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Abstract: This paper introduces a robust dynamic sliding mode control algorithm using a nonlinear
disturbance observer for system dynamics. The proposed method is applied to provide a rapid
adaptation and strictly robust performance for the attitude and altitude control of unmanned aerial
vehicles (UAVs). The procedure of the proposed method consists of two stages. First, a nonlinear
disturbance observer is applied to estimate the exogenous perturbation. Second, a robust dynamic
sliding mode controller integrated with the estimated values of disturbances is presented by a
combination of a proportional–integral–derivative (PID) sliding surface and super twisting technique
to compensate for the effect of these perturbations on the system. In addition, the stability of a control
system is established by Lyapunov theory. A numerical simulation was performed and compared to
recently alternative methods. An excellent tracking performance and superior stability of the attitude
and altitude control of UAVs, exhibiting a fast response, good adaptation, and no chattering effect in
the simulation results proved the robustness and effectiveness of the proposed method.

Keywords: PID sliding surface; nonlinear disturbance observer; disturbance elimination; dynamic
sliding mode control; UAVs

1. Introduction

The effects of undesirable disturbances widely occur in various practical engineering systems and
provide an adverse performance to the precise control, and stability of a control system. Therefore,
disturbance rejection is one of the crucial criteria and important objectives in designing a controller.
Many advanced control algorithms to deal with this problem have been proposed in recent years.
Generally, the existent research can be classified into two groups. In the first group, various controllers
for a nonlinear system in the presence of disturbances have been introduced by using an adaptive or
robust control technique to overcome the effects of these perturbations on the engineering systems.
In the second group, a disturbance observer method is presented to estimate the unknown external
disturbances and afterward a robust controller is achieved to compensate for the effect of perturbations
on the system.

1.1. Related Works

Many approaches have been presented to attenuate the undesirable effects of disturbances on the
engineering systems. The Sliding Mode Control (SMC) technique is well known for the strict robustness
and efficiency of its control method in many complicated environments and system dynamics, because
of its inherent ability to eliminate external disturbances. Therefore, classical SMC and advanced SMC
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are popular methods that are usually applied in various control systems, especially UAVs. However,
the classical SMC method always generates the chattering phenomenon caused by a discontinuous term
of the switching control law. This may result in the damage of the electrical and mechanical systems.
Many studies on the advanced SMC or integration of extended SMC algorithm with other modern
control techniques have been introduced that intend to overcome this disadvantage. The authors
of [1,2] provided a second-order SMC and a global fast dynamic terminal SMC to improve the tracking
performance of the attitude and position control for quadcopter UAVs. In [3,4], a continuous terminal
SMC and dynamic SMC technique are proposed to improve the control performance of uncertainties
nonlinear systems. Another approach is presented in [5] to overcome the instability of a quadrotor
when actuator faults have occurred. An integration of adaptive fuzzy technique and SMC method
to provide the robustness for the attitude control of the vehicle is introduced. In [6], an adaptive
fuzzy PID-based nonsingular fast terminal SMC is presented to enhance the robustness for attitude
control of a spacecraft. An adaptive fuzzy law is applied to estimate the parametric uncertainties of
the system dynamics, and then, the PID non-singular fast terminal SMC is proposed to compensate for
the effects of uncertainties on the nonlinear system. The authors of [7] introduced a robust adaptive
SMC for the Takagi–Sugeno fuzzy system under the effect of exogenous disturbances and mismatched
uncertainties. Both the sliding surface and SMC controller can be obtained by using the convex
optimization technique. Although the combination of fuzzy technique and SMC method can be used
to improve the control performance of an engineering system, the quality of fuzzy controller mostly
depends on experience and knowledge of a controller designer about the system and uncertainties.
Therefore, this method may not suitable for many engineering systems. In [8–10], a robust nonlinear
controller is introduced by a combination of backstepping technique and sliding mode control methods
to enhance the tracking performance of the attitude and position of a quadrotor UAV under bounded
uncertainties and time-varying perturbations. In [11], a robust adaptive tracking controller for the
attitude of a quadcopter is presented by designing an adaptive law to estimate the inertia matrix
of the vehicle. The algorithm can also be extended to a general class of unstructured disturbances.
In [12], an adaptive SMC method based on an adaptive law to estimate the unknown parameters of
UAVs for stabilizing and tracking control of the vehicles is introduced. Although the procedure of
designing controllers is very obvious, it is not easy to achieve the satisfactory controller gains. This
method also exhibits limited performance in the presence of external disturbances. Another study
is introduced in [13], where a robust adaptive tracking controller is proposed for quadcopter UAVs
through the immersion and invariance methodology (I&I). In the attitude control, the integral of the
signum of error method is applied to eliminate the external disturbances, while the I&I algorithm is
used to control the position. In [14,15], an adaptive and robust controller for the attitude and position
tracking of quadcopter aircrafts to reject the external disturbances, parametric uncertainties and delays
is described. Other simple adaptive SMC methods to enhance the altitude and attitude tracking
control for quadcopter UAVs are presented in [16,17]. Although the adaptive law is clearly proven by
Lyapunov stability and good adaptation, the chattering phenomenon still exists in the control system
because the main approach of these controllers is based on the adaptive gain of a switching control
law. The authors of [18] described the continuous SMC to strictly track a desired trajectory under the
disturbance environment for a quadrotor. A sliding mode observer and cascaded continuous SMC are
used for the altitude, yaw tracking control and horizontal tracking control, respectively. Other studies
of conventional adaptive nonlinear control algorithms have been proposed to reject the perturbations.
In [19], adaptive controllers based on direct and indirect model reference approaches for UAVs to
enhance the tracking control performance under parametric uncertainties are proposed. The authors
of [20] presented a continuous adaptive output feedback controller that obtains the globally asymptotic
tracking of a reference model to eliminate the undesirable effect of external disturbances and uncertain
parameters. The authors of [21] introduced a robust adaptive SMC algorithm based on an observer
to stabilize the nonlinear system with external disturbances and sensor/actuator faults. However, a
linearization process is a necessary requirement of the conventional adaptive control methods, and,
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sometimes, the singularity of the controller is available. Another approach to improve the robustness
of a control performance for an unmanned micro-aerial vehicle based on mu-synthesis robust control
techniques is proposed in [22,23]. In [24–28], advanced robust adaptive controllers are introduced
to guarantee the stability of attitude and position of UAVs in the presence of external disturbances
and parametric uncertainties based on combining the radial basic function neural network method
(RBFNN), integral SMC, and robust backstepping SMC. In this approach, the unknown parameters
or external disturbances are approximated online by using the neural network technique. Therefore,
the procedure to obtain these controllers is not a simple, especially it is not easy to determine the
proper network structure. Furthermore, the intensive computation is inevitable.

Other approaches to attenuate the undesirable effects of perturbations or uncertainties are
introduced by using disturbance observer techniques to estimate the external disturbances or unknown
parameters from the measurable states, and then, many kinds of controller are designed to compensate
for the effect of these perturbations. In [29,30], the disturbance observer integrated with a linear
state feedback controller and linear quadratic regulator controller is proposed. However, the effect of
external disturbance is not strongly eliminated. In [31–33], a nonlinear disturbance observer based on
classical SMC methods is introduced to enhance the tracking control performance. Although the quality
of control system is improved, the chattering effect is still existent due to a discontinuous term of the
switching control law. The motivation of this paper is to design a superior controller with high quality
robustness, good adaptation, and fast response without chattering effect on an engineering system.

