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Abstract: Recently, computing platforms have been being configured on a large scale to satisfy the
diverse requirements of emerging applications like big data and graph processing, neural network,
speech recognition and so on. In these computing platforms, each computing node consists of a
multicore, an accelerator, and a complex memory hierarchy, which are connected to other nodes
using a variety of high-performance networks. Up to now, researchers have been using cycle-accurate
simulators to evaluate the performance of computer systems in detail. However, the execution
of the simulators, which models modern computing architecture for multi-core, multi-node,
datacenter, memory hierarchy, new memory, and new interconnection, is too slow and infeasible;
since the architecture has become more complex today, the complexity of the simulator is rapidly
increasing. Therefore, it is seriously challenging to employ them in the research and development
of next-generation computer systems. To solve this problem, we previously presented EPSim
(Epoch-based Simulator), which defines epochs that can be run independently by dividing the
simulation run into several sections and executes them in parallel on a multicore platform, resulting
in only the limited simulation speedup. In this paper, to overcome the computing resource limitations
on multi-core platforms, we propose a novel EPSim-C (EPSim on Cloud) simulator that extends
EPSim and achieves higher performance using a cloud computing platform. EPSim-C is designed
to perform the epoch-based executions in a massively parallel fashion by using MapReduce on
Hadoop-based systems. According to our experiments, we have achieved a maximum speed of 87.0x
and an average speed of 46.1x using 256 cores. As far as we know, EPSim-C is the only existing
way to accelerate the cycle-accurate simulator on cloud platforms; thus, our significant performance
enhancement allows researchers to model and research current and future cutting-edge computing
platforms using real workloads.

Keywords: microarchitecture simulation; epoch-based execution; parallel simulation; cloud computing

1. Introduction

Recently, as the demand for big data analysis and neural network processing has
increased explosively, the use of data-intensive applications has also drastically increased [1,2].
Because data-intensive processing grows linearly in execution time with data size and has data-level
parallelism, its performance can be effectively improved through parallelization [3,4]. Thus, there have
been various approaches to accelerate the applications by exploiting data-level parallelism using
immense amounts of hardware resources, such as in cloud and neural computing platforms [5-7] which
are comprised of a variety of state-of-the-art multiple CPUs and GPUs, large-scale memory, high-speed
network connections, etc. [8-11]. For example, we can use a cloud computing system consisting
of many computing instances from the Amazon Elastic Compute Cloud (Amazon EC2) [8,12,13].
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Each instance can be optionally configured using 1 to 128 cores, 1 to 3904 GB of memory, 100 M
to 25 Gbps interconnects, and so on. We can now use high-performance nodes with more than
tens of cores [14-16], GPUs with 5120 stream multiprocessors, and 16 GB of HBM2 memory [17].
Dedicated neural processing units and data analysis accelerators have been also widely adopted [18-20].
Therefore, these computing platforms are becoming increasingly diverse and complex to satisfy the
different needs of the emerging processing technologies.

Many cycle-accurate full-system simulators have been used to model computing systems and
evaluate their performance in detail [21-25]. However, since this approach takes too much simulation
time, it is practically impossible to apply real workload or use it related to large-scale computing
systems such as the cloud for their research and development.

There have been many studies on accelerating the simulators to resolve the problems above using
a variety of hardware and software methods. FAST [26] is a hardware-assisted scheme that performs
functional modeling through software and timing modeling via field programmable gate arrays
(FPGAs). SimPoints [27] simulates critical code sections by investigating the most frequently executed
sequences of basic blocks. Both Sniper [28] and IntervalSim [29] utilize abstraction models to estimate
core performance without tracking all instructions, meaning they incur a trade-off between simulation
speed and accuracy. P-DRAMSIm?2 [30], Transformer [31], and P-Mambo [32] employ multiple threads
on multiple cores to accelerate simulation. Some threads perform functional modeling, and others
play the cycle-accurate simulation. EPSim [33], which is our base model, was designed to perform
epoch-based parallel microarchitecture simulation that produces deterministic results. Each epoch
is identified based on the interactions between cycle-accurate timing simulations and functional
emulations such that an epoch can be simulated independently of other epochs in parallel, meaning
the epochs can exploit large-scale parallelism.

However, these previous solutions, except for EPSim, are constrained in maximizing performance
via parallelization because of their inherently limited parallelism. For example, Transformer executes
functional modeling and timing modeling in parallel. SlackSim [34] assigns one thread to each core of
a target chip multiprocessor (CMP). In contrast, EPSim can exploit much higher parallelism. Figure 1
presents the number of epochs in EPSim for the SPEC CPU2006 benchmarks [35]. Each epoch can be
executed in parallel, independently of the others. Because the average number of epochs in the SPEC
CPU2006 benchmarks is approximately 164 million, it would be possible to improve the performance
dramatically by employing significantly more computing resources for the simulation.
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Figure 1. The number of epochs for the SPEC CPU2006 benchmarks [33].

