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Abstract: Control strategy is the key technology of power electronic converter equipment. In order to
solve the problem of controller design, a general design method is presented in this paper, which is
more convenient to use computer machine learning and provides design rules for high-order power
electronic system. With the higher order system Lie derivative, the nonlinear system is mapped to
a controllable standard type, and then classical linear system control method is adopted to design
the controller. The simulation and experimental results show that the two controllers have good
steady-state control performance and dynamic response performance.
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1. Introduction

As the main equipment of an AC power system, grid-connected voltage source inverters (VSI)
have been widely used in recent years, such as photovoltaic inverters [1], Pulse Width Modulation
Pulse Width Modulation (PWM) rectifiers [2], static var generators [3], active power filters [4], etc.

The filter is an important part of the inverter, the structure of which directly determines the
mathematical model and control mode of the inverter. Nowadays, a Inductance-Capacitance-Inductance
(LCL) filter, with the advantages of small size, low cost and high harmonic attenuation for high frequency
current, is widely used in voltage source type grid-connected converters. Considering that the LCL
filter is the 3-order system, the damping of the system is small, resulting in a resonant peak of the
grid-side inductance current. This phenomenon will adversely affect the safe and stable operation
of grid-connected system. In order to improve the damping characteristics of the system, additional
system damping is required. Active damping control method is commonly used at present stage [5].
With the state variables feedback, the traditional proportional integral controller can be used to achieve
the grid-side inductance current control.

However, for nonlinear power electronic devices, this design method of the controller is based on
small signal modeling [6] and harmonic linearization. As the coupling and high order terms in the
system are ignored in the Taylor series calculation, the obtained controller is suitable for working at
steady working point with poor performance in other control domains [7].

In order to solve the global control problem, many solutions have been put forward [8,9]. Among
them, the state feedback linearization method that develops from differential geometry [10,11] has
become an effective way to solve the nonlinear power electronics system control problems. Based on
the differential homeomorphism, Lie derivative is used to analyze the numerical relation between
the state variables, the input variables, and the output variables. Then, the necessary and sufficient
conditions for controllability and observability of nonlinear control systems can be established. Choi et
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al. proposed a feedback linearization direct torque control for the permanent magnet synchronous
motor [12]. In addition, the drive flux and torque ripple were suppressed. Yang et al. combined
feedback linearization and sliding mode variable structure control to complete the control of three-phase
four-leg inverter [13]. This method was used to decouple the torque and stator flux of the inductive
motor by Lascu et al. [14]. Yang et al. applied the state feedback control to the Modular Multilevel
Converter (MMC) system and analyzed the performance characteristics of the system [15].

Different from the local approximate linearization method, the feedback decoupling is achieved by
adopting this nonlinear algorithm without ignoring the higher-order terms. However, the commonly
used feedback linearization algorithm at the present stage is mostly used in the 2-order or 1-order
system. The research on the controller design of high-order or other complex systems is rare. In addition,
when the order of the controlled object is high, whether the state feedback control can be transformed
into a simple form has not been analyzed by literatures.

In order to achieve the control of high-order power electronic systems, the design of controller
based on LCL filter type grid-connected inverters is studied in this paper. For the 3-order control
system, two controller design methods based on state feedback linearization are proposed in this paper.
Lie derivative vector field is used to solve the system relationship and design the decoupling matrix.
Through the nonlinear mapping, the nonlinear system can be mapped to a controllable standard
form. Then, the classical linear system control method, which can be designed easily, is applicable for
the controller design. Finally, the performance of the two controllers is compared and analyzed by
simulations and experiments.

2. Single Closed-Loop Controller Design Based on State Feedback Linearization

2.1. Model of the Three-Phase Three-Leg Grid-Connected Inverter

Figure 1 shows the structure of the three-phase three-leg LCL grid-connected inverter. L1 and L2

denote the inverter side inductance and the grid-side inductance, respectively.
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Figure 1. Schematic diagram of the three-phase three-leg grid-connected inverter.

As the model has been analyzed by many literatures, this paper does not repeat the description.
The mathematical model of inverter in dq coordinate axis is given directly as

d
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
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+

[
0 0 0 0 0 −1/L2 0
0 0 0 0 −1/L2 0 0

]T[
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]
(1)
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where the state variables X =
[
i1d i1q ucd ucq i2d i2q udc

]T
represent the inverter side inductance current,

the filter capacitor voltage, the grid-side inductance current and the DC voltage in the synchronous
reference coordinate system, respectively. ed and eq represent grid voltage in the synchronous reference
coordinate system, respectively. md and mq represent the nonlinear pulse width modulation variables,
respectively. ω represents the fundamental angular frequency of the system.