1.2. Main Contributions

The contributions of this study are presented in three issues. First, a general procedure to design a
robust dynamic sliding mode controller (RDSMC), which is integrated with the nonlinear disturbance
observer (NDO), is presented by a combination of a proportional–integral–derivative sliding surface
and super twisting algorithm for system dynamics. The highlight contribution of this method is to
combine the advantages of PID controller and super twisting SMC. The PID function is used as a
sliding surface to easily obtain the controller gain for the satisfactory control performance. Super
twisting SMC function is considered as a switching control law to guarantee a fast response and no
chattering effect. The NDO is added to eliminate the effect of external disturbance for improving
the tracking performance of the proposed method. Second, the proposed method can be applied to
attenuate the undesirable effects of exogenous disturbance in many different engineering systems
by using this procedure. Third, the proposed algorithm was applied to UAVs, and the technological
advantages of our method were demonstrated through a comparison of simulation results between
the proposed method and existent approaches such as nonsingular terminal sliding mode control
(NTSMC), classical super-twisting sliding mode control (STSMC), and modified super-twisting sliding
mode control (M-STSMC) [34–37].

1.3. Organizations

The remainder of this article is organized as follows. Section 2 presents the general design
procedure of a robust dynamic sliding mode control based on PID–Super twisting algorithm and
nonlinear disturbance observer for a nonlinear system. In Section 3, the application of the proposed
method to improve the tracking performance of attitude and altitude control of the quadcopter is
presented. Section 4 provides the simulation results and discussions. Finally, the conclusions of this
study are presented in Section 5.
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2. Robust Dynamic Sliding Mode Controller Based on Nonlinear Disturbance Observer
(RDSMC-NDO)

A second-order nonlinear system is considered as follows:

.
x1 = x2
.
x2 = f (x) + g(x)u + ξ(t)
y = x1

(1)

where x = [x1, x2]
T, x1 and x2 represent states of system, y denotes output, u ∈ R denotes the

controller input, f (x) and g(x) represent the smooth functions in term of x, and ξ(t) ∈ R denotes an
external disturbance.

Equation (1) can be rewritten as:
[ .

x1
.
x2

]
=

[
x2

f (x)

]
+

[
0
g(x)

]
u +

[
0
1

]
ξ(t)

y = x1

⇔

{ .
x = F(x) + G1(x)u + G2(x)ξ(t)
y = H(x)

(2)

where F(x) = [x2, f (x)]T, G1(x) = [0, g(x)]T, G2(x) = [0, 1]T, and H(x) = x1

A general procedure to design a robust dynamic sliding mode controller based on nonlinear
disturbance observer is presented as following steps.

Step 1: An adaptive disturbance observer is applied to estimate the external disturbance ξ.
Step 2: The disturbance observer is integrated with a robust dynamic sliding mode control by replacing

the external disturbance, ξ, with its estimation ξ̂.

2.1. Nonlinear Disturbance Observer

Let us assume that the external disturbance is considered as a harmonic disturbance with unknown
amplitude but known frequency generated by an exogenous system as follows.

.
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{ W
Ex

ϒ = ϒ
= ϒ


 
(3) 

where mRϒ ∈ , W  is an m m×  matrix, and E  is a row matrix with dimension 1 m× . These 
matrices can be obtained by many existent approaches such as using an extended state observer [38], 
wind field estimation based on a Global Positioning System (GPS), Inertial Measurement Unit 
(IMU), airspeed, and magnetometer [39], or based on aerodynamics of motors and propellers [40]. 

Let ˆ mRϒ ∈  and ˆ Rx∈  be the estimates of ϒ  and x , respectively; [ ]1,..., T
me e e= , 

1,..., m Re e +∈ are constants to be given; FL  denotes a Lie derivative of function ( )F x ; and r  is a 
relative degree from the disturbance to the output. 

Now, referring to Chen’s work [41], a nonlinear disturbance observer for a system as Equation 
(2) is obtained as follows: 

[ ] [ ]2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ ( )
ˆ ˆ

z W l x G x E z Wp x l x G x Ep x F x G x u
z p x
Ex

 = − + − + +
ϒ = +
 = ϒ



 

(4) 

where mz R∈  is the internal state of disturbance observer. The nonlinear function ( ) mp x R∈  and 
observer gain ( )l x  are designed as follows: 

1( ) ( )r
Fp x L H xe −=  (5) 

1 ( )( )( )
r
FL H xp xl x

x x
e

−∂∂= =
∂ ∂  

(6) 

= W
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Let ˆ
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where mRϒ ∈ , W  is an m m×  matrix, and E  is a row matrix with dimension 1 m× . These 
matrices can be obtained by many existent approaches such as using an extended state observer [38], 
wind field estimation based on a Global Positioning System (GPS), Inertial Measurement Unit 
(IMU), airspeed, and magnetometer [39], or based on aerodynamics of motors and propellers [40]. 

Let ˆ mRϒ ∈  and ˆ Rx∈  be the estimates of ϒ  and x , respectively; [ ]1,..., T
me e e= , 

1,..., m Re e +∈ are constants to be given; FL  denotes a Lie derivative of function ( )F x ; and r  is a 
relative degree from the disturbance to the output. 

Now, referring to Chen’s work [41], a nonlinear disturbance observer for a system as Equation 
(2) is obtained as follows: 
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where mz R∈  is the internal state of disturbance observer. The nonlinear function ( ) mp x R∈  and 
observer gain ( )l x  are designed as follows: 

1( ) ( )r
Fp x L H xe −=  (5) 

1 ( )( )( )
r
FL H xp xl x

x x
e

−∂∂= =
∂ ∂  

(6) 

∈ Rm and ξ̂ ∈ R be the estimates of
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where mz R∈  is the internal state of disturbance observer. The nonlinear function ( ) mp x R∈  and 
observer gain ( )l x  are designed as follows: 

1( ) ( )r
Fp x L H xe −=  (5) 

1 ( )( )( )
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FL H xp xl x

x x
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−∂∂= =
∂ ∂  
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and ξ, respectively; ε = [ε1, . . . , εm]
T, ε1, . . . , εm ∈ R+

are constants to be given; LF denotes a Lie derivative of function F(x); and r is a relative degree from
the disturbance to the output.

Now, referring to Chen’s work [41], a nonlinear disturbance observer for a system as Equation (2)
is obtained as follows:

.
z = [W − l(x)G2(x)E]z + Wp(x) − l(x)[G2(x)Ep(x) + F(x) + G1(x)u]
ˆ
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where mz R∈  is the internal state of disturbance observer. The nonlinear function ( ) mp x R∈  and 
observer gain ( )l x  are designed as follows: 

1( ) ( )r
Fp x L H xe −=  (5) 
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= z + p(x)
ξ̂ = E ˆ
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where mz R∈  is the internal state of disturbance observer. The nonlinear function ( ) mp x R∈  and 
observer gain ( )l x  are designed as follows: 

1( ) ( )r
Fp x L H xe −=  (5) 

1 ( )( )( )
r
FL H xp xl x

x x
e

−∂∂= =
∂ ∂  

(6) 

(4)

where z ∈ Rm is the internal state of disturbance observer. The nonlinear function p(x) ∈ Rm and
observer gain l(x) are designed as follows:

p(x) = εLr−1
F H(x) (5)
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l(x) =
∂p(x)
∂x

= ε
∂Lr−1

F H(x)

∂x
(6)

According to the second-order nonlinear system in Equation (1), we can get m = 2. Therefore,
the function p(x) can be achieved from Equations (2) and (5) as follows:

p(x) = εLFH(x) = ε
∂(H(x))
∂x F(x)

=

[
ε1

ε2

][
∂(H(x))
∂x1

∂(H(x))
∂x2

][ x2

f (x)

]
=

[
ε1

ε2

][
1 0

][ x2

f (x)

]
=

[
ε1x2

ε2x2

]
(7)

From Equations (6) and (7), l(x) can be computed as:

l(x) =

 ∂(ε1x2)
∂x1

∂(ε1x2)
∂x2

∂(ε2x2)
∂x1

∂(ε2x2)
∂x2

 = [
0 ε1

0 ε2

]
(8)

The general structure of nonlinear disturbance observer is constructed as shown in Figure 1.
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2.2. Robust Dynamic Sliding Mode Controllers Design Based on Nonlinear Disturbance Observer

A robust dynamics sliding mode control algorithm is presented in this section. A controller
is designed by a combination of the PID sliding surface and Super Twisting algorithm, and it also
integrated the nonlinear disturbance observer to strictly eliminate the undesirable effects of exogenous
disturbances on the second-order nonlinear systems.

