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Abstract: Many new challenges are faced by the PBR (passive bi-static radar) employing non-cooperative
radar illuminators. After the CFAR (constant false alarm) processor, the appearance of the amount of
false alarm clutter points impacts the following tracing performance. To enhance the PBR tracing
performance, we consider to reduce these clutter points before target tracing as soon as possible. In this
paper, we propose a PBR clutter suppression algorithm based on dilation morphology of non-uniform
grid. Firstly, we construct the non-uniform polar grid based on the acquisition geometry of PBR.
Then, with the help of the grid platform, we separate the false alarm clutter points based on the
dilation morphology. To efficiently operate the algorithm, we build up its parallel iteration scheme.
To verify the performance of the proposed algorithm, we utilize both simulated data and field data to
do the experiment. Experimental results show that the algorithm can effectively suppress most of the
clutter points. Besides, we respectively combine the proposed suppression algorithm with two typical
tracking algorithms to test the performance. Experimental results reveal that the compound tracing
algorithm outperforms the traditional one. It can enhance the PBR tracing performance, reduce the
occurrence probability of false tracks and meanwhile save time.

Keywords: PBR (passive bistatic radar); clutter suppression; non-uniform grid; dilation morphology

1. Introduction

Passive radar, employing non-cooperative illuminators, has attracted increasing interests in
recent years [1–12]. It has many obvious advantages over traditional active radars, such as low-cost,
feasibility of various illuminators and immune to the anti-radiation missiles [1]. In existing literature,
illuminators of opportunity for passive radar are generally categorized into four groups: broadcast
signals (DVB-T, FM, DAB, etc.) [3,4], mobile communication signals (Wi-Fi, GSM (Global System for
Mobile communication), LTE (Long Term Evolution), etc.) [6,7], geolocalization signals (GNSS (Global
Navigation Satellite System), GPS (Global Positioning System)) [8–10] and radar signals [11,12]. Most of
researches focus on passive systems employing the first three types of illuminators, while the literature
on passive systems employing non-cooperative radar signal as illuminator is rare because of the
difficulties in signal processing. In this paper, we explore the research based on the PBR (passive bi-static
radar) employing non-cooperative radar illuminators.

The operation geometry of the PBR system is illustrated in Figure 1. The system consists of
two channels: echo channel and reference channel. The former is designed for receiving scattered wave,
and the latter is for direct wave. The uncooperative transmitter is generally equipped with phased
array. Compared to the traditional mechanical scanning radar, the phased array radar has flexible
multi-beam scanning and various beam dwell times. It can achieve search and tracing simultaneously.
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Nowadays, many modern radars are equipped with phased array for detection. It is meaningful to
exploit the phased array radar signal as the illuminator. The beam scan of the uncooperative illuminator
is agile and flexible with unknown purpose. Since it is hard to predict and track its rapid changing
beam steering, we choose to adopt multi-beam forming simultaneously covering the surveillance
range [11] to realize space synchronization. Besides, to enhance the ability of anti-jamming and the
detection probability, the uncooperative radar usually transmits the signal that is agile in frequency,
PW (pulse width), BW (band width) and PRI (pulse recurrence interval). Based on the characteristics of
PBR above, it faces many new challenges.

• The space synchronization accuracy is not as good as the traditional radar, resulting in the
decreased SNR (signal noise ration) and the poor location precision.

• Simultaneous multi-beam forming leads to the redundant data being increased.
• The reference channel is not ideally compatible to the echo channel due to the multipath

and the minor difference of antenna performance. The performance of the following pulse
compression degrades.

• Due to the agility of the illuminator parameters, the number of the pulses utilized for detection is
less. Besides, the scattered wave of the target depends on the opportunity of the beam steering.
Thus, the valid data rate is decreased.

• Since the illuminator parameters are agile pulse by pulse, it is hard to adopt coherent integration
to suppress clutter like traditional radar.

• Low SNR calls for low threshold during CFAR (constant false alarm), that is to increase the
detection rate, whereas the false-alarm rate increases correspondingly.

