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Abstract: We study the energy efficiency (EE) optimization problem in non-orthogonal unicast and
multicast transmission for massive multiple-input multiple-output (MIMO) systems with statistical
channel state information of all receivers available at the transmitter. Firstly, we formulate the
EE maximization problem. We reduce the number of variables to be solved and simplify this
large-dimensional-matrix-valued problem into a real-vector-valued problem. Next, we lower the
computational complexity significantly by replacing the objective with its deterministic equivalent
to avoid the high-complex expectation operation. With guaranteed convergence, we propose an
iterative algorithm on beam domain power allocation using the minorize maximize algorithm and
Dinkelbach’s transform and derive the locally optimal power allocation strategy to achieve the optimal
EE. Finally, we illustrate the significant EE performance gain of our EE maximization algorithm
compared with the conventional approach through conducting numerical simulations.

Keywords: energy efficiency; non-orthogonal unicast and multicast transmission; statistical channel
state information; massive MIMO; beam domain

1. Introduction

As mobile data expands rapidly, it is expected that global wireless data traffic will surpass
100 exabytes per month by 2023 [1]. A considerable proportion of the data traffic, such as massive
software updating and sports broadcasting, is of common interest, which stimulates the demand for
services that can deliver the same data to a group of user terminals (UTs) efficiently. Since physical
layer multicasting can provide efficient point-to-multipoint wireless transmission, it has great potential
for future mobile communication systems [2–4].

Recently, non-orthogonal unicast and multicast (NOUM) transmission has been gaining increasing
interest [5–7]. At the transmitter, the unicast and multicast signals are precoded and then sent out to the
receivers simultaneously, sharing the same time-frequency resources. Compared with the conventional
orthogonal unicast and multicast (OUM) transmission, NOUM transmission is more spectrum-efficient,
and more suitable for scenarios where both multicast and unicast signals are needed by a UT. Massive
multiple-input multiple-output (MIMO) has become one of the core technologies of the fifth generation
wireless system for its significant performance in energy efficiency (EE) and spectral efficiency [8,9].
Therefore, there has been considerable research on the combination of multicast transmission and
massive MIMO systems [6,10,11]. Please note that mutual coupling is a major concern in massive
MIMO because it can weaken the system performance [12–16]. We assume perfect isolation between
the antennas without loss of generality.

EE has become a significant design criterion for wireless communication systems [17–19].
The broad-scale antenna arrays equipped at the base station (BS) cause the power consumption
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to increase in massive MIMO systems, and the energy consumed by wireless communications is
responsible for greenhouse gas emissions [20], which motivates the need to design energy-efficient
systems [8,21,22]. EE of a massive MIMO system was considered in [8]. However, it ignores the power
consumed by the BS circuit, while in [21], research on maximizing the EE and power transfer efficiency
for wireless-powered systems was analyzed, taking the circuit power consumption into account.
In [22], how the system parameters (number of antennas, transmitted power and number of UTs) affect
the EE of a multi-user MIMO system was investigated.

There are also previous works that studied energy-efficient NOUM transmission in massive
MIMO systems [23–25]. In [23], energy-efficient NOUM beamforming in multi-cell multi-user MIMO
scenario was studied. An optimization beamforming algorithm was proposed in [24] to optimize the EE
in the multi-cell multicast system. The extension of the problem was investigated in [25], which takes
antenna selection into consideration.

Please note that most of the previous works made the assumption that the UTs’ instantaneous
channel state information (CSI) is available at the BS. However, in realistic systems, obtaining good
estimates of instantaneous CSI is a challenging job [26–28]. Compared with obtaining instantaneous
CSI, the acquisition of statistical CSI is easier and more precise. In [11], rate maximization problem
for NOUM massive MIMO transmission was considered, and the EE maximization problem for
physical-layer multicast transmission was investigated in [29], both assumed that the BS only has
access to the UTs’ statistical CSI.

To our knowledge, the research on EE optimization of NOUM transmission for massive MIMO
systems with statistical CSI at the transmitter has not been studied yet. We investigate this problem in
our work, and the major contributions we provide in this paper are listed as follows:

• With statistical CSI, we formulate the EE maximization problem for NOUM transmission in the
massive MIMO scenario.