Let yd denote a desired state of the system in Equation (1). A tracking error and its first derivative
are defined as e = yd − y and

.
e =

.
yd −

.
x1. The second derivative,

..
e, can be computed by Equation (1)

as follows: ..
e =

..
yd −

.
x2

=
..
yd − f (x) − g(x)u− ξ(t)

(9)

The PID sliding surface in space of error is chosen by:

s(t) = kpe(t) + ki

∫ t

0
e(τ)dτ+ kd

de(t)
dt

(10)

where kp, ki and kd are strictly positive constants. The derivative,
.
s(t), can be obtained from Equation (10),

as follows:
.
s(t) = kp

.
e(t) + kie(t) + kd

..
e(t) (11)

From Equations (10) and (11), it can be seen that, if s(t) =
.
s(t) = 0, then lim

t→∞
e(t) = 0 when the

controller gains kp, ki and kd are appropriately chosen. Therefore, the characteristic polynomial in the
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right side of Equation (11)
(
kp

.
e(t) + kie(t) + kd

..
e(t) = 0

)
is strictly Hurwitz. It means that the close loop

control system is globally asymptotically stable.
Let σ(t) be a new dynamic sliding surface given by:

σ(t) =
.
s(t) + λs(t) (12)

where λ is positive constant. Obviously, if the value of σ = 0, then the system
.
s + λs = 0 is

asymptotically stable. Hence, lim
t→∞

e(t) = 0, which implies that the robust controller can be designed

based on σ(t).
The dynamic sliding surface, σ(t), can be rewritten from Equations (9), (11) and (12), as follows:

σ(t) = kp
.
e(t) + kie(t) + kd

( ..
yd − f (x) − g(x)u− ξ(t)

)
+ λs(t) (13)

The derivative,
.
σ(t), can be obtained from Equations (11) and (13) as follows:

.
σ(t) = kp

..
e + ki

.
e + kd

(...
yd −

.
f (x) −

.
g(x)u− g(x)

.
u−

.
ξ
)
+ λ

(
kp

.
e + kie + kd

..
e
)

= kd

(...
yd −

.
f (x) −

.
g(x)u− g(x)

.
u−

.
ξ
)
+

(
kp + kdλ

)..
e +

(
ki + λkp

) .
e + λkie

(14)

From Equations (9), and (14),
.
σ(t) can be rewritten as:

.
σ = kd

(...
yd −

.
f (x) −

.
g(x)u−

.
ξ
)
− kdg(x)

.
u +

(
kp + kdλ

)( ..
yd − f (x) − g(x)u− ξ

)
+

(
ki + λkp

) .
e + λkie (15)

The proposed RDSMC-NDO is presented in two methods as follows.

2.2.1. Method 1: Robust Dynamic Sliding Mode Controller Based on PID Sliding Surface and
Nonlinear Disturbance Observer (RDSMC-PID-NDO)

Theorem 1: Let us assume that ∃ϑ, ν, ks ∈ R+ are constant values and always satisfy below expression:
∣∣∣∣ξ̃(t)∣∣∣∣ ≤ ν,

∣∣∣∣∣ .

ξ̃(t)
∣∣∣∣∣ ≤ ϑ

kdϑ+
(
kp + kdλ

)
ν ≤ ks

(16)

The dynamics sliding surface, σ(t), asymptotically converges to zero if a controller,
.
u, is chosen as follows

Equation (17).

.
u =

1
kdg(x)

 kd

(...
yd −

.
f (x) −

.
g(x)u−

.
ξ̂
)
+

(
kp + kdλ

)( ..
yd − f (x) − g(x)u− ξ̂

)
+

(
ki + λkp

) .
e(t) + λkie(t) + βσ+ kssgn(σ)

 (17)

where β is a positive value.

Proof: The derivative,
.
σ(t), can be rewritten from Equations (15) and (17) as follows:

⇒
.
σ = −kd

( .
ξ−

.
ξ̂
)
−

(
kp + kdλ

)(
ξ− ξ̂

)
− βσ− kssgn(σ)

= −kdξ̃−
(
kp + kdλ

)
ξ̃− βσ− kssgn(σ)

(18)

A Lyapunov function candidate is given by:

V1 =
1
2
σ2 (19)
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The derivative of V1 is computed from Equations (18) and (19) as follows:

.
V1 = σ

(
−kd

.

ξ̃−
(
kp + kdλ

)
ξ̃− βσ− kssgn(σ)

)
= −βσ2 + σ

(
−kd

.

ξ̃−
(
kp + kdλ

)
ξ̃

)
− ks|σ|

(20)

From Equation (16), it can be seen that,

.
V1 ≤ −βσ2 + |σ|

(
kdϑ+

(
kp + kdλ

)
ν− ks

)
≤ −βσ2 < 0

(21)

The dynamics sliding surface, σ(t), asymptotically converges to zero as the Lyapunov stability. �

2.2.2. Method 2: Robust Dynamic Sliding Mode Controller based on PID–Super Twisting Algorithm
and Nonlinear Disturbance Observer (RDSMC-PIDSTA-NDO)

Theorem 2: Let us assume that ∃ϑ, ν, δ ∈ R+ are constant values and always satisfy the below expression:
∣∣∣∣ξ̃(t)∣∣∣∣ ≤ ν,

∣∣∣∣∣ .

ξ̃(t)
∣∣∣∣∣ ≤ ϑ

kdϑ+
(
kp + kdλ

)
ν ≤ δ|σ|1/2

(22)

The dynamics sliding surface, σ(t), asymptotically converges to zero if a controller,
.
u, is chosen as follows:

.
u =

1
kdg(x)

 kd

(...
yd −

.
f (x) −

.
g(x)u−

.
ξ̂
)
+

(
kp + kdλ

)( ..
yd − f (x) − g(x)u− ξ̂

)
+

(
ki + λkp

) .
e + λkie + k1|σ|

1/2sgn(σ) + k2
∫ t

0 sgn(σ)dt

 (23)

where k1, k2 are positive values and satisfy:  k1 > 2δ

k2 > k1

(
5k1+4δ

2(k1−2δ)

)
δ

(24)

Proof: The derivative,
.
σ(t), can be computed from Equations (15) and (23), as follows:

.
σ = − kd

( .
ξ−

.
ξ̂
)
−

(
kp + kdλ

)(
ξ− ξ̂

)
− k1|σ|

1/2sgn(σ) − k2
∫ t

0 sgn(σ)dt

= − k1|σ|
1/2sgn(σ) − k2

∫ t
0 sgn(σ)dt− kd

.

ξ̃−
(
kp + kdλ

)
ξ̃

(25)

Let us considers γ = − kd

.

ξ̃−
(
kp + kdλ

)
ξ̃, the derivative of dynamic sliding surface,

.
σ(t), can be

rewritten from Equation (25):

.
σ = −k1|σ|

1/2sgn(σ) − k2

∫ t

0
sgn(σ)dt + γ (26)
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where γ satisfies the below expression:

∣∣∣γ∣∣∣ =

∣∣∣∣∣− kd

.

ξ̃−
(
kp + kdλ

)
ξ̃

∣∣∣∣∣
≤ kd

∣∣∣∣∣ .