According to (1), due to the mutual inductance and mutual capacitance, the inductance current
and the capacitance voltage is coupled in the synchronous reference coordinate system.

Usually, the voltage source grid-connected inverter system is a double closed loop structure.
The outer loop controls DC voltage, and the inner loop controls AC current. However, for the different
structure like the PV system, the DC voltage may not need to be controlled. Considering the generality,
only the current inner loop is analyzed. Due to the LCL filter, the system can be regarded as a 2-input
2-output system. At the same time, the existence of LCL filter capacitor, which introduces a pair of
conjugate pure imaginary roots to cause resonance, increases the order of the system. Therefore, it is
necessary to consider the suppression of resonance.

2.2. Single Closed-Loop Control Strategy Based on State Feedback Linearization

Define the LCL filter inverter side inductance current, filter capacitor voltage, and grid-side

inductance current as state variables, written as X = [x1 x2 x3 x4 x5 x6]
T =

[
i1d i1q ucd ucq i2d i2q

]T
.

Define the 2 dimensional modulation vector in the synchronous coordinate system as the input variable,

written as U = [u1 u2]
T =

[
md mq

]T
. The deviation of grid-side inductance current (controlled object)

is taken as the output variable Y = R(X) = [r1(X) r2(X)]T =
[
idre f − i2d iqre f − i2q

]T
, in which idre f and

iqre f are the reference current.
Therefore, Equation (1) can be expressed as a nonlinear differential equation composed of

polynomials of state variables and input variables: .
X = f[X(t)] + G[X(t)]U
Y = R(X)

(2)

where f(X) =



ωx2 − x3/L1

−ωx1 − x4/L1

x1/C +ωx4 − x5/C
x2/C−ωx3 − x6/C

x3/L2 +ωx6 − ugd/L2

x4/L2 −ωx5 − ugq/L2


, G(X) = [g1(X)g2(X)] =

[
0 udc/L1 0 0 0 0
udc/L1 0 0 0 0 0

]T

.

Equation (2) shows that the LCL-type three-phase three-leg converter is a 2-input 2-output affine
nonlinear system with the state variables number of n = 6. It is nonlinear for the state vector X,
but linear for the input U. Since the state variables are all dq-axis symmetric variables, the number of
vector field pairs is l = 3. The corresponding l− 1 order Lie derivative can be described as

ad f g1(X) = L f g1 − Lg1 f

=
[

0 ωudc
L1

−
udc
L1C 0 0 0

]T

ad2
f g1(X) = L f [ad f g1(X)] − Lad f g1(X) f

=
[
ω2udc

L1
+

udc
L2

1C
0 0 2ωudc

L1C −
udc

L1L2C 0
]T

ad f g2(X) = L f g2 − Lg2 f

=
[
−
ωudc

L1
0 0 −

udc
L1C 0 0

]T

ad2
f g2(X) = L f [ad f g2(X)] − Lad f g2(X) f

=
[

0 ω2udc
L1

+
udc
L2

1C
−

2ωudc
L1C 0 0 −

udc
L1L2C

]T

(3)
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where ad f g denotes Lie bracket operation of vector fields f and g, written as ad f g = L f g − Lg f =

(∂g/∂X) f − (∂ f /∂X)g. Then, the corresponding 6-dimensional vector field matrix can be expressed as

D6 =
[

g1 g2 ad f g1 ad f g2 ad2
f g1 ad2

f g2
]

=



udc
L1

0 0 −
ωudc

L1

ω2udc
L1

+
udc
L2

1C
0

0 udc
L1

ωudc
L1

0 0 ω2udc
L1

+
udc
L2

1C

0 0 −
udc
L1C 0 0 −

2ωudc
L1C

0 0 0 −
udc
L1C

2ωudc
L1C 0

0 0 0 0 −
udc

L1L2C 0
0 0 0 0 0 −

udc
L1L2C


(4)

Obviously, it can be obtained that RankD6 = 6 = n. The rank of the matrix formed by the vector
fields is n in the neighborhood of X0.

According to Equations (3) and (4), the elements in
[
g1 g2 ad f g1 ad f g2 ad2

f g1 ad2
f g2

]
do not contain

state variables. In other words, they are the constant vector fields, meaning that the result of Lie
brackets operation between two elements is a zero vector. Define Di as the matrix of the former i
column elements in Equation (4). It can be calculated that the 6 vector fields satisfy involution relation.
Therefore, according to the nonlinear control theory, state feedback can be applied to linearize the
inverter system.