Electronics 2018, 7, x FOR PEER REVIEW  2 of 18 

 

Nowadays, many modern radars are equipped with phased array for detection. It is meaningful to 

exploit the phased array radar signal as the illuminator. The beam scan of the uncooperative 

illuminator is agile and flexible with unknown purpose. Since it is hard to predict and track its rapid 

changing beam steering, we choose to adopt multi-beam forming simultaneously covering the 

surveillance range [11] to realize space synchronization. Besides, to enhance the ability of anti-

jamming and the detection probability, the uncooperative radar usually transmits the signal that is 

agile in frequency, PW (pulse width), BW (band width) and PRI (pulse recurrence interval). Based on 

the characteristics of PBR above, it faces many new challenges. 

 

Figure 1. Geometry of PBR utilizing uncooperative radar signal as transmitter. 

 The space synchronization accuracy is not as good as the traditional radar, resulting in the 

decreased SNR (signal noise ration) and the poor location precision. 

 Simultaneous multi-beam forming leads to the redundant data being increased.  

 The reference channel is not ideally compatible to the echo channel due to the multipath and the 

minor difference of antenna performance. The performance of the following pulse compression 

degrades. 

 Due to the agility of the illuminator parameters, the number of the pulses utilized for detection 

is less. Besides, the scattered wave of the target depends on the opportunity of the beam steering. 

Thus, the valid data rate is decreased.  

 Since the illuminator parameters are agile pulse by pulse, it is hard to adopt coherent integration 

to suppress clutter like traditional radar.  

 Low SNR calls for low threshold during CFAR (constant false alarm), that is to increase the 

detection rate, whereas the false-alarm rate increases correspondingly. 

Thus, after pulse compression and CFAR processor, the difficulties during target tracking can 

be concluded into four points. That is breaking tracks, amounts of false-alarm clutter data, random 

interval between adjacent tracing points and huge computation. 

To enhance the PBR tracking performance, we consider to reduce the false-alarm clutter points 

before tracking as soon as possible. The existing clutter suppression algorithms for passive radar are 

aimed at the direct wave interference and ground clutter. In addition, they mainly focus on the spatial 

domain, the temporal domain and the sub-carrier domain. In spatial domain, there is ABF (adaptive 

beamforming) and its extension version [13,14]. In temporal domain, researchers propose many 

adaptive filter algorithms applied on PBR, such as LMS (least mean square) [15], fast-block LMS [16], 

GANF (generalized adaptive notch filter) [17] and so on. Adaptive filter is of low convergence speed; 

however, ECA [18] (extensive cancellation algorithm) covers its deficiency. In recent years, many 

algorithms around ECA have been proposed, such as ECA-S (ECA-sliding) [19], ECA-ES (ECA-

expectation simplified) [20] and so on. In sub-carrier domain, algorithms only work in orthogonal 

Direct wave

Scattered wave

Uncooperative 

transmitter

Reference channel

Signal processor

Echo 

channel

Figure 1. Geometry of PBR utilizing uncooperative radar signal as transmitter.

Thus, after pulse compression and CFAR processor, the difficulties during target tracking can
be concluded into four points. That is breaking tracks, amounts of false-alarm clutter data, random
interval between adjacent tracing points and huge computation.

To enhance the PBR tracking performance, we consider to reduce the false-alarm clutter points
before tracking as soon as possible. The existing clutter suppression algorithms for passive radar
are aimed at the direct wave interference and ground clutter. In addition, they mainly focus on
the spatial domain, the temporal domain and the sub-carrier domain. In spatial domain, there is
ABF (adaptive beamforming) and its extension version [13,14]. In temporal domain, researchers
propose many adaptive filter algorithms applied on PBR, such as LMS (least mean square) [15],
fast-block LMS [16], GANF (generalized adaptive notch filter) [17] and so on. Adaptive filter is of
low convergence speed; however, ECA [18] (extensive cancellation algorithm) covers its deficiency.
In recent years, many algorithms around ECA have been proposed, such as ECA-S (ECA-sliding) [19],
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ECA-ES (ECA-expectation simplified) [20] and so on. In sub-carrier domain, algorithms only work
in orthogonal frequency-division multiplexing-based PBR, such as RLS-C (recursive least square by
sub-carrier) [21], ECA-C (ECA by carrier) [22], ECA-CD (ECA by carrier and doppler shift) [23] and so on.