ξ̃

∣∣∣∣∣+ (
kp + kdλ

)∣∣∣∣ξ̃∣∣∣∣
≤ kdϑ+

(
kp + kdλ

)
ν

≤ δ|σ|1/2

(27)

Let a state vector υ = [υ1, υ2]
T be defined by: υ1 = σ

υ2 = −k2
∫ t

0 sgn(σ)dt
(28)

The derivative of υ is computed from Equations (26) and (28) as follows: .
υ1 = −k1|σ|

1/2sgn(σ) − k2
∫ t

0 sgn(σ)dt + γ
.
υ2 = −k2sgn(σ)

⇔

{ .
υ1 = −k1|υ1|

1/2sgn(υ1) + υ2 + γ
.
υ2 = −k2sgn(υ1)

(29)

Now, let us refer to a Lyapunov approach for super twisting algorithm of Moreno’s work for the
perturbed dynamics [42,43]. The Lyapunov function is considered as:

V2(υ) = 2k2|υ1|+
1
2 (υ2)

2 + 1
2

(
k1|υ1|

1/2sgn(υ1) − υ2
)2

= ζTPζ
(30)

where ζT =
[
|υ1|

1/2sgn(υ1) υ2
]
, P = 1

2

[
k2

1 + 4k2 −k1

−k1 2

]
The derivative of V2 is computed from Equation (30) as follows:

.
V2 = −

1

|υ1|
1/2

(
ζTQ1ζ

)
+

γ

|υ1|
1/2

Q2
Tζ (31)

where Q1 = k1
2

 (
k2

1 + 2k2
)
−k1

−k1 1

, Q2
T =

[ (
k2

1
2 + 2k2

)
−k1

2

]
Using the bounded condition in Equation (27) for the disturbance as given in [42], the derivative

of the Lyapunov function in Equation (31) satisfies the following expression:

.
V2 ≤ −

1

|υ1|
1/2

(
ζTQζ

)

where Q = k1
2

 k2
1 + 2k2 −

(
k1 +

4k2
k1

)
δ (−k1 − 2δ)

(−k1 − 2δ) 1


Obviously,

.
V2 is negative definite if Q > 0, meaning that the controller gains k1, k2 satisfy

Equation (24). �

3. Apply the RDSMC-NDO to UAVs

In this section, the proposed RDSMC-NDO is applied to enhance the tracking performance of
attitude and altitude control of a quadcopter UAV to demonstrate the strict robustness and effectiveness
of the proposed method in the presence of exogenous disturbances.
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3.1. Dynamics Model of Quadcopter UAVs

The dynamics model of a quadcopter is described in many existent approaches [44–51].
The essential frames include an Earth frame, E, and body frame, B, as shown in Figure 2. Let
φ, θ, ψ ∈ R, (−π/2 ≤ φ ≤ π/2, −π/2 ≤ θ ≤ π/2, −π ≤ ψ ≤ π), represent the roll, pitch and yaw
angles, respectively. x, y, z ∈ R denote the position of a quadrotor in the Earth frame. Fi (i = 1,2,3,4)
represents the thrust force generated by motors i. Ωi denotes the speed of the rotor i. ξφ, ξθ, ξψ, ξh
denote exogenous disturbances which impact on roll, pitch, yaw, and altitude dynamics of the vehicle,
respectively. In this paper, the exogenous disturbance is considered as a harmonic disturbance with
unknown amplitude but known frequency described by Equation (3).Electronics 2019, 8, x FOR PEER REVIEW 9 of 21 
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The dynamics model of the vehicle including exogenous disturbances can be described as
follows [44]. 

..
φ
..
θ
..
ψ
..
z
..
x
..
y


=



Iyy−Izz
Ixx

.
θ

.
ψ+

.
θ Jr

Ixx
Ωr +

l
Ixx

U2
Izz−Ixx

Iyy

.
φ

.
ψ−

.
φ Jr

Iyy
Ωr +

l
Iyy

U3
Ixx−Iyy

Izz

.
θ

.
φ+ 1

Izz
U4

g− (cosφ cosθ)U1
m

U1
m (cosφ sinθ cosψ+ sinφ sinψ)
U1
m (cosφ sinθ sinψ− sinφ cosψ)


+



ξφ(t)
ξθ(t)
ξψ(t)
ξh(t)
0
0


(32)

where Ui ∈ R, i = 1, 2, 3, 4 denote the control inputs of a quadrotor, which are computed as [44]:


U1

U2

U3

U4

Ωr


=



b
(
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4

)
b
(
−Ω2

2 + Ω2
4

)
b
(
Ω2

1 −Ω2
3

)
d
(
−Ω2

1 + Ω2
2 −Ω2

3 + Ω2
4

)
−Ω1 + Ω2 −Ω3 + Ω4


(33)

where Ωr represents the total residual angular speed of motors and g = 9.81 m/s2 denotes the
gravitational acceleration. The remaining parameters from Equations (32) and (33) are shown in Table 1.
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Table 1. System parameters of a quadcopter.

System Parameters Descriptions

Ixx, Iyy, Izz (kgm2)
Moments of inertia along three axes x,y and z in the Earth

frame
m (kg) Total mass of a quadcopter
l (m) Arm length of the quadcopter frame

b (Ns2) Thrust coefficient
d (Nms2) Drag coefficient
Jr (kgm2) Moment of inertial of a rotor

Let X denotes a state vector defined by:

X = [x1, x2, . . . , x12]
T =

[
φ,

.
φ, θ,

.
θ, ψ,

.
ψ, z,

.
z, x,

.
x, y,

.
y
]T

.
X =

[ .
x1,

.
x2, . . . ,

.
x12

]T
=

[ .
φ,

..
φ,

.
θ,

..
θ,

.
ψ,

..
ψ,

.
z,

..
z,

.
x,

..
x,

.
y,

..
y
]T (34)

where x1 = φ, x2 =
.
x1 =

.
φ, x3 = θ, x4 =

.
x3 =

.
θ, x5 = ψ, x6 =

.
x5 =

.
ψ, x7 = z, x8 =

.
x7 =

.
z, x9 = x,

x10 =
.
x9 =

.
x, x11 = y, and x12 =

.
x11 =

.
y.

Equation (32) can be rewritten in state space as follows:

.
X = f (X(t), Ui(t)) + ξi(t) (35)

where f (X(t), Ui(t)) =



x2

x4x6a1 + x4a2Ωr + b1U2

x4

x2x6a3 + x2a4Ωr + b2U3

x6

x2x4a5 + b3U4

x8

g− 1
m (cos x1 cos x3)U1

x10
U1
m (cos x1 sin x3 cos x5 + sin x1 sin x5)

x12
U1
m (cos x1 sin x3 sin x5 − sin x1 cos x5)



, ξi(t) =



0
ξφ(t)
0
ξθ(t)
0
ξψ(t)
0
ξh(t)
0
0
0
0



, and



a1 =
(
Iyy − Izz

)
/Ixx

a2 = Jr/Ixx

a3 = (Izz − Ixx)/Iyy

a4 = (−Jr)/Iyy

a5 =
(
Ixx − Iyy

)
/Izz

b1 = l/Ixx

b2 = l/Iyy

b3 = 1/Izz

3.2. Attitude Controller

The full control scheme of quadcopter UAVs is constructed as multi-loop comprising an inner
loop to control attitude and an outer loop that controls position, as shown in Figure 3.
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Figure 3. Block diagram of full controller of a quadcopter, the proposed algorithm is applied in the 
attitude and altitude control only. The traditional PID is used in horizontal position control. 

Let df  be a desired state of roll control. The tracking error of roll angle and its first derivative 

are given by: 1de xf f= − , 1de xf f= −  . The second derivative of tracking error, ef , is computed by: 

2( ) ( ) ( )de t f x g x Uf f f ff x= − − − . A sliding surface of roll control, sf , and its derivative, sf , are 
chosen from Equations (10) and (11) as follows: 

( ) ( )
0

( ) ( )
t

p i ds t k e t k e d k e tf f f
f f f ft t= + +   (39) 

( )2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

p i d

p i d d

s t k e t k e t k e t
k e t k e t k f x g x U

f f f
f f f f

f f f
f f f f ff x

= + +
= + + − − −

  
  (40) 

where , ,p i dk k kf f f  are positive values. 
A dynamic sliding surface of roll control, fs , is given by Equation (12): s sf f f fs l= + , where 

Rfl
+∈ . 