A MIMO nonlinear system has a relative degree {r1, . . . , rm} at a point x0 if

1. Lg jL
k
f ri(X) , 0 for all 0 ≤ j ≤ m, for all k ≤ ri − 1, for all 0 ≤ i≤ m and for all x in a neighborhood

of x0.
2. the m × m matrix E(X) is nonsingular at x = x0.

In Equation (2), the output variable of the inverter is current error r1(X) = idre f − i2d. In order to
analyze the numerical relation of the output, the Lie derivatives need to be calculated as follows:

Lg1r1(X) =
∂r1(X)
∂X g1(X) = 0

Lg2r1(X) =
∂r1(X)
∂X g2(X) = 0

L f r1(X) =
∂r1(X)
∂X f (X) = − 1

L2
x3 −ωx6 +

1
L2

ed

Lg1L f r1(X) =
∂(L f r1(X))

∂X g1(X) = 0

Lg2L f r1(X) =
∂(L f r1(X))

∂X g2(X) = 0

L2
f r1(X) =

∂(L f r1(X))

∂X f (X) = x5−x1
L2C −

2ω
L2

x4 +ω2x5 +
ω
L2

eq

Lg1L2
f r1(X) =

∂(L2
f r1(X))

∂X g1(X) = −
udc

L1L2C , 0

Lg2L2
f r1(X) =

∂(L2
f r1(X))

∂X g2(X) = 0

(5)

where Lg1L2
f r1(X) , 0. The relation degree of the output is d1 = 3.

Similarly, the output r2(X) = iqre f − i2q is symmetrical. The relation degree of the output r2(X)

is d2 = 3.
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The Lie derivatives can be obtained as follows:

Lg1 r2(X) =
∂r2(X)
∂X g1(X) = 0

Lg2r2(X) =
∂r2(X)
∂X g2(X) = 0

L f r2(X) =
∂r2(X)
∂X f (X) = − 1

L2
x4 +ωx5 +

1
L2

eq

Lg1L f r2(X) =
∂(L f r2(X))

∂X g1(X) = 0

Lg2L f r2(X) =
∂(L f r2(X))

∂X g2(X) = 0

L2
f r2(X) =

∂(L f r2(X))

∂X f (X) = x6−x2
L2C + 2ω

L2
x3 +ω2x6 −

ω
L2

ed

Lg1 L2
f r2(X) =

∂(L2
f r2(X))

∂X g1(X) = 0

Lg2L2
f r2(X) =

∂(L2
f r2(X))

∂X g2(X) = −
udc

L1L2C , 0

(6)

Based on the above analysis, the decoupling matrix can be established as follows.

E(X) =

 Lg1L2
f r1(X) Lg2L2

f r1(X)

Lg1L2
f r2(X) Lg2L2

f r2(X)


=

[
−udc/(L1L2C) 0

0 −udc/(L1L2C)

] (7)

It can be calculated that the matrix is a non-singular matrix. The total relation degree of the system
output variables is d = d1 + d2 = 6 = n. Therefore, in view of coordinate transformation, the original
system can be directly transformed into a controllable linear system of Brunovsky standard type.

Define the state variable of linear standard system after feedback linearization as
Z = [z1 z2 z3 z4 z5 z6]

T. According to the relative order theory, the relationship between the new
state variables and the original state variables can be expressed as

z1 = r1(X) = idre f − x5

z2 = L f r1(X) = − 1
L2

x3 −ωx6 +
1

L2
ed

z3 = L2
f r1(X) = x5−x1

L2C −
2ω
L2

x4 +ω2x5 +
ω
L2

eq

z4 = r2(X) = iqre f − x6

z5 = L f r2(X) = − 1
L2

x4 +ωx5 +
1

L2
eq

z6 = L2
f r2(X) = x6−x2

L2C + 2ω
L2

x3 +ω2x6 −
ω
L2

ed

(8)

Equation (8) shows that the original system state variable X is mapped into new state variable Z
after the coordinate transformation of the Lie derivative. The coupling and high order terms in the
system are not ignored in the coordinate transformation. The numerical relationship between new
state variables can be calculated as
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

.
z1 =

∂r1(X)
∂X

.
X = − 1

L2
x3 −ωx6 +

1
L2

ed = z2

.
z2 =

∂(L f r1(X))

∂X

.
X = x5−x1

L2C −
2ω
L2

x4 +ω2x5 +
ω
L2

eq = z3

.
z3 =

∂(L2
f r1(X))