To exploit massive parallelism for EPSim, we can utilize a cloud computing environment that
supports large amounts of computing resources. Cloud computing platforms, such as Amazon Web
Services (AWS) [13], Microsoft Azure [9], IBM Cloud [10], and Oracle Cloud [11], are widely used
because they provide shared computing resources, such as servers, networks, and storage, through
the Internet, regardless of their physical locations or system environments. The cloud computing
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platforms utilize a cost-effective on-demand charging system that provides great convenience in terms
of manageability and maintainability because users do not need to manage physical equipment directly.
Using only a few clicks, we can scale up a computing system by using more powerful hardware devices
and scale out by using a large number of devices, or vice versa.

In this paper, we propose an EPSim-C (EPSim on Cloud) simulator that extends EPSim [33],
an epoch-based parallel microarchitecture simulator, to run in a cloud computing environment.
Therefore, we can dramatically improve the performance of the simulation by exploiting the
intrinsically massive parallelism of epochs defined in EPSim.

Because EPSim runs multiple epoch-based simulations at the same time, EPSim applied to the
cloud environment can achieve a significant performance advantage by using its large amount of
computing resources. EPSim also assigns one epoch to each core, runs the epoch-based simulation
at the same time, and then merges the results of the echo-based simulation, which is the same
process used in the MapReduce programming model [36]. Therefore, we designed EPSim-C based on
MapReduce and found that, using Apache Hadoop-based cloud computing systems [37], we could
achieve significant performance gains. For evaluation, we constructed a cloud computing system
by adopting one NameNode and 17 DataNodes from Amazon EC2 and employing the Cloudera
Hadoop platform, which supports YARN MR2, HDFS, HUE, Hive, etc. [38-40]. As a result, we have
confirmed that EPSim-C achieves a maximum speed of 87.0x and an average speed of 32.6x using
256 cores on 16 DataNodes, providing performance scalability. In addition, in the Hadoop-based
cloud computing system, we have developed an optimization method that reduces work-management
overhead by grouping multiple epochs. The optimization made the average speed increased to
46.1 x using 256 cores. As a result, these high-performance enhancements enable computing system
researchers to work with real workloads.

In summary, we make the following contributions in this paper:

o  We explore the parallelism of EPSim and accelerate its simulation significantly using cloud
computing to exploit the massive parallelism.

e  We present a Hadoop-based implementation of EPSim-C simulator to utilize the parallelism by
applying the MapReduce programming model.

e  We obtained on average 46.1x and up to 87.0x of the simulation speedup with 256 cores in a
representative commercial cloud computing environment, i.e., AWS.

As far as we know, our EPSim-C is the first to accelerate microarchitecture simulations using cloud
computing, providing performance scalability while modeling a cutting-edge computing platform for
real workloads.

The remainder of this paper is organized as follows: Section 2 describes the background and the
motivation of our study. In Section 3, we detail our parallel microarchitecture simulation method
using cloud computing. We evaluate the performance of our method in terms of speedup and time
distribution in Section 4. We provide related works and discussion in Section 5. Finally, our conclusions
are made in Section 6.

2. Background and Motivation

In this section, we first describe cloud computing and a full-system microarchitecture simulator,
i.e., MARSSx86. In addition, we present our previous multi-core based parallel EPSim simulator
derived from MARSSx86. Finally, we identify the necessity for a new EPSim-C simulator using cloud
computing on the basis of ideal speedups on many cores.

2.1. Cloud Computing

Figure 2 presents a conceptual diagram of a cloud platform. The cloud is an on-demand computing
platform that provides shared computing resources, such as servers, storage, networks, applications,
and services, via the Internet. The cloud computing empowers clients to utilize servers, storage,
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and networks with just a few clicks while ignoring maintenance and management of the physical
hardware components. The cloud clients can access cloud services by using a web browser, mobile
applications, thin clients, terminal emulators, and so on over the Internet.
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Figure 2. Conceptual diagram of a cloud platform.

The cloud services are classified into three categories: software as a service (SaaS), platform as
a service (PaaS), and infrastructure as a service (IaaS). First, SaaS provides a variety of enterprise
applications, such as CRM (Customer Relationship Management), ERP (Enterprise Resource Planning),
email, and virtual desktops, which can be accessed using web browsers on a mobile phone,
tablet, PC (Personal Computer), and so on. Software developers can significantly enhance the
manageability and maintainability of applications by employing these services because application
creators are not required to perform software upgrades, security patches, and so on. Second, to help
establish web-based cloud applications, PaaS provides enterprise applications for developers as an
integrated environment with development tools, execution runtime, databases, web servers, and so
on. This service provides all of these resources with minimal cost and complexity for the maintenance
and management of its hardware, software, provisioning, and hosting. Finally, IaaS provides all
the computing resources necessary for application infrastructures, such as virtual machines, servers,
storage, and networks, on a pay-on-use basis.