Roll controller is obtained from Method 1: RDSMC-PID-NDO is given from Equation (17) as 
follows: 

( ) ( )( )
( )

2 2
2

垐( ) ( ) ( ) ( )1
( ) sgn( )

d p dd d

d p si i

k f x g x U k k f x g x U
U

k g x k k e k e k

f ff
f f f f f f f

f f ff f
f f f f f f f f

f x l f x

l l b s s

 − − − + + − − − =   + + + + +
 

 


 (41) 

where , sk
f

fb  are positive values and satisfy the condition in Equation (16). 

Roll controller is obtained from Method 2: RDSMC-PIDSTA-NDO is given in Equation (23) as 
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( ) ( )( )
( ) ( ) ( )

2 2
2 1/2

1 2 0

垐( ) ( ) ( ) ( )1
( ) sgn sgn

d p dd d
t

d pi i

k f x g x U k k f x g x U
U

k g x k k e k e k k dt

f ff
f f f f f f f

f f f f ff
f f f f f f f f

f x l f x

l l s s s

 − − − + + − − − =   + + + + +
 

 



 (42) 
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Figure 3. Block diagram of full controller of a quadcopter, the proposed algorithm is applied in the
attitude and altitude control only. The traditional PID is used in horizontal position control.

The roll subsystem described in Equation (35) can be rewritten as follows:{ .
x1 = x2
.
x2 = x4x6a1 + x4a2Ωr + b1U2 + ξφ

(36)

Let us define fφ(x) = x4x6a1 + x4a2Ωr, gφ(x) = b1, Fφ(x) =
[
x2, fφ(x)

]T
, Gφ1 (x) =

[
0, gφ(x)

]T
,

Gφ2 (x) = [0, 1]T, and Hφ(x) = x1. A NDO to estimate the exogenous disturbance in roll subsystem is
obtained by Equation (4), as follows:

.
zφ =

[
Wφ − lφ(x)G

φ
2 (x)Eφ

]
zφ + Wφpφ(x) − lφ(x)

[
Gφ2 (x)Eφpφ(x) + Fφ(x) + Gφ1 (x)U2

]
ˆ
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Let us assume that the external disturbance is considered as a harmonic disturbance with 
unknown amplitude but known frequency generated by an exogenous system as follows. 

{ W
Ex

ϒ = ϒ
= ϒ


 
(3) 

where mRϒ ∈ , W  is an m m×  matrix, and E  is a row matrix with dimension 1 m× . These 
matrices can be obtained by many existent approaches such as using an extended state observer [38], 
wind field estimation based on a Global Positioning System (GPS), Inertial Measurement Unit 
(IMU), airspeed, and magnetometer [39], or based on aerodynamics of motors and propellers [40]. 

Let ˆ mRϒ ∈  and ˆ Rx∈  be the estimates of ϒ  and x , respectively; [ ]1,..., T
me e e= , 

1,..., m Re e +∈ are constants to be given; FL  denotes a Lie derivative of function ( )F x ; and r  is a 
relative degree from the disturbance to the output. 

Now, referring to Chen’s work [41], a nonlinear disturbance observer for a system as Equation 
(2) is obtained as follows: 

[ ] [ ]2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ ( )
ˆ ˆ

z W l x G x E z Wp x l x G x Ep x F x G x u
z p x
Ex

 = − + − + +
ϒ = +
 = ϒ



 

(4) 

where mz R∈  is the internal state of disturbance observer. The nonlinear function ( ) mp x R∈  and 
observer gain ( )l x  are designed as follows: 

1( ) ( )r
Fp x L H xe −=  (5) 

1 ( )( )( )
r
FL H xp xl x

x x
e

−∂∂= =
∂ ∂  

(6) 

φ = zφ + pφ(x)
ξ̂φ = Eφ ˆ
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where mRϒ ∈ , W  is an m m×  matrix, and E  is a row matrix with dimension 1 m× . These 
matrices can be obtained by many existent approaches such as using an extended state observer [38], 
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where mz R∈  is the internal state of disturbance observer. The nonlinear function ( ) mp x R∈  and 
observer gain ( )l x  are designed as follows: 

1( ) ( )r
Fp x L H xe −=  (5) 

1 ( )( )( )
r
FL H xp xl x

x x
e

−∂∂= =
∂ ∂  

(6) 

φ

(37)

where Wφ , Eφ are matrix of exogenous disturbance impacting on the roll subsystem with dimension
2 × 2 and 1 × 2, respectively. The functions pφ(x) and lφ(x) are obtained from Equations (7) and (8):

pφ(x) =

 εφ1 x2

ε
φ
2 x2

, lφ(x) =

 0 ε
φ
1

0 ε
φ
2

, ε
φ
1 , εφ2 > 0 (38)

and U2 is RDSMC controller of the roll subsystem obtained by the two methods in Section 2.2.
Let φd be a desired state of roll control. The tracking error of roll angle and its first derivative

are given by: eφ = φd − x1,
.
eφ =

.
φd −

.
x1. The second derivative of tracking error,

..
eφ, is computed

by:
..
eφ(t) =

..
φd − fφ(x) − gφ(x)U2 − ξφ. A sliding surface of roll control, sφ, and its derivative,

.
sφ, are

chosen from Equations (10) and (11) as follows:

sφ(t) = kφp eφ(t) + kφi

t∫
0

eφ(τ)dτ+ kφd
.
eφ(t) (39)

.
sφ(t) = kφp

.
eφ(t) + kφi eφ(t) + kφd

..
eφ(t)

= kφp
.
eφ(t) + kφi eφ(t) + kφd

( ..
φd − fφ(x) − gφ(x)U2 − ξφ

) (40)

where kφp , kφi , kφd are positive values.
A dynamic sliding surface of roll control, σφ, is given by Equation (12): σφ =

.
sφ + λφsφ, where

λφ ∈ R+.
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Roll controller is obtained from Method 1: RDSMC-PID-NDO is given from Equation (17) as follows:

.
U2 =

1

kφd gφ(x)

 kφd

(...
φd −

.
fφ(x) −

.
gφ(x)U2 −

.
ξ̂φ

)
+

(
kφp + kφdλφ

)( ..
φd − fφ(x) − gφ(x)U2 − ξ̂φ

)
+

(
kφi + λφkφp

) .
eφ + λφkφi eφ + βφσφ + kφs sgn(σφ)

 (41)

where βφ, kφs are positive values and satisfy the condition in Equation (16).
Roll controller is obtained from Method 2: RDSMC-PIDSTA-NDO is given in Equation (23) as follows

.
U2 =

1

kφd gφ(x)

 kφd

(...
φd −

.
fφ(x) −

.
gφ(x)U2 −

.
ξ̂φ

)
+

(
kφp + kφdλφ

)( ..
φd − fφ(x) − gφ(x)U2 − ξ̂φ

)
+

(
kφi + λφkφp

) .
eφ + λφkφi eφ + kφ1

∣∣∣σφ∣∣∣1/2
sgn

(
σφ

)
+ kφ2

∫ t
0 sgn

(
σφ

)
dt

 (42)

where kφ1 , kφ2 are positive values and satisfy the condition in Equation (24).
The pitch subsystem described in Equation (35) can be rewritten as follows:{ .

x3 = x4
.
x4 = x2x6a3 + x2a4Ωr + b2U3 + ξθ

(43)

Let us define fθ(x) = x2x6a3 + x2a4Ωr, gθ(x) = b2, Fθ(x) = [x4, fθ(x)]
T,Gθ1 (x) = [0, gθ(x)]

T,

Gθ2 (x) = [0, 1]T, and Hθ(x) = x3. A NDO to estimate the exogenous disturbance in pitch subsystem is
obtained by Equation (4), as follows:

.
zθ =

[
Wθ − lθ(x)Gθ2 (x)Eθ

]
zθ + Wθpθ(x) − lθ(x)

[
Gθ2 (x)Eθpθ(x) + Fθ(x) + Gθ1 (x)U3

]
ˆ
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Let us assume that the external disturbance is considered as a harmonic disturbance with 
unknown amplitude but known frequency generated by an exogenous system as follows. 