∂X

.
X = − 3ω

L2C x2 + ( L1+L2
L1L2

2C
+ 3ω2

L2
)x3

+( 3ω
L2C +ω3)x6 − (

1
L2

2C
+ ω2

L2
)ed −

udc
L1L2C u1

.
z4 =

∂r2(X)
∂X

.
X = − 1

L2
x4 +ωx5 +

1
L2

eq = z5

.
z5 =

∂(L f r2(X))

∂X

.
X = x6−x2

L2C + 2ω
L2

x3 +ω2x6 −
ω
L2

ed = z6

.
z6 =

∂(L2
f r2(X))

∂X

.
X = 3ω

L2C x1 + ( L1+L2
L1L2

2C
+ 3ω2

L2
)x4

−( 3ω
L2C +ω3)x5 − (

1
L2

2C
+ ω2

L2
)eq −

udc
L1L2C u2

(9)

It can be seen that information of z1 is not directly contained in state variable z3 and information
of z4 is not directly contained in state variable z6. Defining the control variable after the coordinate
transformation as V = [v1 v2]

T, the relationship between the original nonlinear system control variable
U and V of can be obtained as

U = E−1(X)[V− Γ(X)] (10)

where Γ(X) =

 Lr1
f r1(X)

Lr2
f r2(X)

 =


 −
3ω
L2C x2 + ( L1+L2

L1L2
2C

+ 3ω2

L2
)x3

+( 3ω
L2C +ω3)x6 − (

1
L2

2C
+ ω2

L2
)ed


3ω
L2C x1 + ( L1+L2

L1L2
2C

+ 3ω2

L2
)x4

−( 3ω
L2C +ω3)x5 − (

1
L2

2C
+ ω2

L2
)eq




.

Substituting Equation (10) into Equation (2), the controller can be expressed as

u1 = 1
udc

[−3L1ωi1q + (3L1Cω2 + L1+L2
L2

)ucd

+(3L1ω+ L1L2Cω3)i2q − (L1Cω2 + L1
L2
)ed] −

L1L2C
udc

v1

u2 = 1
udc

[3L1ωi1d + (3L1Cω2 + L1+L2
L2

)ucq

−(3L1ω+ L1L2Cω3)i2d − (L1Cω2 + L1
L2
)eq] −

L1L2C
udc

v2

(11)

The original nonlinear system is transformed into the linear system as follows: .
Z = AZ + BV
Y = CZ

(12)

where A =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


, B =



0 0
0 0
1 0
0 0
0 0
0 1


, C =



1 0
0 0
0 0
0 1
0 0
0 0


.

The matrix A shows that the dq components of the original system are completely decoupled by
nonlinear mapping. The transfer function of the system is shown in Figure 2. The block diagrams in
the dotted box are the equivalent controller and the original system.
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Figure 2. Current control system based on state feedback linearization.

For the system shown in Equation (12), the controller V can be designed to make it stable at
the point [z1 z4]

T = [0 0]T. As the feedback decoupling of the original system has been completed,
the controller can be designed based on the linear theory to achieve the control of original system.

2.3. Parameters Design of Current Single Closed Loop Controller

Through the state feedback linearization, the system is transformed into a 3-order controllable
standard type. Therefore, at least two open-loop zeros should be introduced into the linear controller,
that is, two first-order differentiation elements. Considering that the differentiation elements may cause
system noise, the controller should contain a filter part (i.e., the first-order inertial element). To make
the controller simple, the transfer function of the system controller after linearization can be written as:

v1 = v2 = −(k2s2 + k1s + k0)/(s + k3) (13)

Then the open-loop transfer function and the closed-loop transfer function of the control system
can be represented as follows:

GOL(s) =
k2s2 + k1s + k0

s3(s + k3)
(14)

GCL(s) =
k2s2 + k1s + k0

s4 + k3s3 + k2s2 + k1s + k0
(15)

Compared with the original open-loop system, the controller which adds two zeros and one pole
as a series correction link turns the original 3-order system into a 4-order one. Therefore, the order
reduction processing of the higher order system is considered.

Assume two poles and two zeros constitute a pair of dipoles. Then, Equation (15) can be
rewritten as

GCL(s) =
k2(s2 + 2ζ1ωn1s +ω2

n1)

(s2 + 2ζ2ωn2s +ω2
n2)(s

2 + 2ζ3ωn3s +ω2
n3)

(16)

With dipoles elimination, the system can be transformed to a typical 2-order system. For the
closed-loop transfer function of the 2-order linear system, the parameter design method of the linear
system can be used to construct the restrictive conditions, so as to obtain the parameters range.
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1. Stability conditions of the system

According to the stability criterion, the closed loop characteristic equation of the original system
should satisfy the Hurtwitz criterion as follows:

∆1 = k2k3 > 0
∆2 = ∆1 − k1 > 0
∆3 = k1∆2 − k0k2

3 > 0
∆4 = k0k1k2k3 > 0

(17)

2. Restrictive conditions of dipoles parameters

The closed loop system (16) can be reduced to a 2-order system with sufficient condition of dipoles
existence. It is necessary to keep the dipole far from the imaginary axis (i.e., ζ2ωn2 > ζ3ωn3).∣∣∣∣∣(ζ1ωn1 − ζ2ωn2) + j(ωn1

√
1− ζ2

1 −ωn2

√
1− ζ2

2)

∣∣∣∣∣ < ζ2ωn2

10
(18)

3. Cut-off frequency of the closed loop system

The cut-off frequency (i.e., ωb) of current control system is generally less than 1/5 of
switching frequency.

Gain( jω)
∣∣∣ω=ωb

= k2√
(ω2

n3−ω
2
b)

2
+(2ζ3ωn3ωb)

2
= 0.707 (19)

4. Closed loop amplitude frequency characteristic at zero frequency

The closed loop system should maintain good tracking performance at low frequency band.
The amplitude frequency characteristics satisfy the requirement of Gain( jω)

∣∣∣
ω=0 ≈ 1.

Gain( jω)|ω=0 =
k2ω2

n1

ω2
n2ω

2
n3

≈ 1 (20)

Combined with the above four conditions, the optimal control shown in Equation (12) can be
realized according to the classical control theory.

3. Design of Double Closed Loop Controller Based on Reduced Order State Feedback Linearization

The single closed loop feedback linearization method is used to decouple and simplify the inverter.
The controller designed through this method is simple in structure, but it is too dependent on system
precise model. Furthermore, the design of controller coefficient is complex, which limits the application
of the algorithm.

Considering the objective of control, it is not necessary to configure all open loop poles of LCL type
inverter model to the coordinate origin. Therefore, the system can be divided into two parts, which are
analyzed separately. Then, a control strategy based on reduced order state feedback linearization can
be designed. Consequently, the capacitance voltage in the LCL filter can be adopted as the intermediate
variable of the reduced order feedback line linearization system. At the same time with system
decoupling control, the single state variable active damping strategy is added to the system to achieve
resonance suppression.

3.1. State Feedback of Inverter Side Inductance and Filter Capacitor Subsystem

Define the inverter side inductance current and the filter capacitor voltage as state variables

X = [x1 x2 x3 x4]
T =

[
i1d i1q ucd ucq

]T
, modulation variables as input variables U =

[
u1d u1q

]T
, filter

capacitor voltage as output variables Y = R(X) =
[
ucd ucq

]T
.
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The model of the inverter inductance and the filter capacitance subsystem can be written as

Equation (2), where f(X) =


ωx2 − x3/L1

−ωx1 − x4/L1

x1/C +ωx4 − i2d/C
x2/C−ωx3 − i2q/C

, G(X) =
[

g1(X) g2(X)
]
=


udc/L1 0

0 udc/L1

0 0
0 0

.
The grid-side inductance current can be considered as a measurable feedback variable in the system.
The model is a 2-input 2-output affine nonlinear system with 4 state variables (i.e., n = 4).

According to the aforementioned analysis method, the 4-dimensional vector field matrix can be
calculated as follows:

D4 =
[

g1 g2 ad f g1 ad f g2
]

=


udc/L1 0 0 −ωudc/L1

0 udc/L1 ωudc/L1 0
0 0 −udc/L1C 0
0 0 0 −udc/L1C


(21)

From (21), it can be obtained that RankD4 = 4 = n. The calculation result shows that the vector
fields are involution, which satisfies the state feedback linearization condition.

The Lie derivative of the system output (i.e., r1(X) = ucd) can be calculated as

Lg1r1(X) =
∂r1(X)
∂X g1(X) = 0

Lg2r1(X) =
∂r1(X)
∂X g2(X) = 0

L f r1(X) =
∂r1(X)
∂X f (X) = 1

C x1 +ωx4 −
1
C i2d

Lg1L f r1(X) =
∂(L f r1(X))

∂X g1(X) =
udc
L1C , 0

Lg2L f r1(X) =
∂(L f r1(X))

∂X g2(X) = 0

(22)

In Equation (22), the total relationship of the output variables of the system is d = d1 + d2 = 4,
so the subsystem can be directly transformed to a linear controllable system through coordinate
transformation. The corresponding decoupling matrix can be written as

E(X) =

[
Lg1L f r1(X) Lg2L f r1(X)

Lg1L f r2(X) Lg2L f r2(X)

]
=

 udc
L1C 0
0 udc

L1C

 (23)

