# MID Filter: An Orientation-Based Nonlinear Filter For Reducing Multiplicative Noise

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. MCV and MLV Filters

#### 2.2. Proposed Method: Minimum Index of Dispersion (MID) Filter

## 3. Experimental Results and Analysis

#### 3.1. CSIQ Image Quality Database Specifications

#### 3.2. Performance Measurement Criterions

#### 3.2.1. Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR)

#### 3.2.2. The Structural Similarity Index Measurement (SSIM)

#### 3.2.3. Contrast

#### 3.2.4. Standard Deviation

#### 3.2.5. A Hybrid Assessment Metric: F Score

#### 3.3. Comparison Steps of Experimental Outputs

#### 3.4. Numerical Outputs and Discussion

## 4. Availability

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Chinrungrueng, C.; Suvichakorn, A. Fast edge-preserving noise reduction for ultrasound images. IEEE Trans. Nucl. Sci.
**2001**, 48, 849–854. [Google Scholar] [CrossRef] - Rafał, P. Edge preserving techniques in image noise removal process. Czas. Tech.
**2014**, 5, 301–307. [Google Scholar] - Yuan, S.; Wang, S. Edge-preserving noise reduction based on Bayesian inversion with directional difference constraints. J. Geophys. Eng.
**2013**, 10, 025001. [Google Scholar] [CrossRef] - Hofheinz, F.; Langner, J.; Beuthien-Baumann, B.; Oehme, L.; Steinbach, J.; Kotzerke, J.; van den Hoff, J. Suitability of bilateral filtering for edge-preserving noise reduction in PET. EJNMMI Res.
**2011**, 1, 23. [Google Scholar] [CrossRef] [PubMed] - Pal, C.; Chakrabarti, A.; Ghosh, R. A brief survey of recent edge-preserving smoothing algorithms on digital images. arXiv
**2015**, arXiv:1503.07297. [Google Scholar] - Wang, D.; Zhu, J. Fast smoothing technique with edge preservation for single image dehazing. IET Comput. Vis.
**2015**, 9, 950–959. [Google Scholar] [CrossRef] - Storath, M.; Brandt, C.; Hofmann, M.; Knopp, T.; Salamon, J.; Weber, A.; Weinmann, A. Edge Preserving and Noise Reducing Reconstruction for Magnetic Particle Imaging. IEEE Trans. Med Imaging
**2017**, 36, 74–85. [Google Scholar] [CrossRef] - Burger, W.; Burge, M.J. Edge-Preserving Smoothing Filters. In Digital Image Processing: An Algorithmic Introduction Using Java; Springer: London, UK, 2016; Chapter 17. [Google Scholar]
- Muhammad, N.; Bibi, N.; Wahab, A.; Mahmood, Z.; Akram, T.; Naqvi, S.R.; Oh, H.S.; Kim, D.G. Image de-noising with subband replacement and fusion process using bayes estimators. Comput. Electr. Eng.
**2017**, 70, 413–427. [Google Scholar] [CrossRef] - Gonzalez-Hidalgo, M.; Massanet, S.; Mir, A.; Ruiz-Aguilera, D. Improving salt and pepper noise removal using a fuzzy mathematical morphology-based filter. Appl. Soft Comput.
**2018**, 63, 167–180. [Google Scholar] [CrossRef] - Luengo, J.; Shim, S.O.; Alshomrani, S.; Altalhi, A.; Herrera, F. CNC-NOS: Class noise cleaning by ensemble filtering and noise scoring. Knowl. Based Syst.
**2018**, 140, 27–49. [Google Scholar] [CrossRef] - Pérez-Benito, C.; Morillas, S.; Jordán, C.; Conejero, J.A. A model based on local graphs for colour images and its application for Gaussian noise smoothing. J. Comput. Appl. Math.
**2017**, 330, 955–964. [Google Scholar] [CrossRef] - Tang, C.; Hou, C.; Hou, Y.; Wang, P.; Li, W. An effective edge-preserving smoothing method for image manipulation. Digit. Signal Process.
**2017**, 63, 10–24. [Google Scholar] [CrossRef] - Huang, Y.M.; Yan, H.Y.; Wen, Y.W.; Yang, X. Rank minimization with applications to image noise removal. Inf. Sci.
**2018**, 429, 147–163. [Google Scholar] [CrossRef] - Schulze, M.A.; Pearce, J.A. Value-and-criterion filters: A new filter structure based upon morphological opening and closing. In Nonlinear Image Processing IV; Dougherty, E.R., Astola, J., Longbotham, H., Eds.; SPIE: San Jose, CA, USA, 1993; pp. 106–115. [Google Scholar]
- Schulze, M.A.; Pearce, J.A. A morphology-based filter structure for edge-enhancing smoothing. In Proceedings of the 1st International Conference on Image Processing, Austin, TX, USA, 13–16 November 1994; pp. 530–534. [Google Scholar]
- Schulze, M.A. Biomedical Image Processing with Morphology-Based Nonlinear Filters. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 1994. [Google Scholar]
- Schulze, M.A.; Wu, Q.X. Nonlinear filtering for edge-preserving smoothing of synthetic aperture radar imagery. In Proceedings of the New Zealand Image and Vision Computing ′95 Workshop, Christchurch, New Zealand, 28–29 August 1995; pp. 65–70. [Google Scholar]
- Larson, E.C.; Chandler, D.M. Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging
**2010**, 19, 011006. [Google Scholar] - Kipli, K.; Krishnan, S.; Zamhari, N.; Muhammad, M.S.; Masra, S.M.; Chin, K.L.; Lias, K. Full reference image quality metrics and their performance. In Proceedings of the 2011 IEEE 7th International Colloquium on Signal Processing and its Applications (CSPA), Penang, Malaysia, 4–6 March 2011. [Google Scholar]
- Salomon, D. Data Compression: The Complete Reference, 4th ed.; Springer: New York, NY, USA, 2007; p. 281. [Google Scholar]
- Beghdadi, A.; Negrate, A.L. Contrast enhancement technique based on local detection of edges. Comput. Vis. Graph. Image Process.
**1989**, 46, 162–174. [Google Scholar] [CrossRef] - Moulick, H.N.; Ghosh, M. Biomedical image processing with nonlinear filters. Int. J. Comput. Eng. Res.
**2013**, 3, 7–15. [Google Scholar]