{ W
Ex

ϒ = ϒ
= ϒ


 
(3) 

where mRϒ ∈ , W  is an m m×  matrix, and E  is a row matrix with dimension 1 m× . These 
matrices can be obtained by many existent approaches such as using an extended state observer [38], 
wind field estimation based on a Global Positioning System (GPS), Inertial Measurement Unit 
(IMU), airspeed, and magnetometer [39], or based on aerodynamics of motors and propellers [40]. 

Let ˆ mRϒ ∈  and ˆ Rx∈  be the estimates of ϒ  and x , respectively; [ ]1,..., T
me e e= , 

1,..., m Re e +∈ are constants to be given; FL  denotes a Lie derivative of function ( )F x ; and r  is a 
relative degree from the disturbance to the output. 

Now, referring to Chen’s work [41], a nonlinear disturbance observer for a system as Equation 
(2) is obtained as follows: 

[ ] [ ]2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ ( )
ˆ ˆ

z W l x G x E z Wp x l x G x Ep x F x G x u
z p x
Ex

 = − + − + +
ϒ = +
 = ϒ



 

(4) 

where mz R∈  is the internal state of disturbance observer. The nonlinear function ( ) mp x R∈  and 
observer gain ( )l x  are designed as follows: 

1( ) ( )r
Fp x L H xe −=  (5) 

1 ( )( )( )
r
FL H xp xl x

x x
e

−∂∂= =
∂ ∂  

(6) 

θ = zθ + pθ(x)
ξ̂θ = Eθ ˆ
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where mRϒ ∈ , W  is an m m×  matrix, and E  is a row matrix with dimension 1 m× . These 
matrices can be obtained by many existent approaches such as using an extended state observer [38], 
wind field estimation based on a Global Positioning System (GPS), Inertial Measurement Unit 
(IMU), airspeed, and magnetometer [39], or based on aerodynamics of motors and propellers [40]. 

Let ˆ mRϒ ∈  and ˆ Rx∈  be the estimates of ϒ  and x , respectively; [ ]1,..., T
me e e= , 

1,..., m Re e +∈ are constants to be given; FL  denotes a Lie derivative of function ( )F x ; and r  is a 
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where mz R∈  is the internal state of disturbance observer. The nonlinear function ( ) mp x R∈  and 
observer gain ( )l x  are designed as follows: 

1( ) ( )r
Fp x L H xe −=  (5) 

1 ( )( )( )
r
FL H xp xl x

x x
e

−∂∂= =
∂ ∂  

(6) 

θ

(44)

where Wθ , Eθ are matrix of exogenous disturbance impacting on pitch subsystem with dimension
2 × 2 and 1 × 2, respectively. The functions pθ(x) and lθ(x) are computed from Equations (7) and (8):

pθ(x) =
[
εθ1 x4

εθ2 x4

]
, lθ(x) =

[
0 εθ1
0 εθ2

]
, εθ1 , εθ2 > 0 (45)

and U3 is RDSMC controller of pitch subsystem obtained by the two methods in Section 2.2.
Let θd be a desired state of pitch control. The tracking error of pitch angle and its first derivative

are given by: eθ = θd − x3,
.
eθ =

.
θd −

.
x3. The second derivative of tracking error,

..
eθ, is computed

by:
..
eθ(t) =

..
θd − fθ(x) − gθ(x)U3 − ξθ. A sliding surface of pitch control, sθ, and its derivative,

.
sθ,

are chosen from Equations (10) and (11) as follows:

sθ(t) = kθp eθ(t) + kθi

t∫
0

eθ(τ)dτ+ kθd
.
eθ(t) (46)

.
sθ(t) = kθp

.
eθ(t) + kθi eθ(t) + kθd

..
eθ(t)

= kθp
.
eθ(t) + kθi eθ(t) + kθd

( ..
θd − fθ(x) − gθ(x)U3 − ξθ

) (47)

where kθp , kθi , kθd are positive values.
A dynamic sliding surface of pitch control, σθ, is given by Equation (12): σθ =

.
sθ + λθsθ, where

λθ ∈ R+.
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Pitch controller is obtained from Method 1: RDSMC-PID-NDO is given from Equation (17) as follows:

.
U3 =

1
kθd gθ(x)

 kθd

(...
θd −

.
fθ(x) −

.
gθ(x)U3 −

.
ξ̂θ

)
+

(
kθp + kθdλθ

)( ..
θd − fθ(x) − gθ(x)U3 − ξ̂θ

)
+

(
kθi + λθkθp

) .
eθ + λθkθi eθ + βθσθ + kθs sgn(σθ)

 (48)

where βθ, kθs are positive values and satisfy the condition in Equation (16).
Pitch controller is obtained from Method 2: RDSMC-PIDSTA-NDO is given in Equation (23) as follows:

.
U3 =

1
kθd gθ(x)

 kθd

(...
θd −

.
fθ(x) −

.
gθ(x)U3 −

.
ξ̂θ

)
+

(
kθp + kθdλθ

)( ..
θd − fθ(x) − gθ(x)U3 − ξ̂θ

)
+

(
kθi + λθkθp

) .
eθ + λθkθi eθ + kθ1 |σθ|

1/2sgn(σθ) + kθ2
∫ t

0 sgn(σθ)dt

 (49)

where kθ1 , kθ2 are positive values and satisfy the condition in Equation (24).
The yaw subsystem described in Equation (35) can be rewritten as follows:{ .

x5 = x6
.
x6 = x2x4a5 + b3U4 + ξψ

(50)

Let us define fψ(x) = x2x4a5, gψ(x) = b3, Fψ(x) =
[
x6, fψ(x)

]T
, Gψ1 (x) =

[
0, gψ(x)

]T
, Gψ2 (x) =

[0, 1]T, and Hψ(x) = x5. A NDO to estimate the exogenous disturbance in yaw subsystem is obtained
by Equation (4), as follows:

.
zψ =

[
Wψ − lψ(x)G

ψ
2 (x)Eψ

]
zψ + Wψpψ(x) − lψ(x)

[
Gψ2 (x)Eψpψ(x) + Fψ(x) + Gψ1 (x)U4

]
ˆ
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A general procedure to design a robust dynamic sliding mode controller based on nonlinear 

disturbance observer is presented as following steps. 

Step 1: An adaptive disturbance observer is applied to estimate the external disturbance 𝜉. 
Step 2: The disturbance observer is integrated with a robust dynamic sliding mode control by 

replacing the external disturbance, 𝜉, with its estimation 𝜉መ. 
2.1. Nonlinear Disturbance Observer 

Let us assume that the external disturbance is considered as a harmonic disturbance with 
unknown amplitude but known frequency generated by an exogenous system as follows. 

{ W
Ex

ϒ = ϒ
= ϒ


 
(3) 

where mRϒ ∈ , W  is an m m×  matrix, and E  is a row matrix with dimension 1 m× . These 
matrices can be obtained by many existent approaches such as using an extended state observer [38], 
wind field estimation based on a Global Positioning System (GPS), Inertial Measurement Unit 
(IMU), airspeed, and magnetometer [39], or based on aerodynamics of motors and propellers [40]. 

Let ˆ mRϒ ∈  and ˆ Rx∈  be the estimates of ϒ  and x , respectively; [ ]1,..., T
me e e= , 

1,..., m Re e +∈ are constants to be given; FL  denotes a Lie derivative of function ( )F x ; and r  is a 
relative degree from the disturbance to the output. 