In addition to the direct wave interference and ground clutter, the radar illuminator-based PBR is
also influenced by the false-alarm clutter during processing, as analyzed above. Rare literatures discuss
the false-alarm clutter suppression algorithm in spatial–temporal domain before tracing. In this paper,
we aim to put forward a PBR false-alarm clutter suppression algorithm. To make a low budget solution,
we resort to the grid-based method so that we avoid calculating point-to-point Euclidean distance.
In [24], grid-based DBSCAN is proposed for clustering objects in radar data. The method is not specially
designed for PBR and its model is simple. In [25], ENM (ellipsoid norm method) is proposed to
promise optimal result in passive multi-static location. It focuses on finding the nearest grid point in
grid-based method. However, it only works in the noise-free scenario and is not suitable for dense
clutter environment. Thus, based on the acquisition geometry of PBR, we firstly propose a non-uniform
polar grid construction method. In addition, with the help of the grid platform, a false-alarm clutter
separation method is proposed based on dilation morphology. The combination of these two steps is
the whole algorithm we proposed in this paper.

The remaining part is organized as follows. Section 2 illustrates the geometrical relationship of
PBR and describes the proposed non-uniform polar grid construction method. Section 3 describes
the grid-based clutter suppression method and its parallel iteration scheme. Section 4 describes both
simulated data experiment results and field data experiment results. Section 5 is the conclusion.

2. Non-Uniform Polar Grid Construction for PBR

According to the bi-static radar position principle, Figure 2 demonstrates the geometrical
relationship between target, transmitter and receiver. Rr stands for the range of the target, that is the
distance between target and receiver. Rt is the distance between target and transmitter. L stands for the
baseline range between transmitter and receiver. β stands for the bi-static angle, that is the intersection
angle between the line from receiver to target and the line from transmitter to target. θr stands for the
azimuth angle, that is the supplementary angle between the line from receiver to transmitter and the
line from receiver to target.
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Figure 2. The geometrical relationship of PBR.

To locate the target, we should find its azimuth and range. The azimuth can be directly measured
through the passive bi-static radar system. However, the range can only be calculated through the
bi-static range sum. Suppose RS is the bi-static range sum. Thus,

Rs = Rt + Rr (1)

Referring to the cosine law, the relationships between Rr and Rs can be derived into Equations (2)
and (3).

Rr = (R2
s − L2)/(2(Rs + Lcosθr)) (2)

Rs = Rr +

√
R2

r + L2 + 2RrLcos(θr) (3)
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From Equation (2), we can find that the mono-static range Rr is a non-linear function of the bi-static
range sum RS and the azimuth angle θr.

In passive bi-static radar system, firstly, achieve the time synchronization of the echo channel
with the help of the reference channel. Then, measure the difference between RS and L through the
time delay of echo. Since L is fixed, RS can be directly measured from echo channel. As RS and θr are
direct measurements, the measuring and detecting error transfer to Rr by Equation (2) at last. Due to
non-linear relationship between RS and Rr, it is necessary for us to construct a non-uniform grid for
the latter clutter suppression processing.

At first, we derive the first order Taylor series expansion of Equation (2) at an arbitrary position
(Rs0, θ0), shown in Equation (4).

Rr(Rs0 + ∆r,θ0 + ∆θ)

= Rr(Rs0,θ0) + ∆r∂Rr(Rs,θ0)
∂Rs

|Rs=Rs0 + ∆θ∂Rr(Rs0,θ)
∂θ |θ=θ0 + o(∆r, ∆θ)

(4)

Thus, the transfer error of the Rr caused by RS and θ at the position M(Rs0, θ0) is derived below.