• We determine the optimal transmit directions of the multicast and unicast transmission in
closed-form, respectively, and then simplify the large-scale complex-matrix-valued precoding
design problem into a real-vector-valued power allocation problem in the beam domain.

• We reduce the computational complexity of the EE optimization problem significantly by replacing
the objective function with its deterministic equivalent (DE).

• With guaranteed convergence, we propose an algorithm on beam domain power allocation
using the minorize maximize (MM) algorithm and Dinkelbach’s transform. We deal with the EE
optimization problem by iteratively solving a series of related convex optimization problems.

The remainder of the paper is constructed as follows. The channel model is introduced in Section 2.
The EE maximization problem is formulated and investigated in Section 3. Numerical simulations are
conducted in Section 4. Section 5 summarizes the paper.

Column vectors and matrices are represented by lower and upper case boldface letters,
respectively, whereas italic letters stand for scalars, and the following are other notations used in
this paper.

• We adopt RM×N to represent M × N real-valued vector space and CM×N to denote M × N
complex-valued vector space.

• IM represents the identity matrix of size M×M.
• X � 0 indicates that matrix X is positive semidefinite.
• E {.} represents the expectation operation.
• � denotes the Hadamard product.
• Denote tr {.} as the trace operation, (.)T as the transpose operation, (.)∗ as the conjugate operation,

(.)H as the conjugate-transpose operation, and det {.} as the determinant operation.
• ∼ stands for “be distributed as”, and , stands for “be defined as”.
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2. System Model

Consider a single cell massive MIMO system with an M-antenna BS, jointly serves K UTs.
Denote by K , {1, 2, . . . , K} the UT set, where the kth UT is equipped with Nk antennas. The multicast
and unicast services are carried out with the same time-frequency resources. The BS sends a multicast
signal that is of common interest to all the UTs in the cell while delivering unique messages to UTs
according to each UT’s demand during the downlink transmission, as shown in Figure 1.

Figure 1. System model of NOUM.

Assume the downlink signal sent by the BS is denoted by

x = xm + ∑
k∈K

xu
k ∈ CM×1, (1)

where xm ∈ CM×1 represents the multicast signal and xu
k ∈ CM×1 denotes the unicast signal sent to the

kth UT. Assume that xm and xu
k are mutually uncorrelated, zero-mean, and their covariance matrices

are Qm and Qu
k , respectively. Define tr {Qm} as the multicast transmission power and tr

{
Qu

k
}

as the
unicast transmission power. At the kth UT, the received signal is denoted by

yk = Hkx + nk ∈ CNk×1, (2)

where Hk is the downlink channel matrix of size Nk × M, and nk ∼ CN
(
0, σ2INk

)
represents the

additive circularly symmetric complex-valued Gaussian noise with the variance being σ2.
We adopt Weichselberger’s channel model [30,31] in our work because the correlation properties

between the transmit and receive ends of Weichselberger’s channel model are jointly considered rather
than separately characterized in the Kronecker model. Then, we can write the downlink channel
matrix in (2) as

Hk = UkGkVH
k ∈ CNk×M, (3)

where Uk ∈ CNk×Nk and Vk ∈ CM×M are deterministic unitary matrices. Gk ∈ CNk×M represents the
downlink channel matrix in the beam domain [26,27,32], and the elements of Gk are independently
distributed random variables with zero-mean. Denote Ωk as the beam domain channel power matrix

Ωk = E {Gk �G∗k} ∈ RNk×M, (4)

where the average power of [Gk]i,j is represented by [Ωk]i,j. As Ωk has the property of remaining
approximately constant while the frequency changes widely, the statistical CSI can be obtained
accurately and efficiently [32].