**Figure 2.**Average peak signal-to-noise ratio (PSNR) rates in decibel (dB) (

**a**), average mean squared error (MSE) values (

**b**), average structural similarity index (SSIM) rates (

**c**), average contrast values (

**d**), average standard deviations (

**e**), and average F scores (

**f**) for the gray-scale computational and subjective image quality (CSIQ) dataset.

**Table 1.**Original and artificially noised “1600.png” image (the v variance parameter for multiplicative noise is set to 0.04).

Original Picture | Noisy Picture |
---|---|

Std.Dev.: 66.21 Contrast: 74.19 | Std.Dev.: 75.83 Contrast: 67.25 |

**Table 2.**Sample experimental results for a gray-scale picture taken from filters with 5 × 5 kernel size.

MCV FilterPSNR: 14.16 MSE: 527.36 SSIM: 0.54 Contrast: 65.51 Std.Dev.: 62.58 F Score: 1.45 | MLV FilterPSNR: 14.24 MSE: 487.06 SSIM: 0.55 Contrast: 63.36 Std.Dev.: 64.89 F Score: 1.55 | MID Filter (α = 0.00)PSNR: 14.56 MSE: 466.09 SSIM: 0.56 Contrast: 64.48 Std.Dev.: 63.89 F Score: 1.74 |

PSNR | MSE | SSIM | Std. Dev. | Contrast | F Score | |
---|---|---|---|---|---|---|

MCV | 15.44 | 437.0 | 0.635 | 56.81 | 84.4 | 5.42 |

MLV | 15.16 | 512.6 | 0.609 | 55.71 | 91.6 | 5.67 |

MID (α = 0.0) | 15.79 | 424.6 | 0.644 | 56.60 | 88.0 | 6.21 |

MID (α = 0.1) | 16.00 | 401.5 | 0.655 | 56.12 | 87.3 | 6.78 |

MID (α = 0.2) | 16.23 | 381.7 | 0.664 | 55.72 | 87.2 | 7.42 |

MID (α = 0.3) | 16.42 | 365.7 | 0.672 | 55.34 | 87.0 | 8.00 |

MID (α = 0.4) | 16.57 | 353.4 | 0.678 | 55.00 | 86.9 | 8.53 |

MID (α = 0.5) | 16.70 | 344.5 | 0.682 | 54.70 | 86.9 | 8.99 |

MID (α = 0.6) | 16.75 | 339.9 | 0.683 | 54.40 | 86.6 | 9.22 |

MID (α = 0.7) | 16.75 | 338.9 | 0.681 | 54.14 | 86.4 | 9.30 |

MID (α = 0.8) | 16.72 | 341.4 | 0.677 | 53.94 | 86.3 | 9.23 |

MID (α = 0.9) | 16.62 | 347.8 | 0.671 | 53.75 | 86.2 | 8.97 |

MID (α = 1.0) | 16.52 | 356.6 | 0.661 | 53.63 | 86.5 | 8.68 |

Original Section | MCV | MLV | MID |
---|---|---|---|

1600.png | PSNR: 10.60 SSIM: 0.570 | PSNR: 10.65 SSIM: 0.638 | PSNR: 11.49 SSIM: 0.630 |

family.png | PSNR: 9.44 SSIM: 0.430 | PSNR: 11.29 SSIM: 0.600 | PSNR: 11.82 SSIM: 0.617 |

turtle.png | PSNR: 11.37 SSIM: 0.531 | PSNR: 13.03 SSIM: 0.640 | PSNR: 13.82 SSIM: 0.670 |

trolley.png | PSNR: 10.78 SSIM: 0.507 | PSNR: 11.37 SSIM: 0.582 | PSNR: 12.24 SSIM: 0.605 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ince, I.F.; Ince, O.F.; Bulut, F.
MID Filter: An Orientation-Based Nonlinear Filter For Reducing Multiplicative Noise. *Electronics* **2019**, *8*, 936.
https://doi.org/10.3390/electronics8090936

**AMA Style**

Ince IF, Ince OF, Bulut F.
MID Filter: An Orientation-Based Nonlinear Filter For Reducing Multiplicative Noise. *Electronics*. 2019; 8(9):936.
https://doi.org/10.3390/electronics8090936

**Chicago/Turabian Style**

Ince, Ibrahim Furkan, Omer Faruk Ince, and Faruk Bulut.
2019. "MID Filter: An Orientation-Based Nonlinear Filter For Reducing Multiplicative Noise" *Electronics* 8, no. 9: 936.
https://doi.org/10.3390/electronics8090936