2.2. Microarchitecture Simulation: MARSSx86

A full-system microarchitecture simulator allows us to model and simulate systems ranging
from applications to operating systems (OS) with a target physical machine. It provides powerful
functionality to study and to test the runtime behaviors and interactions between computer
architectures, operating systems, and applications for research and development [41]. In general,
the simulator consists of a functional model that preserves functional correctness and a timing model
that simulates detailed microarchitectural behaviors through interactions.

Figure 3 presents the architecture of the MARSSx86 system, which is a widely used full-system
microarchitecture simulator. MARSSx86 runs as a virtual machine for evaluating and developing x86
ISA-based platforms. The simulator consists of a tightly coupled functional system and cycle-accurate
timing simulator, called QEMU and PTLSim [23,42], respectively. QEMU functionally emulates a
variety of guest applications on guest operating systems by adopting various types of emulation
devices ranging from CPUs to network interface cards (NICs) [43]. QEMU translates guest instructions
into host instructions using a code generator and executes the translated code on the host machine at
near-native speed. PTLSim models x86-based computing platforms at a low level [24] and supports
various hardware configurations, such as in-order/out-of-order, single/multicores, cache hierarchy,
coherence protocols, deep memory hierarchy, hardware TLB, branch predictors, and peripherals.
QEMU and PTLSim interact with each other to share architectural states for correct execution and
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handle interrupts, exceptions, and complex instructions that cannot be handled by PTLSim alone.
The overhead related to this interaction accounts for up to 35% of total simulation time [31,44].

Guest Applications

Guest OS Kernel

MARSSx86

. . Complex . . .
Emulation Engine terrses Simulation Engine

(QEMU) - > (PTLSim)

<

Emulated Devices
CPU, Disk, NIC, GPU, USB

Host Linux Kernel
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Figure 3. MARSSx86 simulator framework.

2.3. EPSim: Epoch-Based Parallel MARSSx86 Simulator

As mentioned in Section 2.2, the interaction related overhead takes up a considerable portion
of the total simulation time. In order to accelerate the MARSSx86 simulator by eliminating the
causal interactions, EPSim [33] was developed. EPSim is an epoch-based cycle-accurate parallel
MARSSx86 simulator. When the simulation is executed, the interaction between QEMU and PTLSim is
removed, and the simulation interval that PTLSim can independently perform is defined as an epoch.
Many epochs defined in this way are applied to PTLSim, respectively, and executed in parallel to
improve performance. Figure 4 presents the epochs and the simulation flow in the MARSSx86 simulator.
MARSSx86 executes a sequence of instructions in translation blocks, which are another form of a basic
block used in MARSSx86. Once PTLSim encounters interrupts, exceptions, or complex instructions that
it cannot handle, an internal exception is triggered for switching from timing simulation to functional
emulation, which is handled by QEMU. Once the issue is handled, the simulator switches back to
timing simulation. Therefore, in order to remove the interaction between the two processes, an epoch is
defined as a sequence of translation blocks that does not involve any interactions between QEMU and
PTLSim. For example, epoch 0 is defined to be the same as TB 0 and epoch 1 is comprised of multiple
translation blocks, i.e., TB 1 to TB M-1.

In order to simulate such epochs using PTLSim, essential live-in architectural states called epoch
snapshots are required, such as CPU states, memory states, and memory data. QEMU in MARSSx86
only performs function simulation, detects epochs, and records epoch snapshots. PTLSim performs
epoch simulation on the epoch snapshots generated by QEMU in a completely parallel manner using
multicore resources. Finally, the results of each epoch simulation are combined at the end of the entire
simulation. As a result, the epoch-based parallel simulator has large-scale parallelism because epochs
can be simulated independently in a completely parallel manner. Further details can be found in
Kim et al. [33].
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Figure 4. Epochs and simulation flow in the MARSSx86 simulator [33].

2.4. Motivation

Figure 5 presents the speedup achieved by our existing epoch-based parallel microarchitecture
simulator, called EPSim, using a multicore platform on the SPEC CPU2006 benchmarks [33]. EPSim
obtained an average speedup of 1.0x, 3.7, 6.9x, and 13.0x using 1, 4, 8, and 16 cores, respectively, ina
multicore machine. These results confirm that EPSim has obvious performance scalability depending
on the number of available cores. Thus, we can estimate the ideal speedup by assigning one epoch to
each core and ignoring parallelization overheads with 32, 64, 128, and 256 cores, as shown in Figure 6.
We obtained an ideal speedup of 20.4x with 32 cores, 29.9x with 64 cores, 39.3x with 128 cores,
and 46.8 x with 256 cores.
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Figure 5. The speedup achieved by EPSim using a multicore platform on the SPEC CPU2006
benchmarks [33].
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Figure 6. The ideal speedup of EPSim using many cores on the SPEC CPU2006 benchmarks.

