comparison of the proposed filter with other triple notches bandstop microstrip filters.

Ref. f 1/f 2/f 3 (GHz) MSA1/MSA2/MSA3 (dB) FBW3dB_1/FBW3dB_2/
FBW3dB_3 (%)

[15] 2.4/3.5/5.2 15/13/20 4.2/2.9/4.5
[17] 5.2/5.85/8 20.1/25.6/27.7 14.4/5.2/10.1
[21] 5.2/5.8/8.0 20.1/23.2/24.6 1.8/2.3/2.1
[23] 3.6/5.9/8 15.9/25.6/27.3 2.9/3.7/2.3
[24] 2.4/3.5/5.25 16.5/18/14.5 5/3.7/4.2
[25] 1.4/2.4/3.4 51/44/37 40.1/23.1/50.2
[26] 1.56/2.45/3.46 40.2/35.1/33.2 13.6/8.6/8.1
[28] 6.1/6.9/7.6 15/14/13 2.3/5.2/1.7
[29] 5.4/5.8/8.2 18.3/21.2/21.5 13.4/6.4/5.1
[35] 2.4/3.5/5.25 14.3/15/16.8 6.2/12.2/11.8

This work 3.5/5.2/7.4 35.61/28.23/24.90 15.62/7.81/8.91

5. Conclusions

In this paper, a novel triple notches bandstop microstrip filter is proposed, which is based on the
realized dual stopband filter and Archimedean spiral EBG structure resonator. The three stopband
resonant frequencies of the proposed filter are 3.5, 5.2, and 7.4 GHz respectively, and the corresponding
maximum stopband attenuation of them are 35.61, 28.23, 24.90 dB, respectively. The consistency
of simulation results by using HFSS and ADS verifies the correctness of equivalent circuit model
of Archimedean spiral EBG structure and the equivalent resonant circuit model of proposed filter.
Therefore, Archimedean spiral EBG structure can be used to realize the notch function of the microstrip
filter, and the proposed filter can effectively avoid the interference of wireless communication system
in WIMAX band (3.5 GHz), WLAN band (5.2 GHz), and C band of satellite downlink (7.4 GHz).
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