∆Rr = Rr(Rs0 + ∆r,θ0 + ∆θ) −Rr(Rs0,θ0)

= ∆r∂Rr(Rs,θ)
∂Rs

|Rs=Rs0,θ=θ0 + ∆θ∂Rr(Rs,θ)
∂θ |Rs=Rs0,θ=θ0 + o(∆r, ∆θ)

= ∆r
R2

s0+L2+2Rs0Lcos(θ0)

2(Rs0+Lcos(θ0))
2 + ∆θ

(R2
s0−L2)Lsin(θ0)

2(Rs0+Lcos(θ0))
2 + o(∆r, ∆θ)

(5)

Assume ρ1(Rs0,θ0) =
R2

s0+L2+2Rs0Lcos(θ0)

2(Rs0+Lcos(θ0))
2 , ρ2(Rs0,θ0) =

(R2
s0−L2)Lsin(θ0)

2(Rs0+Lcos(θ0))
2 .

Then, omit the Peano remainder term o(∆r, ∆θ).

∆Rr(∆r, ∆θ)|Rs=Rs0,θ=θ0 ≈ ρ1(Rs0,θ0)∆r + ρ2(Rs0,θ0)∆θ (6)

From Equation (6), we can find that when ∆r and ∆θ are fixed, the transfer error changes with the
position (Rs0, θ0). To facilitate following operation, we divide the detection coverage into grids based
on the transfer error expansion and project the processing data into grids.

Assume the bi-static range error ∆r and the azimuth angle error ∆θ obey the Gaussian distribution
with zero-mean, as shown below.

∆r ∼ N(0,σ2
r ); ∆θ ∼ N(0,σ2

θ) (7)

In general, σr, the standard deviation of ∆r, mostly relates to the range resolution. In addition σθ,
the standard deviation of ∆θ, mostly relates to the space synchronization accuracy and the array error.
We suppose them as known constant. Further discussion about them is not included in this paper.

Since ∆Rr is the linear function of ∆r and ∆θ, ∆Rr is also obey the Gaussian distribution with
zero-mean, as shown below.

∆Rr ∼ N(0,ρ2
1(Rs0,θ0)σ

2
r + ρ2

2(Rs0,θ0)σ
2
θ) (8)

There is a 3σ principle of Gaussian distribution in the probability theory. In Gaussian distribution,
the probability of the data distributing in the range (µ− 3σ,µ+ 3σ) is 99.74%. Where µ is the mean
value of sample set. σ is the standard deviation of database.

Based on the analysis above, the grid spacing is designed shown in Equations (9) and (10).

δr(Rs0,θ0) = 3
√
ρ2

1(Rs0,θ0)σ
2
r + ρ2

2(Rs0,θ0)σ
2
θ

(9)

δθ(Rs0,θ0) = 3σθ (10)
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where δr(Rs0,θ0) and δθ(Rs0,θ0) are the grid spacing at the position (Rs0, θ0) in range dimension and
angular dimension respectively.

As the δθ is uncorrelated with the position (Rs0, θ0), the grid is divided evenly in the angular
dimension. However, in range dimension, the pace will be iteratively calculated based on the present
position. Assume the observing scope is from θ0 to θmax and from r0 to rmax. The polar mesh grid
calculation step is shown in Table 1.

Table 1. The polar mesh grid calculation steps.

1. Calculate angular coordinate

The angular coordinate set is Θ =
{
θk|θk+1 − θk = 3σθ, k = 0 . . .N, N =

[
θmax−θ0

3σθ

]}
. Where [·] is the symbol of

round down, and N is the mesh counts in angular dimension.

2. Aiming at each angular coordinate θk in Θ, iteratively calculate the grid division in range dimension.

For θk, k = 0 . . .N
Initialization: i = 0, Ri = r0;

Iteration: Rsi = Ri +
√

R2
i + L2 + 2RiLcos(θk);

ρ1(Rsi,θk) =
R2

si+L2+2RsiLcos(θk)

2(Rsi+Lcos(θk))
2 , ρ2(Rsi,θk) =

(R2
si−L2)Lsin(θk)

2(Rsi+Lcos(θk))
2 .

Ri+1 = Ri + 3
√
ρ2

1(Rsi,θk)σ
2
r + ρ2

2(Rsi,θk)σ
2
θ

;
i = i + 1;
Terminate when Ri > rmax.
Nk = i. Nk is the mesh counts in range dimension for θk.
The range coordinate set is Λ = {R i,θk

|i = 0 . . .Nk, θk ∈ Θ
}
.