However, because the EPSim simulator is designed to utilize only a single multicore machine,
it cannot exploit extremely large-scale parallelism. In other words, because the average number of
epochs is approximately 164 million as in Figure 1, we are certain that performance can be improved
dramatically by employing many more cores for simulation. Therefore, to fully exploit the massive
parallelism available in the epoch-based simulation, we propose epoch-based parallel microarchitecture
simulation in a cloud computing platform that can employ a large number of high performance
computing resources on demand.

3. Parallel Microarchitecture Simulation Using Cloud Computing

In this section, we explore the massive parallelism of our epoch-based parallel simulator using
the MapReduce programming model. Additionally, we present a Hadoop-based implementation of
epoch-based parallel MARSSx86 simulation.

3.1. Exploring Massive Parallelism Using MapReduce

The existing epoch-based parallel MARSSx86 simulator was designed to accelerate simulation
on a single machine by executing multiple epochs simultaneously at the process-level. However,
the performance of the simulator is not sufficient to manage real workloads. Cloud computing
platforms, which have become a popular computing paradigm [45], are one potential solution to
this problem because simulations consist of epochs that are highly parallel and independent of each
other. The simulator effectively exploits massive parallelism through cloud computing by adopting
the MapReduce programming model because its processing structure similar to that of EPSim.

Figure 7 depicts the logical data flow in a MapReduce program. The program is comprised of
Map and Reduce functions. The Map function, i.e., mapper, is designed to return intermediate data
values by filtering and sorting input data. The Reduce function, i.e., reducer, produces output data
by combining the intermediate data from the mapper. A task scheduler feeds each input split into
the mappers. The mappers then execute a predefined process and output intermediate files as partial
results. After being shuffled and partitioned, the intermediate files are fed into the reducers, which
merge the partial results into final output. In summary, the flow of MapReduce has a similar structure
to EPSim [33]. An epoch (input split) is assigned to each core, simulated (mapped), and partial results
(intermediate files) are produced. The final output is merged (reduced) from the partial results.

In order to adopt the MapReduce framework, we design functions for the mapper to take epochs
as input splits. The mapper simulates the instructions of the input epochs sequentially by using
PTLSim and records the simulation results in intermediate files. The reducers then return the final
output data by combining all the partial results from the mappers. By employing the MapReduce
framework on a cloud computing platform, total simulation time is notably diminished because we
can use a very large number of mappers and reducers simultaneously.
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Figure 7. Logical data flow in a MapReduce program.

3.2. Hadoop-Based Implementation of Epoch-Based Parallel MARSSx86 Simulation

Figure 8 depicts the overall structure of our proposed microarchitecture simulator that performs
epoch-based parallel simulation using the Hadoop infrastructure [37]. For employing Java-based
Hadoop, the Java native interface (JNI) is used for the mapper to access the epoch-based MARSSx86
simulation that is written in C/C++. We assume that the input data, i.e., epoch snapshots (ES),
were previously generated by QEMU and are located on the Hadoop Distributed File System (HDEFS).

Epoch Snapshots (ES)
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- Job Scheduler ~ |SSSSSEE—— °

Epoch )
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Figure 8. Architecture of our Hadoop-based parallel microarchitecture simulator. Stat represents the
statistical results collected during a simulation period. ES indicates an epoch snapshot.
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The simulator mainly consists of the following four components: input data reader, mapper,
reducer, and output data writer. First, the input data reader reads all of the epoch snapshots from
the HDFS and delivers them to the Hadoop job scheduler. Second, after the job scheduler assigns
each epoch snapshot to mapper functions, the mapper performs epoch simulation independently in
parallel. The mapper also returns a stats key and value pair, i.e., the ID of a simulation cycle and the
total simulated cycles, for each epoch snapshot. We can extend the mapper to provide additional
stats key and value pairs as needed. In our implementation, the routine for performing epoch-based
MARSSx86 simulation is written in C/C++, meaning that it can be accessed by the mapper using the
JNL. Third, a reduce method, i.e., the reducer, takes a stats key and list of associated values as inputs
and accumulates the list of values to obtain a final result for the key. Finally, the results, i.e., a stats
key and merged values, are written to an output file on the HDFS. We confirm that we are able to
evaluate microarchitectures instantly using EPSim-C for epoch-based parallel simulation on a cloud
computing platform.

4. Evaluation

In this section, we describe our experimental setup in detail and evaluate the performance of our
proposed simulation architecture through a variety of experiments.