The vast number of antenna arrays employed at the BS brings about new channel properties for
massive MIMO systems. For example, as the BS antenna number M tends to infinity, the eigenvector
matrices of the transmit correlation matrices between the BS and all UTs tend to be the same and are
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only affected by the BS array topology [32,33]. Denote the corresponding deterministic unitary matrix
as V, and then in the massive MIMO scenario, the downlink channel matrix becomes

Hk
M→∞
= UkGkVH . (5)

Please note that many of the previous works on massive MIMO adopted the channel model
mentioned in (5) such as [26,29,34], and it can achieve quite accurate performance [34].

3. NOUM Transmission in Massive MIMO

3.1. Problem Formulation

Consider a NOUM massive MIMO system. We assume that there is only one multicast group
without loss of generality. Consider the case when the kth (∀k) UT knows its own instantaneous CSI
with proper pilot design [33], while the BS only has access to the statistic CSI of all UTs.

Rewrite the received signal at the kth UT by inserting (1) into (2) as follows

yk = Hkxm + Hkxu
k + ∑

k′ 6=k
Hkxu

k′ + nk. (6)

Each UT will decode the common multicast signal and its desired unicast signal in order by
applying successive interference cancellation (SIC) method.

During the process of multicast decoding, the kth UT regards the term Hkxm in (6) as the desired
message while treating the others as interference. For the covariance matrix of the interference and
noise, we have

Km
k = σ2INk︸ ︷︷ ︸

noise

+ ∑
k′∈K

E
{

HkQu
k′H

H
k

}
︸ ︷︷ ︸

interference

∈ CNk×Nk . (7)

Since UT k has the knowledge of its own instantaneous CSI and the covariance matrix Km
k ,

during the multicast transmission, we denote by Rm
k the ergodic rate of the kth UT

Rm
k = E

{
log det

{
Km

k + HkQmHH
k

}}
− log det {Km

k } . (8)

Denote multicast ergodic rate as min
k

Rm
k . By inserting the massive system model in (5) and

det {I + MN} = det {I + NM}, the Sylvester’s determinant identity, into (8), the multicast rate Rm
k

in (8) becomes
Rm

k = E
{

log det
{

Km
k + GkVHQmVGH

k

}}
− log det

{
Km

k

}
, (9)

where Km
k is defined as

Km
k , UH

k Km
k Uk

= σ2INk + ∑
k′∈K

E
{

GkVHQu
k′VGH

k

}
∈ CNk×Nk . (10)

Define a matrix-valued function Ak (X) by Ak (X) , E
{

GkXGH
k
}

. Since all the elements of Gk are
zero-mean and independently distributed, the off-diagonal elements of Ak (X) are zero, so Ak (X) is
a diagonal matrix-valued function of size Nk × Nk, and its ith diagonal element is

[Ak]i,i = tr
{
diag

{(
[Ωk]i,:

)T
}

X
}

. (11)

Then the terms E
{

GkVHQu
k′VGH

k
}

in (10) can be rewritten as Ak
(
VHQu

k′V
)
.
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For the unicast signal decoding, with SCI, the multicast signal is removed, so the interference only
contains the unicast signal meant for other UTs. For the covariance matrix of the interference and noise
at the kth UT, we have

Ku
k = σ2INk︸ ︷︷ ︸

noise

+ ∑
k′ 6=k

E
{

HkQu
k′H

H
k

}
︸ ︷︷ ︸

interference

∈ CNk×Nk . (12)

Then we denote by Ru
k the ergodic rate of the kth UT during the unicast transmission

Ru
k = E

{
log det

{
Ku

k + HkQu
k HH

k

}}
− log det {Ku

k } . (13)

By inserting the massive system model in (5) and the Sylvester’s determinant identity into (13),
the unicast rate Ru

k at the kth UT becomes

Ru
k = E

{
log det

{
Ku

k + GkVHQu
k VGH

k

}}
− log det

{
Ku

k

}
, (14)

where Ku
k is defined as

Ku
k , σ2INk + ∑

k′ 6=k
Ak

(
VHQu

k′V
)
∈ CNk×Nk , (15)

and the definition of Ak (X) is given in (11).
Next, we consider the system power consumption. Apply the power consumption model the

same as the one used in [29,35] as follows

P = µ

(
tr {Qm}+ ∑

k∈K
tr {Qu

k }
)
+ MPc + Ps, (16)

where the constant-coefficient µ ≥ 1 accounts for the reciprocal of the transmit amplifier drain efficiency.
tr {Qm} means the multicast transmit power, and ∑k∈K tr

{
Qu

k
}

denotes the total unicast transmit
power. Pc stands for the constant circuit power consumption per antenna and is unaffected by the
actual transmit power. Ps represents the BS static power consumption and is irrelevant to the number
of antennas.