Now, referring to Chen’s work [41], a nonlinear disturbance observer for a system as Equation 
(2) is obtained as follows: 

[ ] [ ]2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ ( )
ˆ ˆ

z W l x G x E z Wp x l x G x Ep x F x G x u
z p x
Ex

 = − + − + +
ϒ = +
 = ϒ



 

(4) 

where mz R∈  is the internal state of disturbance observer. The nonlinear function ( ) mp x R∈  and 
observer gain ( )l x  are designed as follows: 

1( ) ( )r
Fp x L H xe −=  (5) 

1 ( )( )( )
r
FL H xp xl x

x x
e

−∂∂= =
∂ ∂  

(6) 

ψ = zψ + pψ(x)
ξ̂ψ = Eψ ˆ
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where mRϒ ∈ , W  is an m m×  matrix, and E  is a row matrix with dimension 1 m× . These 
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1,..., m Re e +∈ are constants to be given; FL  denotes a Lie derivative of function ( )F x ; and r  is a 
relative degree from the disturbance to the output. 

Now, referring to Chen’s work [41], a nonlinear disturbance observer for a system as Equation 
(2) is obtained as follows: 

[ ] [ ]2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ ( )
ˆ ˆ

z W l x G x E z Wp x l x G x Ep x F x G x u
z p x
Ex

 = − + − + +
ϒ = +
 = ϒ



 

(4) 

where mz R∈  is the internal state of disturbance observer. The nonlinear function ( ) mp x R∈  and 
observer gain ( )l x  are designed as follows: 

1( ) ( )r
Fp x L H xe −=  (5) 

1 ( )( )( )
r
FL H xp xl x

x x
e

−∂∂= =
∂ ∂  

(6) 

ψ

(51)

where Wψ , Eψ are matrix of exogenous disturbance impacting on yaw subsystem with dimension
2 × 2 and 1 × 2, respectively. The functions pψ(x) and lψ(x) are computed from Equations (7) and (8):

pψ(x) =

 εψ1 x6

ε
ψ
2 x6

, lψ(x) =

 0 ε
ψ
1

0 ε
ψ
2

, ε
ψ
1 , εψ2 > 0 (52)

and U4 is RDSMC controller of yaw subsystem obtained by the two methods in Section 2.2.
Let ψd be a desired state of yaw control. The tracking error of yaw angle and its first derivative

are given by: eψ = ψd − x5,
.
eψ =

.
ψd −

.
x5. The second derivative of tracking error,

..
eψ, is computed

by:
..
eψ(t) =

..
ψd − fψ(x) − gψ(x)U4 − ξψ. A sliding surface of yaw control, sψ, and its derivative,

.
sψ,

are chosen from Equations (10) and (11) as follows:

sψ(t) = kψp eψ(t) + kψi

t∫
0

eψ(τ)dτ+ kψd
.
eψ(t) (53)

.
sψ(t) = kψp

.
eψ(t) + kψi eψ(t) + kψd

..
eψ(t)

= kψp
.
eψ(t) + kψi eψ(t) + kψd

( ..
ψd − fψ(x) − gψ(x)U4 − ξψ

) (54)

where kψp , kψi , kψd are positive values.
A dynamic sliding surface of yaw control, σψ, is given by Equation (12): σψ =

.
sψ + λψsψ, where

λψ ∈ R+.
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Yaw controller is obtained from Method 1: RDSMC-PID-NDO is given from Equation (17) as follows:

.
U4 =

1

kψd gψ(x)

 kψd

(...
ψd −

.
fψ(x) −

.
gψ(x)U4 −

.
ξ̂ψ

)
+

(
kψp + kψd λψ

)( ..
ψd − fψ(x) − gψ(x)U4 − ξ̂ψ

)
+

(
kψi + λψkψp

) .
eψ + λψkψi eψ + βψσψ + kψs sgn(σψ)

 (55)

where βψ, kψs are positive values and satisfy the condition in Equation (16).
Yaw controller is obtained from Method 2: RDSMC-PIDSTA-NDO is given in Equation (23) as follows

.
U4 =

1

kψd gψ(x)

 kψd

(...
ψd −

.
fψ(x) −

.
gψ(x)U4 −

.
ξ̂ψ

)
+

(
kψp + kψd λψ

)( ..
ψd − fψ(x) − gψ(x)U4 − ξ̂ψ

)
+

(
kψi + λψkψp

) .
eψ + λψkψi eψ + kψ1

∣∣∣σψ∣∣∣1/2
sgn

(
σψ

)
+ kψ2

∫ t
0 sgn

(
σψ

)
dt

 (56)

where kψ1 , kψ2 are positive values and satisfy the condition in Equation (24).

3.3. Altitude Controller

The altitude subsystem described in Equation (35) can be rewritten as follows:{ .
x7 = x8
.
x8 = g− 1

m cos x1 cos x3U1 + ξh
(57)

Let us define fh(x) = g, gh(x) = −(1/m) cos x1 cos x3, Fh(x) = [x8, fh(x)]
T,Gh

1(x) = [0, gh(x)]
T,

Gh
2(x) = [0, 1]T, and Hh(x) = x7. A NDO to estimate the exogenous disturbance in altitude subsystem

is obtained by Equation (4), as follows:
.
zh =

[
Wh − lh(x)Gh

2(x)Eh
]
zh + Whph(x) − lh(x)

[
Gh

2(x)Ehph(x) + Fh(x) + Gh
1(x)U1

]
ˆ
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Ex

 = − + − + +
ϒ = +
 = ϒ



 

(4) 

where mz R∈  is the internal state of disturbance observer. The nonlinear function ( ) mp x R∈  and 
observer gain ( )l x  are designed as follows: 

1( ) ( )r
Fp x L H xe −=  (5) 

1 ( )( )( )
r
FL H xp xl x

x x
e

−∂∂= =
∂ ∂  

(6) 

h = zh + ph(x)
ξ̂h = Eh

ˆ
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where mz R∈  is the internal state of disturbance observer. The nonlinear function ( ) mp x R∈  and 
observer gain ( )l x  are designed as follows: 

1( ) ( )r
Fp x L H xe −=  (5) 

1 ( )( )( )
r
FL H xp xl x

x x
e

−∂∂= =
∂ ∂  

(6) 

h

(58)

where Wh , Eh are matrix of exogenous disturbance impacting on the altitude subsystem with dimension
2 × 2 and 1 × 2, respectively. The functions ph(x) and lh(x) are computed from Equations (7) and (8):

ph(x) =
[
εh

1x8

εh
2x8

]
, lh(x) =

[
0 εh

1
0 εh

2

]
, εh

1, εh
2 > 0 (59)

and U1 is RDSMC controller of altitude subsystem obtained by the two methods in Section 2.2.
Let hd be a desired state of altitude control. The tracking error of altitude angle and its first

derivative are given by: eh = hd − x7,
.
eh =

.
hd −

.
x7. The second derivative of tracking error,

..
eh,

is computed by:
..
eh(t) =

..
hd − fh(x) − gh(x)U1 − ξh. A sliding surface of altitude control, sh, and its

derivative,
.
sh, are chosen from Equations (10) and (11) as follows:

sh(t) = kh
peh(t) + kh

i

t∫
0

eh(τ)dτ+ kh
d

.
eh(t) (60)

.
sh(t) = kh

p
.
eh(t) + kh

i eh(t) + kh
d

..
eh(t)

= kh
p

.
eh(t) + kh

i eh(t) + kh
d

( ..
hd − fh(x) − gh(x)U1 − ξh

) (61)

where kh
p, kh

i , kh
d are positive values.

A dynamic sliding surface of altitude control, σh, is given by Equation (12): σh =
.
sh + λhsh, where

λh ∈ R+.
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Altitude controller is obtained from Method 1: RDSMC-PID-NDO is given from Equation (17) as
follows:

.
U1 =

1
kh

dgh(x)

 kh
d

(...
h d −

.
f h(x) −

.
gh(x)U1 −

.
ξ̂h

)
+

(
kh

p + kh
dλh

)( ..
hd − fh(x) − gh(x)U1 − ξ̂h

)
+

(
kh

i + λhkh
p

) .
eh + λhkh

i eh + βhσh + kh
s sgn(σh)

 (62)

where βh, kh
s are positive values and satisfy the condition in Equation (16).