4.1. Experimental Setup

Table 1 lists the experimental parameters for the Hadoop-based cloud computing system that
we employed to evaluate EPSim-C for the epoch-based parallel simulation. The Hadoop system was
constructed by utilizing hardware computing resources from Amazon EC2 of AWS [8,13]. We also
adopted Cloudera’s open-source Apache Hadoop distribution, i.e., CDH, to easily manipulate the
Apache Hadoop framework, including Hadoop YARN MR2, HDFS, etc. [37-39].

Table 1. Hadoop-based cloud computing system for our experiment.

Feature Description
Cloud computing platform Amazon EC2 of AWS
Hadoop platform Cloudera Manager, CDH
Hadoop framework Hadoop YARN MR2, HDFS
Number of NameNodes 1 NameNode with 4 cores

Number of DataNodes 16 DataNodes with 2, 4, 8, 16 cores per node

450 Mbps with 2 cores per node

750 Mbps with 4 cores per node
1000 Mbps with 8 cores per node
2000 Mbps with 16 cores per node

Network bandwidth

In detail, the Hadoop system consists of a single NameNode and 16 DataNodes. Briefly,
the NameNode indicates a master node in the Apache Hadoop HDEFS architecture that maintains and
manipulates the data blocks being stored within the DataNodes, i.e., slave nodes in the HDFS [46].
The NameNode provides a unified HDFS namespace to clients for regulating their access to data
files located on the distributed file system. The NameNode also manages file system operations,
such as opening, closing, and renaming files and directories, and determines the mapping of split
data blocks from data files onto DataNodes. Internally, the DataNodes store the data blocks in their
attached storage redundantly and are responsible for serving read and write requests from clients.
DataNodes also perform the map and reduce procedures for Hadoop applications using their data
blocks. We designated 16 reduce tasks to be created and executed when the number of completed map
tasks exceeded 80% of the total tasks. For performance evaluation, we configured each DataNode to
utilize 2, 4, 8, and 16 cores of an Intel Xeon E5-2686 v4. Thus, the experiments were performed using
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a large number of cores, i.e., 32, 64, 128, and 256 because we utilized 16 DataNodes. Additionally,
because we derived m4 instances from AWS EC2, we were able to adopt different network bandwidths
of 450, 750, 1000, and 2000 Mbps when using 32, 64, 128, and 256 cores, respectively.

We obtained performance results by performing microarchitecture simulation of 1 billion
instructions for each of the SPEC CPU2006 benchmarks. The target machine for simulation was
specified as a default out-of-order core of MARSSx86 with 4 GB of main memory. In order to compare
the performance results of the cloud implementation to conventional MARSSx86, the performance of
MARSSx86 was measured using the m4 instance from AWS EC2, which utilizes two cores of an Intel
Xeon E5-2686 v4.

4.2. Performance Results

In this section, we evaluate the performance enhancements of our proposed EPSim-C simulator
sequentially in terms of speedup, task execution time, task management overhead, network overhead,
and load balance.

First, of all, Figure 9a presents the speedups obtained by EPSim-C for epoch-based parallel
simulation on 32, 64, 128, and 256 cores compared to the conventional MARSSx86 simulator.
We obtained an average speedup of 4.7 x on 32 cores, 9.9 on 64 cores, 18.6 x on 128 cores, and 32.6x
on 256 cores. Thus, we confirmed that EPSim-C achieves outstanding performance and scalability
by thoroughly utilizing its computing resources. When the number of cores is increased from 32
to 64, the speedup more than doubles because of the increased network bandwidth, i.e., 450 to
750 Mbps. Additionally, we achieved a maximum speedup of 87.0x for the 456.hmmer benchmark and
a minimum speedup of 7.8 x for the 483.xalancbmk benchmark when using 256 cores. To investigate
the causes of these performance variations, we analyzed four different factors that contribute the
overall performance of parallel and distributed computing: task execution time, task management
overhead, network overhead, and load imbalance [47,48]. Task execution time represents the time
spent to perform a given task. Task management overhead is an overhead for managing a large
number of tasks, including assigning tasks to each computing resource, and checking completed tasks.
Network overhead means the delay time due to the actual network, and load imbalance refers to the
distribution of tasks across multiple nodes.

Second, in our experiments, task execution time was highly dependent on the average length of
epochs, i.e., the number of instructions to be simulated. Figure 9b depicts the average, maximum,
and minimum lengths of epochs in each benchmark. We obtained significantly higher speedups of
87.0x and 81.9 x using 256 cores for the 456.hmmer and 410.bwaves benchmarks, respectively because,
they have longer average lengths of epochs, i.e., long task execution times. In contrast, we achieved
relatively low speedups of 13.6x and 7.8 using 256 cores for the 458.sjeng and 483.xalancbmk
benchmarks, respectively because, their average epoch lengths were relatively short. Although
task execution time was dominant in the performance improvements for most benchmarks, some
benchmarks were influenced by the other three factors, which will be discussed further. For example,
both the 470.1bm and 444.namd benchmarks have longer average epoch lengths than the 456.hmmer
benchmark, but their speedups were smaller.