In the following, we formulate the EE optimization problem for NOUM massive MIMO system.
We aim at identifying the optimal transmit covariance matrices Qm and Qu

k for multicast and
unicast transmission that can maximize the system EE, respectively. We define a weight matrix
u = [u0, u1, . . . , uK] with u0 being the weight of multicast rate and uk being the weight of kth unicast
rate. Then we can denote by R the weighted sum rate as follows:

R , u0K(min
k

Rm
k ) + ∑

k∈K
ukRu

k , (17)

and the EE of the considered system with bandwidth W is given by

EE =
WR

P
=

W
(

u0K(min
k

Rm
k ) + ∑

k∈K
ukRu

k

)
µ

(
tr {Qm}+ ∑

k∈K
tr
{

Qu
k
})

+ MPc + Ps

. (18)

Therefore, the EE maximization problem is stated as
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max
Qm,Qu

k ,∀k∈K

W
(

u0K(min
k

Rm
k ) + ∑

k∈K
ukRu

k

)
µ

(
tr {Qm}+ ∑

k∈K
tr
{

Qu
k
})

+ MPc + Ps

,

s.t. tr {Qm}+ ∑
k∈K

tr {Qu
k } ≤ Pmax,

Qm � 0, Qu
k � 0 (∀k ∈ K) ,

(19)

where Pmax is the power budget at the BS.

3.2. Optimal Transmit Directions

The problem in (19) aims at designing large-dimensional complex matrices Qm and Qu
k (∀k),

and the computational complexity can be very high. To simplify this problem, first, we decompose the
transmit covariance matrices as Qm = ΦmΛm (Φm)H and Qu

k = Φu
k Λu

k
(
Φu

k
)H , respectively. Φm and

Φu
k are constituted by the eigenvectors of Qm and Qu

k , respectively, which represent the directions of
the transmitted signals. Meanwhile, Λm and Λu

k are diagonal matrices with their diagonal elements
constituted by the eigenvalues of Qm and Qu

k , respectively, which denote the allocated power over the
corresponding directions.

The following theorem determines the values of the eigenvectors of Qm and Qu
k .

Theorem 1. The optimal multicast and unicast transmit covariance matrices of problem (19) is

Qm,opt = VΛmVH , Qu,opt
k = VΛu

k VH , ∀k, (20)

where Λm and Λu
k (∀k) are both diagonal matrices, and the matrix V equals to the eigenvector matrices of the

correlation matrices between the BS and all UTs and only depends on the BS array topology. The eigenvectors of
Qm and Qu

k are given by the columns of the matrix V,

Proof. Please refer to the Appendix A.

Theorem 1 above indicates that when solving problem (19), since the eigenvectors
are deterministic, we only have to determine the power allocation matrix denoted by
Λ ,

{
Λm, Λu

1 , Λu
2 , . . . , Λu

K
}

, which reduces the number of variables to be optimized and the
computational complexity significantly. Therefore, the large-dimensional complex-matrix-valued
EE maximization problem can be transformed into a real-vector-valued power allocation problem in
the beam domain.