Referring to the proposed polar grid calculation algorithm, we calculate and make an example
map of the polar grid in Figure 3. Set the observing scope 100◦ to 160◦ in azimuth and 20 km to 100 km
in range. Blue lines denote the grid division in angular dimension, while red lines stand for the grid
division in range dimension. It is obvious that closer to the baseline angle 180◦, the grid size is bigger.
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3. Separate False Alarm Clutter from Data

We utilize the location dependency of target track within consecutive frames to separate false
alarm clutter from data. To reduce the computation load, the method in this section is proposed based
on the grid constructed in Section 2. More specifically, in this section, we resort to morphology, usually
applied in image processing, to achieve clutter separation.

The process is divided into three steps. Firstly, mark the point on the polar grid according to
its position measured. Secondly, separate false alarm clutter point from data based on morphology
algorithm. Thirdly, iteratively complete the operation frame by frame.

3.1. Mark the Point on Grid

After the CFAR processor and the Direction of Angle (DoA) estimation, we obtain the point data
carrying with its own location information, namely range and azimuth angle. The first step of the
separation is to mark those points on the grid constructed in Section 2 based on their locations. As the
grid is uniform in angular dimension, to facilitate the calculation, we operate in order from azimuth
angle to range. Assume na, nr as the grid index of the point in angular dimension and range dimension
respectively. r and α refer to its range and azimuth angle. The calculation method is described in
Equations (11) and (12).

na =
[
α

∆θ

]
+ 1 (11)

nr =
{
ind|net(ind, na) ≤ r < net(ind + 1, na)

}
(12)

where [·] is the symbol of round down. ∆θ is the angular spacing of the grid. net is the grid coordinate
matrix in accord with the range coordinate set Λ which is calculated in Section 2. The number of
columns in net is the same as the number of elements in the angular coordinate set Θ where each
column vector is the range division corresponding to each angular value. According to the range and
angular index calculated above, mark the point on a matrix A with the same size of net.

3.2. Separate False Alarm Clutter from Data Based on the Dilation Morphology

In general, the true points of the target track have the feature of location dependency among
several consecutive frames, whereas the false alarm clutter points are relatively isolated. Assume Fn

is the object frame. Ψ =
{
Fn−k . . . Fn−1, Fn+1 . . . Fn+k

}
is the group of the reference frames, before and

after several frames of Fn. Where k is the half number of the reference frames. Firstly, mark the points
of the frame in group Ψ one by one. Obtain the mark-matrix An−k . . . An−1, An+1 . . .An+k respectively,
and compose them into a new mark-matrix Γn, shown in Equation (13). Meanwhile, mark the points of
the object frame on the matrix An.

Γn = An−k ∪ . . .∪An−1 ∪An+1 ∪ . . .∪An+k (13)

To facilitate following iteration calculation, we replace (13) by another more specific operation,
described in Equation (14). Where Bm(·) is the symbol of binarization.

Γn = Bm(An−k + · · ·+ An−1 + An+1 + · · ·+ An+k) (14)

Next, to ensure the target points in the neighborhood of the points from reference frames, we do
morphological dilation on Γn with a rectangular structural element B. The size of B depends on the
coarse estimation of the target’s move range. The dilation result matrix marks the neighborhood area
of the points from reference frames. Mn in Equation (15) is the dot product of the dilation result and
the object mark-matrix An.

Mn = (Γn ⊕ B) · ∗An (15)
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where ⊕ is the symbol of dilation. ∗ is the symbol of the dot product. The matrix Mn stands for the final
marked area of screened data for the frame Fn. To facilitate realization, the dilation of binary matrix
can be expressed by binarization after convolution. So Equation (15) can be rewritten as

Mn = Bm(Γn ⊗ B) · ∗An (16)

where ⊗ is the symbol of convolution.
The processing progress is illustrated in Figure 4.
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Figure 4. The sketch map of processing progress: (a) general view; (b) structural element B; (c) reference
mark-matrix Γn; (d) dilation result; (e) object mark-matrix An; (f) screened data for An.