Third, Figure 9c presents the numbers of epochs that are related to task management overhead.
In EPSim-C, the number of tasks is equivalent to the number of epochs for each benchmark.
Because task management overhead increases proportionally to the number of tasks, we can enhance
the performance to a greater degree as the number of epochs decreases. For the 458.sjeng and
483.xalancbmk benchmarks, we found that the performance of EPSim-C was significantly constrained
by the large number of epochs, especially when the number of epochs was greater than 4000.
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Fourth, the average remote access time per epoch, which was computed by dividing total
networking time by the numbers of epochs in Figure 9c¢, is shown in Figure 9d. This value indicates the
network overhead for each benchmark. For most benchmarks, network overhead was well handled by
Hadoop framework, but it significantly limited the performance improvements for some benchmarks.
For example, despite the 437.leslie3d benchmark having a similar length and number of epochs to the
434.zeusmp and 459.GemsFDTD benchmarks, we obtained a much higher speedup for the 437 leslie3d
benchmark than for the others. This is because the remote access time per epoch for the 437 leslie3d
benchmark was considerably smaller on average (3 ms). In contrast, the speedup obtained for the
483.xalancbmk benchmark was extremely limited because its remote access time per epoch was 550 ms
and it had a large number of epochs.

Finally, load balancing is characterized by the numbers of allocated tasks, pending tasks,
and completed tasks. For most of benchmarks, we confirmed that EPSim-C could maintain good load
balancing when using different numbers of cores, such as 32, 64, 128, and 256, on the cloud computing
platform. Therefore, in this paper, we only discuss the three benchmarks that had distinguishing
characteristics in terms of load balancing. Figures 10-12 present the load balance over time for the
470.Ibm, 410.bwaves, and 401.bzip2 benchmarks, respectively. The number of tasks in Figures 10-12 are
the sum of the numbers of map tasks and reduce tasks. Because reduce tasks are created and allocated
during active execution, the number of pending tasks at the start of the process is not equal to the
number of completed of tasks at the end of the process.

Figure 10a shows that the number of allocated tasks for the 470.lbm benchmark was measured
as the maximum number of available cores in the first round between 0 and 25 s. However, it only
used 37 cores in the second round despite there being 256 cores available. As shown in Figure 10b,
the number of pending tasks decreases from 277, i.e., the total number of map tasks for the 470.1bm
benchmark, to 21 after 256 tasks are allocated and executed at the start of the first round using all
256 cores. Additionally, Figure 10c indicates that the number of completed tasks increases rapidly
immediately following the first round, but then grows more gradually to 293, including 16 reduce tasks.
Therefore, for the 470.Ibm benchmark, we were able to confirm that most cores were not occupied
after the first round, i.e., underutilization of computing resources. Because the 444.namd and 433.milc
benchmarks have similar tendencies to the 470.Ibm benchmark, their performance improvements were
significantly limited compared to the other benchmarks because of load imbalance, despite having
longer task execution time and lower task management overhead. In other words, since the lengths of
each epoch are variously distributed, and in particular, the difference between the maximum length of
epochs and the minimum length of epochs is large as shown in Figure 9, causing the load imbalance.
The load imbalance is relative and becomes less if we simulate with the same number of epochs as
other benchmarks to be mentioned.