Rewrite Km
k and Ku

k as follows

Km
k (Λ) , σ2INk + ∑

k′∈K
Ak
(
Λu

k′
)

, (21)

Ku
k (Λ) , σ2INk + ∑

k′ 6=k
Ak
(
Λu

k′
)

, (22)

and without loss of optimality, we can simplify the problem in (19) into the problem below

max
Λ

W
(

u0K
(

min
k

Rm
k (Λ)

)
+ ∑

k∈K
ukRu

k (Λ)

)
µ

(
tr {Λm}+ ∑

k∈K
tr
{

Λu
k
})

+ MPc + Ps

,

s.t. tr {Λm}+ ∑
k∈K

tr {Λu
k } ≤ Pmax,

Λm � 0, Λm diagonal, Λu
k � 0, Λu

k diagonal (∀k ∈ K) ,

(23)
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with
Rm

k (Λ) = E
{

log det
{

Km
k (Λ) + GkΛmGH

k

}}
︸ ︷︷ ︸

,s+k (Λ)

− log det
{

Km
k (Λ)

}
︸ ︷︷ ︸

,s−k (Λ)

, (24)

Ru
k (Λ) = E

{
log det

{
Ku

k (Λ) + GkΛu
k GH

k

}}
︸ ︷︷ ︸

,t+k (Λ)

− log det
{

Ku
k (Λ)

}
︸ ︷︷ ︸

,t−k (Λ)

. (25)

Denote the lower bound of Rm
k (Λ) (∀k) as an auxiliary variable η, the problem in (23) can be

equivalently expressed as

max
Λ

W
(

u0Kη + ∑
k∈K

ukRu
k (Λ)

)
µ

(
tr {Λm}+ ∑

k∈K
tr
{

Λu
k
})

+ MPc + Ps

,

s.t. Rm
k (Λ) ≥ η (∀k ∈ K) ,

tr {Λm}+ ∑
k∈K

tr {Λu
k } ≤ Pmax,

Λm � 0, Λm diagonal, Λu
k � 0, Λu

k diagonal (∀k ∈ K) .

(26)

3.3. Energy-Efficient Power Allocation for NOUM Transmission

By observing problem (26), we can conclude that the numerator of the objective function is
a difference of concave functions. We adopt the MM algorithm to deal with the problem. It is an iteration
optimization process, where during each iteration, we replace the objective function with its lower
bound function.

In this problem, we substitute s−k (Λ) in (24) and t−k (Λ) in (25) with their first-order Taylor
expansions, respectively, to transfer the numerator of the objective function into a concave function,
which leads to a concave-linear fractional program. We can solve problem (26) by solving a series of
substitution problems iteratively. Then at the pth iteration, Λ(p) =

{
Λm

(p), Λu
1,(p), . . . , Λu

K,(p)

}
, and the

sub-problem is

Λ(p+1) =

arg max
Λ

W

(
u0Kη + ∑

k∈K
uk

(
t+k (Λ)− t−k

(
Λ(p)

)
− ∑

a 6=k
tr

{(
∂t−k (Λ(p))

∂Λu
a

)T (
Λu

a −Λu
a,(p)

)}))

µ

(
tr {Λm}+ ∑

k∈K
tr
{

Λu
k
})

+ MPc + Ps

,

s.t. s+k (Λ)− s−k
(

Λ(p)

)
− ∑

a∈K
tr


∂s−k

(
Λ(p)

)
∂Λu

a

T (
Λu

a −Λu
a,(p)

)− η ≥ 0 (∀k ∈ K) ,

tr {Λm}+ ∑
k∈K

tr {Λu
k } ≤ Pmax,

Λm � 0, Λm diagonal, Λu
k � 0, Λu

k diagonal (∀k ∈ K) ,

(27)

where the gradients of s−k
(

Λ(p)

)
and t−k

(
Λ(p)

)
with respect to Λu

a are defined by ∆s(p)
k and ∆t(p)

k ,
respectively, with their diagonal elements being

[
∆s(p)

k

]
i,i
=

∂s−k
(

Λ(p)

)
∂Λu

a


i,i

=
Nk

∑
n=1

[Ωk]n,i

σ2 + ∑
k′∈K

M
∑

m=1
[Ωk]n,m

[
Λu

k′ ,(p)

]
m,m

, (28)
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[
∆t(p)

k

]
i,i
=

∂t−k
(

Λ(p)

)
∂Λu

a


i,i

=


Nk
∑

n=1

[Ωk ]n,i

σ2+ ∑
k′ 6=k

M
∑

m=1
[Ωk ]n,m

[
Λu

k′ ,(p)