Then, the new state variables after the feedback linearization can be expressed as

.
z1 =

∂r1(X)
∂X

.
X = 1

C x1 +ωx4 −
1
C i2d

.
z2 =

∂(L f r1(X))

∂X

.
X = 2ω

C x2 −
1+L1Cω2

L1C x3 −
ω
C i2q +

udc
L1C u1d

.
z3 =

∂r2(X)
∂X

.
X = 1

C x2 −ωx3 −
1
C i2q

.
z4 =

∂(L f r2(X))

∂X

.
X = − 2ω

C x1 −
1+L1Cω2

L1C x4 +
ω
C i2d +

udc
L1C u1q

(24)

The relationship between the new control variable V and the original one U is as (10), where

Γ(X) =

 Lr1
f r1(X)

Lr2
f r2(X)

 =
 2ω

C x2 −
1+L1Cω2

L1C x3 −
ω
C i2q

−
2ω
C x1 −

1+L1Cω2

L1C x4 +
ω
C i2d

.
Combining Equation (23) and Equation (10), the original control variable U can be expressed as u1d = L1C

udc
v1d −

L1C
udc

[ 2ω
C i1q −

1+L1Cω2

L1C ucd −
ω
C i2q]

u1q =
L1C
udc

v1q −
L1C
udc

[− 2ω
C i1d −

1+L1Cω2

L1C ucq +
ω
C i2d]

(25)
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Through coordinate transformation, the original nonlinear system is transformed to two linear
systems as follows: 

.
Zd =

[ .
z1
.
z2

]
=

[
0 1
0 0

][
z1

z2

]
+

[
0

v1d

]
yd = z1
.
Zq =

[ .
z3
.
z4

]
=

[
0 1
0 0

][
z3

z4

]
+

[
0

v1q

]
yq = z3

(26)

3.2. State Feedback of Grid-Side Inductance Subsystem

Similarly, define the grid-side inductance current of the LCL filter as the state variables

X = [x1 x2]
T =

[
i2d i2q

]T
, the filter capacitor voltage as the input variables U =

[
u2d u2q

]T
=

[
ucd ucq

]T
,

and the grid side current as the output variable Y =
[
i2d i2q

]T
.

The model of subsystem can be written as Equation (2), where (X) =

[
ωx2 − ed/L2

−ωx1 − eq/L2

]
,

G(X) = [g1(X) g2(X)] =

[
1/L2 0

0 1/L2

]
.

Then, the original control variable U can be expressed as{
u2d = L2v2d − L2ωi2q + ed
u2q = L2v2q + L2ωi2d + eq

(27)

3.3. Parameters Design of Double Closed Loop Controller

In the reduced order feedback linearization method, the filter capacitor voltage is the input
and output of the two reduced order systems, respectively. Then the double loop control system is
constructed that the outer control loop is the grid side current control and the inner control loop is the
filter capacitor voltage control.

The control inner loop is the filter capacitor voltage control and can be designed as a unit negative
feedback closed loop system. Considering the resonance suppression, differential feedback is needed.
Therefore, a double control loop strategy can be designed, in which the d-axis system is shown in
Figure 3.
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Figure 3. Block diagram of the reduced order feedback decoupling control system.

In Figure 3, the VSI system is transformed to three series integration links. The outer control
loop is the grid-side inductance current control, and the conventional proportional integral controller
is compatible. The inner control loop is the filter capacitor voltage control. In order to track high
frequency ripple, a proportional controller can be adopted to improve the response speed of the system.
Due to the influence of the inner control loop on the original system structure, the outer current control
loop is no longer a precise feedback. A feedback term deviation appears. However, compared with the
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forward channel gain, the deviation, which can be equivalent to a feed forward interference, is smaller.
Therefore, it can be compensated by a PI controller.

Define the outer loop controller parameters as k2 and k3, the inner loop controller parameter as k1.
Then, the control system can be represented as Figure 4.

11 of 16 
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and the grid side current as the output variable 𝒀 = ൣ𝑖ଶௗ  𝑖ଶ௤൧். 
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Figure 4. Equivalent block diagram of control system.

Open loop and closed loop transfer function of the system can be written as

GOL(s) =
k1(k2s + k3)

s2(s2 + k0k1s + k1)
(28)

GCL(s) =
k1(k2s + k3)

s4 + k0k1s3 + k1s2 + k1k2s + k1k3
(29)

In the double closed loop current control system shown in (29), the numerator order of the
transfer function is quite different from the denominator order. The parameters coupling degree is
low. Therefore, the parameters can be designed directly according to the system characteristics. As the
parameters design method was analyzed before, this section does not repeat the description.