Compared to the 470.lbm benchmark, we obtained slightly better load balancing for the
410.bwaves benchmark, as shown in Figure 11. This is because the lengths of epochs are well
distributed, the average is located in intermediate, and the difference between maximum and minimum
is not large, as shown in Figure 9. This leads to a more significant speedup for the 410.bwaves
benchmark than for the 470.lbm benchmark, although the average length of epochs in the former
was shorter than that in the latter. Figure 11a reveals that the numbers of allocated tasks for the
410.bwaves benchmark were almost identical to the maximum numbers of available cores, i.e., 32,
64, 128, and 256, for the majority of execution time. As shown in Figure 11b, when using 256 cores,
the number of pending tasks diminishes from 481, i.e., the total number of map tasks in the 410.bwaves
benchmark, to 225 because 256 of the tasks begin execution at the start of the first round. In contrast
to the 470.Jbm benchmark, because the remaining tasks, including 225 map tasks and 16 reduce
tasks, utilize most of the available cores, there is no notable underutilization of computing resources.
From these experiments, we also found that the 456.hmmer benchmark is very similar to the 410.bwaves
benchmark in terms of load balance.
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In addition, Figure 12 presents the load balance in the 401.bzip2 benchmark, which represents
most of the benchmarks not mentioned previously. In these cases, because the total number of epochs
is large enough versus the number of available cores, the Hadoop framework performs load balancing,
meaning that there is no significant performance degradation because of load imbalance.
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Figure 10. The number of allocated, pending, and completed tasks over time for the 470.]lbm benchmark.
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Figure 11. The number of allocated, pending, and completed tasks over time for the
410.bwaves benchmark.

~~~~~~ 32-core ===064-core = =128-core ——256-core «sees32-core ===64-core = =128-core —256-core s 32-core === 064-core == 128-core —256-core
, 300 -, 1350 -, 1350

250 %
<200 =
150 [__ Lo

900 900

~
O

450

The number of tasks

O =~
moYo TS
R i@ o F S+
Time (sec) Time (sec)

(a) Allocated. (b) Pending. (c) Completed.

Figure 12. The number of allocated, pending, and completed tasks over time for the
401.bzip2 benchmark.

4.3. Task Management Optimization

In the previous section, we found that task management overhead significantly degrades the
performance of specific benchmarks involving a large number of tasks. To resolve this problem,
we adopted a simple optimization strategy to reduce the total number of tasks, i.e., an optimized task
simulates several epochs sequentially, whereas un-optimized tasks perform the simulation of only one
epoch. In other words, we reduced the number of input files because a single map task is required
to manipulate each input file in the Hadoop-based cloud computing system. For our optimization
strategy, we extended each input file to contain one or more epochs such that the total number of tasks
is less than four times the number of available cores, i.e., not the number of available cores, by suitably
splitting input data. Because tasks in the Hadoop framework are typically assigned based on the
location of data used to execute the task, the number of tasks being the same as the number of available
cores may lead to load imbalance and consume significant network resources [49].

Figure 13 presents the reduction of tasks achieved by the optimization strategy when using
256 cores. The leftmost eight benchmarks and the 437 leslie3d benchmark did not require optimization
because the number of tasks was sufficiently small without optimization, i.e., the number of epochs
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was less than 1024. For the other benchmarks, we decreased the number of tasks by 66.4% on
average by applying our optimization strategy. The number of tasks for the 483.xalancbmk benchmark
was significantly reduced from 6991 to 542 by using our optimization strategy, i.e., 92% of tasks
were eliminated.

Therefore, we obtained considerable performance improvements by using our task management
optimization strategy when utilizing 256 cores, as shown in Figure 14. [Reviewer] - Point2] In particular,
we achieved more significant performance improvements for the benchmarks with large numbers of
epochs in Figure 9c. The speedup for the 483.xalancbmk benchmark increased from 7.8 x to 33.6
and that for the 458.sjeng benchmark increased from 13.6x to 37.7 x. By employing our optimization
strategy for 256 cores, we improved the performance of proposed epoch-based simulation from 32.6 x
to 46.1x on average compared to the conventional MARSSx86 simulator.
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Figure 13. Reduction in the number of tasks using task management optimization strategy on 256 cores.
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Figure 14. Performance improvements via task management optimization when using 256 cores.

5. Related Works and Discussion

In this section, we compare and discuss previous studies on reducing simulation time for
microarchitecture simulations. Table 2 summarizes the characteristics of related schemes and our work
in terms of parallelism, performance scalability, and usefulness of cloud computing.
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Table 2. Comparison of the related schemes with our EPSim. FM and TM denote functional and timing
models, respectively.

Category Scheme Parallelism Scalability Cloud Computing
Higbtontodd St N No o
Sampling-based SimPoints [27] No No No
Hardware-assisted FAST [26] anlc:il\"/lI"M Bad No
ond timing dmolations Tensformer L4414 Bad No

Multicore and P-Mamabo [32]

mu}tlthrea}dlng SlackSim [34] Target core Limited No
simulation
Multicore and cloud EPSim [33] Epoch (Massive) Good Yes

computing simulation

5.1. Multicore and Multithreading Simulation

Many previous studies accelerated cycle-accurate simulation by adopting multithreading on
multicore platforms. P-Mambo [32] is a multithreaded implementation of IBM’s full-system simulator,
called Mambo [50], for modeling PowerPC systems. SlackSim [34] assigns each core of a target
chip multiprocessor (CMP) to one thread and then spreads threads across several machines for