]
m,m

, a 6= k,

0, a = k,

(29)

respectively.
Since t−k

(
Λ(p)

)
and Λu

a,(p) in (27) are constant in each iteration, we can ignore them and obtain
an equivalent optimization problem as

Λ(p+1) =

arg max
Λ

W

(
u0Kη + ∑

k∈K
uk

(
t+k (Λ)− ∑

a 6=k
tr

{(
∂t−k (Λ(p))

∂Λu
a

)T
Λu

a

}))

µ

(
tr {Λm}+ ∑

k∈K
tr
{

Λu
k
})

+ MPc + Ps

,

s.t. s+k (Λ)− s−k
(

Λ(p)

)
− ∑

a∈K
tr


∂s−k

(
Λ(p)

)
∂Λu

a

T (
Λu

a −Λu
a,(p)

)− η ≥ 0 (∀k ∈ K) ,

tr {Λm}+ ∑
k∈K

tr {Λu
k } ≤ Pmax,

Λm � 0, Λm diagonal, Λu
k � 0, Λu

k diagonal (∀k ∈ K) .

(30)

Although the numerator of the objective function and constraint of the transformed
sub-problem (30) are concave, the computational complexity can still be quite high if the expectation
operation is manipulated using Monte-Carlo methods. Via applying the large-dimensional random
matrix theory in [36,37], we further reduce the optimization complexity by substituting the minuends
of Rm

k (Λ) and Ru
k (Λ) with their DEs, respectively.

First, we define a diagonal matrix-valued function Yk (X) of size M×M, and its ith diagonal
element is

[Yk (X)]i,i = tr
{
diag

{
[Ωk]:,i

}
X
}

. (31)

Then, we can write the DE of s+k (Λ) as

S+
k (Λ) = log det {IM + Γm

k Λm}

+ log det
{

Γ̃m
k + Km

k (Λ)
}
− tr

{
INk −

(
Φ̃m

k

)−1
}

,
(32)

where Γm
k , Γ̃m

k and Φ̃m
k are given by

Γm
k = Yk

((
Φ̃m

k Km
k (Λ)

)−1
)
∈ CM×M,

Γ̃m
k = Ak

(
Λm (IM + ΛmΓm

k )−1
)
∈ CNk×Nk ,

Φ̃m
k = INk + Γ̃m

k

(
Km

k (Λ)
)−1
∈ CNk×Nk ,

(33)

and the definition of Ak (X) is given in (11).
Likewise, we have the DE of t+k (Λ) as

T+
k (Λ) = log det {IM + Γu

k Λu
k }

+ log det
{

Γ̃u
k + Ku

k (Λ)
}
− tr

{
INk −

(
Φ̃u

k

)−1
}

,
(34)
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where Γu
k , Γ̃u

k and Φ̃u
k are given by

Γu
k = Yk

((
Φ̃u

k Ku
k (Λ)

)−1
)
∈ CM×M,

Γ̃u
k = Ak

(
Λu

k (IM + Λu
k Γu

k )
−1
)
∈ CNk×Nk ,

Φ̃u
k = INk + Γ̃u

k

(
Ku

k (Λ)
)−1
∈ CNk×Nk .

(35)

With the DEs of s+k (Λ) and t+k (Λ) defined above, the optimization problem in (30) becomes

Λ(p+1) =

arg max
Λ

W

(
u0Kη + ∑

k∈K
uk

(
T+

k (Λ)− ∑
a 6=k

tr

{(
∂t−k (Λ(p))

∂Λu
a

)T
Λu

a

}))

µ

(
tr {Λm}+ ∑

k∈K
tr
{

Λu
k
})

+ MPc + Ps

,

s.t. S+
k (Λ)− s−k

(
Λ(p)

)
− ∑

a∈K
tr


∂s−k

(
Λ(p)

)
∂Λu

a

T (
Λu

a −Λu
a,(p)

)− η ≥ 0 (∀k ∈ K) ,

tr {Λm}+ ∑
k∈K

tr {Λu
k } ≤ Pmax,

Λm � 0, Λm diagonal, Λu
k � 0, Λu

k diagonal (∀k ∈ K) .