4. Simulations and Experiments

4.1. Simulation and Experimental Environment

In order to verify the effectiveness of the proposed algorithm, the three-phase static var generator
is used as the controlled object.

Matlab/Simulink simulation software (2010b, MathWorks, Inc., Natick, Massachusetts 01760 USA)
is used to carry out numerical simulation analysis of three-phase three-leg grid-connected inverter
based on feedback linearization. IGBT model in MATLAB/Simulink simulation software is selected
as switch, with internal resistance Ron = 1 mΩ, snubber resistance Rs = 500 kΩ, snubber capacitance
Cs = inf.

Furthermore, in order to verify the feasibility of the algorithm, a 50 kW prototype of three-phase
three-leg inverter is built and the experiment is carried out. The Controller chip of the prototype is
TMS320F28335 (Texas Instruments, Inc., Dallas, Texas 75243 USA). The IGBT module is SKM150GB12V
(Semikron, Ltd., Nuremberg, Germany), with the switching frequency of 10 kHz.

A photograph of the test rig is shown in Figure 5.
Based on the system parameters shown in Table 1, the control parameters of the two feedback

linearized systems are selected, respectively.

1. Based on Equations (17)–(20), selecting the cut-off frequency of the open-loop transfer function
as 750 Hz, the single closed-loop control system parameters can be designed as: k3 = 5000,
k2 = 107π, k1 = 200k2, k0 = 104k2. At this time, the corresponding phase margin is Pm = 45◦,
and the closed-loop bandwidth is 1 kHz.

2. Similarly, the parameters of the double closed loop control system can be designed as: k0 = 2 × 10−4,
k1 = 108, k2 = 5 × 103, k3 = 102k3. Then, the corresponding open loop cut-off frequency is 680 Hz,
phase margin is Pm = 43◦, and closed-loop bandwidth is 1 kHz.
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Table 1. Parameters for the system.

Variables Symbols Value

DC Bus Voltage udc 650 V
Grid Voltage ug 380 V

Grid-side inductor L2 0.2 mH
Inverter side inductor L1 0.3 mH

Filter capacitor C 20 uF
Switching frequency f 10 kHz

The corresponding frequency domain characteristics of two control systems are shown in Figure 6.
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Figure 6. Bode diagrams of the closed-loop control systems: (a) Single closed-loop control system,
(b) double closed-loop control system.

4.2. Steady State Control Performance

Setting VSI output current as i2 = 50 A, the three-phase output current on the basis of two control
methods is shown in Figure 7.
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Figure 7. Steady-state current waveforms of voltage source inverters (VSI) based on two control
schemes: (a) Output current of the single closed-loop control system, (b) output current of the double
closed-loop control system.

According to Figure 7, both the two inverter systems can track the reference current accurately
with small current distortion. Compared to single closed loop control, the output ripple of double
closed loop control system is smaller.

The prototype is adopted to carry out the experiment. The output current of the system based on
two kinds of control methods is shown in Figure 8. The output current Total Harmonic Distortion (THD)
with the two control methods are 4.36% and 1.57%, respectively. The current ripple of single closed loop
control system based on feedback linearization is larger. The main reason is that the control system is
highly dependent on the accuracy of the system model. However, the sampling and control delays,
which exist in real systems, cause the inaccuracy of the feedback signal. In addition, the nonlinear
magnetization curve of the inductance and the equivalent series resistance of the capacitance also
affect the model accuracy. It reduces the damping effect of the resonance point and increases the
current ripple. The reduced order double closed loop controller takes the filter capacitor voltage as
the intermediate variable. To some extent, the measure reduces the coupling relationship among the
control variables and improves the robustness of the system. The steady state control performance
is better.
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control experiment, (b) output current of the double closed-loop control experiment.

4.3. Dynamic Control Performance

In this paper, a dynamic test is carried out in the form of virtual load. The grid-connected current
is set as 25 A at the initial time, and then doubles at 0.3 s. The output current of the system is shown in
Figure 9.

When the load current changes, the output current of the two systems fluctuates with little
overshoot. After a brief transient process, the system reaches a new steady state within one fundamental
period. Compared to the direct feedback linearization control, the reduced order feedback linearization
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control lacks one closed loop zero, which reduces the response speed. However, the transition process
is relatively smooth. Therefore, it can be seen that the two control schemes both have fast response and
small overshoot.
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matrixes are designed by adopting the Lie derivative. Through the nonlinear transformation, the 
original system is mapped to the Brunovsky standard type, and the new system linear controller 
can be used to complete the control of the original complex system. Then, the parameters design 
ideas of two kinds of controllers are given. The proposed single closed-loop current controller has a 
simple structure, but it is highly dependent on the exact model of the system. The double closed 
loop controller sets the filter capacitor voltage as the inner loop control variable, by which a 
reduced order feedback linearization control can be achieved step by step, to improve the 
adaptability and robustness of the system. The simulation and experimental results show that the 
two controllers have good steady-state control performance and dynamic response performance. In 
practical application, the robustness of linear control system based on reduced-order feedback is 
better. 