parallelization. In order to reduce synchronization overhead, it parallelizes execution with the inclusion
of simulation time slack. Graphite [51] is a distributed parallel simulator infrastructure that simulates
many-core processors containing dozens to thousands of cores. Each core of the target architecture
is assigned to one thread and the threads are spread across multiple machines for parallel execution.
BigSim [52] serves as a performance prediction model for target machines and uses MPI to exploit
large-scale parallelism. These simulators assign target cores to multicore platforms, sometimes across
several machines. Therefore, synchronization overhead becomes significant when the number of cores
used increases, meaning that they do not have sufficient parallelism to execute simulations in parallel
using a cloud computing platform.

There have also been studies where a simulator itself is accelerated on a multicore platform
through the analysis of internal simulator properties. MARSSx86 [23] utilizes a tightly coupled
design between functional and timing models, as described in Section 2. However, the sequential
execution of functional models, interactions, and timing models results in significant overhead for
simulation. Transformer [31,44] separates sequential executions into functional models and timing
models, then executes them in parallel while postponing interaction as long as possible to prevent
interaction latency. Additionally, EPSim [33], which we used in our framework, eliminates interactions
and separates the functional and timing models into epochs. Thus, high performance scalability can
be achieved on multicore platforms. We adopt EPSim because of the massive parallelism available
through epochs and exploit them on a cloud computing platform to accelerate microarchitecture
simulation by executing epochs in parallel.

5.2. Sampling-Based Simulation

Instead of simulating an entire application, sampling-based simulation conducts cycle-accurate
simulation of only a few simulation points within an application. SimPoints [27] selects simulation
points that identify the various phases of a running application using basic block vectors (BBVs)
that represent the frequencies of executed sequences of basic blocks. For similar BBVs, SimPoints
assumes that their performance is similar and only simulates some representative BBVs. SMARTS [53]
uses a systematic sampling technique to select simulation points periodically by tuning several
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sampling variables, including size, mean, coefficient of variation, confidence level, confidence interval,
and systematic-sampling interval. Although the speedups achieved by these simulators are significant,
their results are less accurate because they only simulate a few simulation points. In addition, they do
not exploit any parallelism in execution.

5.3. High-Abstraction-Level Modeling

High-abstraction-level modeling simulators coordinate the details of cycle-accurate simulators
and find their midpoint, i.e., one-IPC simulators that only simulate core IPCs with a tradeoff between
accuracy and speed. Sniper [28] and IntervalSim [29] both use interval simulation to balance this
trade-off. In order to define the intervals, these simulators use miss events (branch misprediction or
cache and TLB misses) and adopt an analytical model for events to predict core performance without
any detailed simulation of the core’s pipeline stages. EPSim, which is used in our framework, simulates
each core’s pipeline stages in detail via epoch-by-epoch simulation. Thus, we are able to obtain various
accurate performance metrics.

5.4. Hardware Acceleration

There have been studies on adopting dedicated hardware resources for architectural simulators.
ProtoFlex [54,55] is a hybrid functional simulator that simulates common operations, such as ALU
instructions, on FPGAs, while complex behaviors, such as disk 1/Os, are modeled in software.
FAST [26] simulates functional models using software and timing models using special hardware
in parallel. Although these studies have achieved remarkable performance, they require specific
hardware, i.e., FPGAs. They also require significant effort to realize their hardware implementations.
However, specialized hardware resources and complex implementations are not required for EPSim-C.

6. Conclusions

Although cloud computing has grown dramatically and is useful for a wide variety of
data-intensive applications, studies on accelerating microarchitecture simulation using cloud
computing have not been performed. In this study, we adapted EPSim to a cloud computing
platform to exploit massive parallelism. We concentrated on utilizing the massive parallelism of
the existing epoch-based parallel simulator, i.e., EPSim, and found that the MapReduce process closely
resembles the process used by our existing simulator. Therefore, we mapped epoch-based execution to
MapReduce on a Hadoop-based system.

We verified EPSim-C using a Hadoop-based cloud computing system with one NameNode
and 16 DataNodes on Amazon EC2 and achieved an average speedup of 4.7 x on 32 cores, 9.9x on
64 cores, 18.6x on 128 cores, and 32.6x on 256 cores, while enhancing scalability, which allows us to
model state-of-the-art computing platforms for real workloads. In order to minimize the performance
degradation caused by task management overhead, we applied a simple optimization technique
to reduce the number of tasks by merging multiple epochs into one task. With this optimization,
we obtained an average speedup of 46.1x on 256 cores. In particular, the speedup for the 483.xalancbmk
benchmark, which has a large number of epochs, was improved by 4.3x through optimization,
ie., from 7.8 to 33.6x, using 256 cores. To the best of our knowledge, the proposed framework
is the first approach that accelerates microarchitecture simulation using cloud computing, which
allows us to model the state-of-the-art computing platforms for real workloads while providing
performance scalability.

In future work, we are going to analyze the performance when the working data set to be
simulated increases significantly because task management overhead, network overhead, and the
characteristics of load imbalance are expected to change. We also need to study a variety of
performance and security trends in detail when using more computing resources in a cloud computing
environment [56,57].
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