(36)

We can observe from the optimization problem in (36) that the denominator and numerator of
the objective function are linear and concave functions of Λ, respectively. We invoke Dinkelbach’s
transform [38] to deal with this concave-linear program. We can obtain the solution to (36) via solving
a series of problems below{

Λ
(q+1)
(p) , η(q+1)

}
=

arg max
Λ

W

u0Kη + ∑
k∈K

uk

T+
k (Λ)− ∑

a 6=k
tr


∂t−k

(
Λ(p)

)
∂Λu

a

T

Λu
a



− χ

(q)
(p)P (Λ) ,

s.t. S+
k (Λ)− s−k

(
Λ(p)

)
− ∑

a∈K
tr


∂s−k

(
Λ(p)

)
∂Λu

a

T (
Λu

a −Λu
a,(p)

)− η ≥ 0 (∀k ∈ K) ,

tr {Λm}+ ∑
k∈K

tr {Λu
k } ≤ Pmax,

Λm � 0, Λm diagonal, Λu
k � 0, Λu

k diagonal (∀k ∈ K) ,

(37)

where P (Λ) = µ

(
tr {Λm}+ ∑

k∈K
tr
{

Λu
k
})

+ MPc + Ps, q is the iteration index, and χ
(q)
(p) is the auxiliary

variable. During each iteration, we update χ
(q)
(p) using the following equation

χ
(q)
(p) =

W

(
u0Kη(q) + ∑

k∈K
uk

(
T+

k

(
Λ

(q)
(p)

)
− ∑

a 6=k
tr

{(
∂t−k (Λ(p))

∂Λu
a

)T
Λ

u,(q)
a,(p)

}))
P
(

Λ
(q)
(p)

) . (38)

From the analysis above, we can observe that the proposed EE optimization algorithm involves
two-layer iterations. During the outer iteration, via invoking the MM algorithm, we replace the
numerator of the objective function in (26) with its lower bound function, thus making the numerator



Electronics 2019, 8, 857 10 of 15

concave. The MM-based algorithm is guaranteed to converge to the locally optimal solution [39–41];
in the inner iteration, we transform the fractional problem in (36) into solvable convex optimization
problems in (37) via Dinkelbach’s transform, which can derive the global optimum solution to (36)
with guaranteed convergence [42]. After several iterations, we can obtain the optimal beam domain
power allocation matrix Λ. Please note that Λ is locally optimal due to the local optimality of MM
algorithm. We present our algorithm in Algorithm 1.

Algorithm 1 Energy-Efficient Power Allocation Algorithm in the Beam Domain for Massive MIMO
NOUM Transmission
Input: Beam domain channel statistics Ωk, initial power allocation matrix Λ(0), outer iteration

threshold ε1 and inner iteration threshold ε2

Output: Power allocation matrix Λ in the beam domain

1: Initialization: EE(−1) = 0, p = 0

2: Calculate

EE(p) =

W
(

u0K
(

min
k

{
S+

k

(
Λ(p)

)
− s−k

(
Λ(p)

)})
+ ∑

k∈K
uk

(
T+

k

(
Λ(p)

)
− t−k

(
Λ(p)

)))
P
(

Λ(p)

) (39)

3: while
∣∣∣EE(p) − EE(p−1)

∣∣∣ ≥ ε1 do

4: Initialization: q = 0, let Λ
(q)
(p) = Λ(p), calculate χ

(q)
(p) with (38)

5: while
∣∣∣χ(q)

(p) − χ
(q−1)
(p)

∣∣∣ ≥ ε2 do

6: Let q = q + 1

7: Calculate Λ
(q)
(p) via solving problem (37) with χ

(q−1)
(p)

8: Calculate χ
(q)
(p) using (38)

9: end while

10: Let p = p + 1

11: Let Λ(p) = Λ
(q)
(p−1)

12: Calculate EE(p) with (39)

13: end while

14: return Λ = Λ(p)

4. Numerical Results

We provide numerical simulation results to demonstrate the performance of the EE optimization
algorithm proposed above for NOUM transmission massive MIMO scenario with statistical CSI.
Table 1 illustrates how the numerical simulation parameters are set.