Author Contributions: L.Y. wrote the paper and designed the control method; C.F. contributed to the 
conception of the study and designed the simulation model; J.L. helped to perform the analysis with 
constructive discussions. 

Acknowledgments: This work is supported by the National Natural Science Foundation of China (Grant No. 
51607179) and the Fundamental Research Funds for the Central Universities (2017QNB01). 

Conflicts of Interest: No potential conflict of interest was reported by the authors. 

Figure 9. Dynamic current waveforms of VSI based on two control schemes: (a) Output current of
the single closed-loop control system, (b) output current of the double closed-loop control system,
(c) partial enlarged detail of (a), (d) partial enlarged detail of (b).

The experimental conditions are the same as those of the simulation. The experimental results are
shown in Figure 10. Similar to the simulation results, it is shown that both of the two control schemes
have good dynamic performance.

15 of 16 

 
(c) 

 
(d) 

Figure 9. Dynamic current waveforms of VSI based on two control schemes: (a) Output current of 
the single closed-loop control system, (b) output current of the double closed-loop control system, (c) 
partial enlarged detail of (a), (d) partial enlarged detail of (b). 

The experimental conditions are the same as those of the simulation. The experimental results 
are shown in Figure 10. Similar to the simulation results, it is shown that both of the two control 
schemes have good dynamic performance. 

  

(a) (b) 

Figure 10. Experimental dynamic current waveforms: (a) Output current of the single closed-loop 
control experiment, (b) output current of the double closed-loop control experiment. 

5. Conclusion 

In order to solve the problem of poor global control performance of the controller designed by 
small signal modeling and harmonic linearization, two universal controller design methods based 
on state feedback linearization are proposed for the LCL type VSI. Relation degree of the VSI 
system and that of the reduced order model are analyzed, respectively. Subsequently, the coupling 
matrixes are designed by adopting the Lie derivative. Through the nonlinear transformation, the 
original system is mapped to the Brunovsky standard type, and the new system linear controller 
can be used to complete the control of the original complex system. Then, the parameters design 
ideas of two kinds of controllers are given. The proposed single closed-loop current controller has a 
simple structure, but it is highly dependent on the exact model of the system. The double closed 
loop controller sets the filter capacitor voltage as the inner loop control variable, by which a 
reduced order feedback linearization control can be achieved step by step, to improve the 
adaptability and robustness of the system. The simulation and experimental results show that the 
two controllers have good steady-state control performance and dynamic response performance. In 
practical application, the robustness of linear control system based on reduced-order feedback is 
better. 

Author Contributions: L.Y. wrote the paper and designed the control method; C.F. contributed to the 
conception of the study and designed the simulation model; J.L. helped to perform the analysis with 
constructive discussions. 

Acknowledgments: This work is supported by the National Natural Science Foundation of China (Grant No. 
51607179) and the Fundamental Research Funds for the Central Universities (2017QNB01). 

Conflicts of Interest: No potential conflict of interest was reported by the authors. 

Figure 10. Experimental dynamic current waveforms: (a) Output current of the single closed-loop
control experiment, (b) output current of the double closed-loop control experiment.

5. Conclusions

In order to solve the problem of poor global control performance of the controller designed by
small signal modeling and harmonic linearization, two universal controller design methods based
on state feedback linearization are proposed for the LCL type VSI. Relation degree of the VSI system
and that of the reduced order model are analyzed, respectively. Subsequently, the coupling matrixes
are designed by adopting the Lie derivative. Through the nonlinear transformation, the original
system is mapped to the Brunovsky standard type, and the new system linear controller can be used to
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complete the control of the original complex system. Then, the parameters design ideas of two kinds
of controllers are given. The proposed single closed-loop current controller has a simple structure,
but it is highly dependent on the exact model of the system. The double closed loop controller sets
the filter capacitor voltage as the inner loop control variable, by which a reduced order feedback
linearization control can be achieved step by step, to improve the adaptability and robustness of the
system. The simulation and experimental results show that the two controllers have good steady-state
control performance and dynamic response performance. In practical application, the robustness of
linear control system based on reduced-order feedback is better.
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