Altitude controller is obtained from Method 2: RDSMC-PIDSTA-NDO is given in Equation (23)
as follows

.
U1 =

1
kh

dgh(x)

 kh
d

(...
h d −

.
f h(x) −

.
gh(x)U1 −

.
ξ̂h

)
+

(
kh

p + kh
dλh

)( ..
hd − fh(x) − gh(x)U1 − ξ̂h

)
+

(
kh

i + λhkh
p

) .
eh + λhkh

i eh + kh
1|σh|

1/2sgn(σh) + kh
2

∫ t
0 sgn(σh)dt

 (63)

where kh
1, kh

2 are positive values and satisfy the condition in Equation (24).

4. Simulation Results and Discussions

A numerical simulation was performed on the attitude and altitude control of UAVs to demonstrate
the strict robustness and efficiency of the proposed algorithm, as presented in this section. The advantage
of two controllers (i.e., RDSMC-PID-NDO and RDSMC-PIDSTA-NDO) of the proposed RDSMC-NDO
method are discussed and compared to recent methods, such as NTSMC, STSMC, and M-STSMC.

4.1. Simulation Assumptions

The numerical simulation was carried out through several assumptions: (i) the parameters of a
quadcopter UAV, initial conditions, controller gains, and desired states are given in Tables 2 and 3; and
(ii) the dynamics of attitude (i.e., roll, pitch, and yaw) and altitude were simultaneously affected by the
different exogenous disturbances as follows:

t ∈ [5, 10] sec :


ξφ(t) = ξθ(t) = (3t + 5) sin(2t + 10)
ξψ(t) = (2t) sin(t + 5)
ξh(t) = (3t + 5) sin(t + 10)

(64)

t ∈ (0, 5)∪ (10,+∞) sec : ξφ(t) = ξθ(t) = ξψ(t) = ξh(t) = 0 (65)

Table 2. System parameters of the quadcopter for simulation.

Symbol Descriptions Value and Unit

m Total mass of quadcopter 1.12 kg
Ixx Moment of inertia along x-axis 0.0119 kg.m2

Iyy Moment of inertia along y-axis 0.0119 kg.m2

Izz Moment of inertia along z-axis 0.0223 kg.m2

b Thrust coefficient 7.73213 (10−6) Ns2

d Drag coefficient 1.27513 (10−7) Nms2

Jr Moment of inertial of a rotor 8.5(10−4) kgm2

l Arm length 0.23 m

φ0;φd
Initial and desired states of roll

controller 10; 0 degree

θ0;θd
Initial and desired states of

pitch controller 10; 0 degree

ψ0;ψd
Initial and desired states of

yaw controller 20; 0 degree

h0; hd
Initial and desired states of

altitude controller 0; 15 m
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Table 3. Parameters of the proposed RDSMC-NDO for simulation.

Symbol Roll (ϕ) Pitch (θ) Yaw (ψ) Altitude (h)

kp 0.5 0.5 0.5 1.0
ki 0.001 0.001 0.001 0.001
kd 0.008 0.008 0.008 0.1
λ 3.3 3.3 3.0 1.8
β 60 60 30 4.5
ks 0.5 0.5 0.1 1.0
k1 30 30 20 15
k2 0.1 0.1 0.1 1.0
ε1 10 10 10 10
ε2 12 12 30 30

4.2. Simulation Results

The performance of nonlinear disturbance observer in dynamics of roll, pitch, yaw and altitude
is shown in Figure 4. It is easy to see that the disturbance estimation values, ξ̂φ, ξ̂θ, ξ̂ψ, and ξ̂h
asymptotically tracked the exogenous disturbances, even if the time-varying oscillation amplitude of
perturbation occurred in the movement process of the vehicle.
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Figure 4. Performance of disturbance observer: (a) in roll dynamics; (b) in pitch dynamics; (c) in yaw
dynamics; and (d) in altitude dynamics.

To compare the tracking performance of the two proposed controllers of the RDSMC-NDO
(i.e., RDSMC-PID-NDO and RDSMC-PIDSTA-NDO) with other methods, we also carried out
numerical simulations on three other methods (i.e., M-STSMC, NTSMC, and STSMC) with the
same flight conditions. The comparison of simulation results is shown in Figures 5 and 6. Obviously,
the disturbance-free first flight time of the vehicle (t < 5 s), and the responses of ϕ(t),θ(t), ψ(t), and
h(t) were identical for all five controllers, considering both time response and tracking performance
(Figure 5). In the second flight stage (5 s ≤ t ≤ 10 s), the various disturbances impacted the system
following Equation (64). The proposed RDSMC-NDO exhibited excellent tracking performance with
a high robustness compared to other methods (i.e., M-STSMC, NTSMC, and STSMC). It presented
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small initial oscillation and fast convergence to a steady state, while the other methods generated a
large oscillation amplitude and resulted in an unstable performance of the system. In the last flight
stage, (t > 10 s), the effect of disturbances on the vehicle suddenly became zero following Equation (65).
The proposed method also showed a significantly superior performance for attitude and altitude
control with a fast convergence to a steady state.
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Figure 5. Comparison of attitude and altitude performance between the proposed RDSMC-NDO
method and other approaches: (a) roll control performance; (b) pitch control performance; (c) yaw
control performance; and (d) altitude control performance.

Figure 6 shows the performance of controller signals of attitude (U2, U3, and U4) and altitude
(U1). Once the disturbances impacted on the dynamics of the vehicle, the proposed RDSMC-NDO
immediately compensated for the influence of perturbations with the chattering effect being strongly
eliminated, while the other methods (i.e., M-STSMC, NTSMC, and STSMC) were slower to compensate
and generated a chattering in controllers U2 and U3 (Figure 6b,c). In addition, it is easy to see that, in
the second flight stage (5 s ≤ t ≤ 10 s), when the various disturbances impacted on the system, the
sliding surfaces (sϕ, sθ, sψ, and sh) and dynamic sliding surfaces (σϕ, σθ, σψ, and σh) of the proposed
RDSMC-NDO rapidly converged to zero (about 0.2 s for attitude control and 1 s for altitude control,
as shown in Figure 7). The sliding surfaces (sϕ, sθ, sψ, and sh) of M-STSMC, NTSMC, and STSMC
oscillated and never converged to zero.

In summary, from the results of simulation, it can be seen that all five tested approaches presented
an equally excellent performance in the disappearance of exogenous disturbances, i.e., they provided
both rapid response and fast convergence to a steady state. However, the different performance
appeared once the exogenous disturbances impacted on the dynamics of the vehicle. M-STSMC,
NTSMC and STSMC could not adapt well to the fast variation of these perturbations, resulting in a
large oscillation amplitude and unstable performance of the control system. This issue was solved
by the proposed RDSMC-NDO algorithm. The presented method guaranteed an excellent tracking
performance and superior stability of the vehicle with a fast response, good adaptation, and no
chattering effect.
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Figure 6. Comparison of attitude and altitude controller between the proposed RDSMC-NDO method
and other approaches: (a) altitude controller U1; (b) roll controller U2; (c) pitch controller U3; and
(d) yaw controller U4.
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5. Conclusions

In this study, we proposed a robust dynamic sliding mode controller based on PID, super
twisting algorithm and nonlinear disturbance observer for a second-order nonlinear system, and
then the robustness and effectiveness of the proposed method was demonstrated through the control
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performance of UAVs in both attitude and altitude. In this algorithm, the exogenous disturbance
is estimated by a nonlinear disturbance observer. Then, a general design procedure of a robust
dynamic sliding mode controller integrated with the estimated values of disturbances is presented
by a combination of a PID sliding surface and Super Twisting Algorithm to compensate for the effect
of these perturbations on the system. As the simulation results, the robustness and efficiency of the
proposed algorithm were demonstrated by an excellent tracking performance and superior stability
of attitude and altitude control of UAVs with a fast response, good adaptation, and no chattering
effect. However, the study did not cover the undesirable effects of inharmonic disturbance. Therefore,
the same problem with an arbitrary perturbation will be studied in the future.
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