First of all, in Figure 2, we illustrate the convergence performance by showing the iteration
process of our EE optimization algorithm under different transmit power budgets Pmax. The horizontal
ordinate is the outer iteration index. As we can see, the EE converges after only a few iterations. Also,
we can observe that in the lower power budget regime, the EE performance convergences faster than
that in the higher power budget regime.
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Table 1. Simulation parameters.

Parameter Value

Scenario Suburban macro
Channel model 3GPP SCM

Pathloss −120 dB (∀k)
Array topology ULA with antenna spacing half wavelength
Noise variance σ2 = −131 dBm
Number of UTs K = 8

Number of BS antennas M = 128
Number of UT antennas Nk = 4 (∀k)
Transmission bandwidth W= 10 MHz
Amplifier drain efficiency µ = 5

Circuit power consumption per antenna Pc = 30 dBm
Static power consumption Ps = 40 dBm

Weights u0 = 0.7, uk = 0.3 (∀k)

1 2 3 4 5 6 7

Number of iterations
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Figure 2. The convergence performance of the proposed EE optimization algorithm for different power
budgets Pmax.

Then, we evaluate the EE of the NOUM transmission versus the power budget Pmax under
different numbers the antennas M at the BS in Figure 3. As we can see, the EE performance decreases
when the BS antenna number M increases for the reason that in the power consumption model we
adopted in (16), the total circuit power consumption grows linearly with M, the BS antenna number.

Next, the comparison of the EE performance of the power allocation algorithm proposed above
with the rate maximization approach [11] is shown in Figure 4. We notice that the EE performance of
the two approaches are similar at low transmit power budget regime. However, when the transmit
power budget gets high, the EE performance of the rate maximization approach decreases, while that
of our EE maximization approach remains high. This indicates that the rate maximization approach can
achieve almost EE optimal when Pmax is low. However, our EE maximization approach outperforms
the rate maximization one at high transmit power budget regime.
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Figure 3. The EE performance of the NOUM transmission versus the power budget Pmax for different
numbers of BS antennas M.
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Figure 4. The EE performance of the proposed beam domain power allocation algorithm compared
with the rate maximization approach.

Finally, in Figure 5, the EE performance of our power allocation approach and that of full CSI
approach, which assumes instantaneous CSI is known at the BS, is compared. Since full CSI is an ideal
case, it can achieve better EE performance than other imperfect CSI situation. However, the full CSI
case suffers from pilot overhead. As Figure 5 illustrates, our proposed algorithm surpasses the full CSI
approach with 3/7 pilot overhead [43] in the EE performance.
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Figure 5. The comparison on the EE performance of proposed algorithm, full CSI case and full CSI
with 3/7 overhead.

5. Conclusions

To conclude, we considered the EE optimization problem in NOUM transmission systems
with statistical CSI available at the BS. We first formulated the EE maximization problem, and then
determined the closed-form optimal eigenvectors of the multicast and unicast transmit covariance
matrices for optimal EE, respectively. Next, with guaranteed convergence, we proposed a beam domain
power allocation algorithm adopting the MM algorithm, DE and Dinkelbach’s transform and derived
the locally optimal power allocation strategy to achieve the EE optimization. Finally, with numerical
results, we presented the performance gain of our EE maximization algorithm compared with the
conventional approach.
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Appendix A. Proof of Theorem 1

Firstly, we can tell from (11) that the value of Ak (X) is only affected by the diagonal elements
of X, so Km

k in (10) and Ku
k in (15) are irrelevant to the off-diagonal elements of VHQu

k′V. Then,
the power consumption in (16) has no relationship with the off-diagonal elements of VΛmVH or
VΛu

k VH . Moreover, applying the proof method similar to [44], we can conclude that VΛmVH and
VΛu

k VH should be diagonal to maximize Rm
k and Ru

k , respectively. Therefore, to maximize the objective
function in (19), Qm and Qu

k should be both diagonal matrices. This concludes the proof.
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