We choose a simple case to clearly illustrate how the proposed algorithm operates. Figure 4a
indicates the general view of the operation. Figure 4b–f shows the processing result in each step.
After the composition of reference frames, dilation and the point product with object frame, we can
obtain the screened data, where the clutter points are filtered out. In this case, Structural element B is
a 3× 3 square matrix, as shown in Figure 4b. Figure 4c shows the reference mark-matrix Γn. Figure 4d
shows the dilation result of the B and Γn. Figure 4e is the object mark-matrix An with five suspected
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areas. Figure 4f shows the result, the screened data for An. Obviously, the points in two areas of yellow
background are retained, yet rest of them are suspected as clutters and filtered out.

It is noteworthy that since the transfer error changes with the point location, the real size and
shape of the structural element for dilation is not fixed in fact. It changes along with the location of the
suspected point. However, as the processing data has been abstracted through the non-uniform polar
grid, the change of the structural element does not involve in this section. The left part of Figure 5
is the partial enlarged map of Figure 3. There are two structural elements, corresponding to point
A and B, with different shape and size. Both are projected into the same element for convenience
during processing.
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3.3. Iteratively Calculation Frame by Frame

To efficiently operate the algorithm, we further explore its iterative and parallel calculating scheme.
Referring to Equation (14), we can derive the reference mark-matrix Γn+1:

Γn+1 = Bm(An+1−k + · · ·+ An + An+2 + · · ·+ An+1+k)

= Γn +Bm(An + An+1+k −An+1 −An−k)

= Γn +Bm(An −An−k) +Bm(An+1+k −An+1)

(17)

Assume

ΨAn =

Bm(An −An−k) n > k

Bm(An) n ≤ k
(18)

Thus, Equation (17) will be derived into Equation (19).

Γn+1 = Γn + ΨAn + ΨAn+1+k (19)

where k is the half number of the reference frames. When n = 1, Γ1 = Bm(A2 + · · ·+ A1+k).
It can be observed that Equations (11), (12), (16), (18) and (19) are relatively independent of

calculation. To promote the efficiency of the algorithm, we split the whole process into two parts for
parallel calculation and build up an intermediate database to link them together. One is frame processing
part, and the other is interframe processing part. Both are designed to operate in parallel. Based on the
above analysis, the clutter separation algorithm is described in below chart, shown in Figure 6.

The data frame Fi flown from the CFAR processor is input in this system. i is the index of the
current frame flowing in. When i > k, the interframe processing part starts operating. n is the index
of the current processing frame, and is independent of the index i. In frame processing part, mark
the data of Fi on the grids and calculate ΨAi. Save Ai and ΨAi into the intermediate database called
by clutter separation in interframe processing part. Finally, iteratively compute and output the mark
matrix Mn in the interframe processing part.
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4. Experiment result and Analysis

In this section, the proposed algorithm is tested on a simulated scenario in Section 4.1 and a real
scenario in Section 4.2. The computer configuration for experiment: Inter(R) Core(TM) i7-4790 CPU @
3.60 GHz. RAM: 16.0 GB. All operations in this section run on Matlab R2018a.

4.1. Testing by Simulated Data

4.1.1. Scenario for Simulation

The surveillance scope is set from 60◦ to 170◦. There are five targets moving with constant velocity
in the scope. Table 2 lists the track settings of five targets. Plot these target tracks in polar coordinates,
as Figure 7a shows.

Table 2. The track settings of five targets.

Start Position (km, degree)
in Polar Coordinates

Start Position (km) in
Cartesian Coordinates Track Slope Track Intercept

(km)

Target 1 (86.023,144.5) (−70, 50) 5 60
Target 2 (70.456,96.5) (−8, 70) 10 100
Target 3 (80.623,82.9) (10, 80) −3 10
Target 4 (76.158,113.2) (−30, 70) −10 80
Target 5 (70.711,135) (−50, 50) 30 55

Since the parameter of the illuminator is agile and various, PBR utilizes only part of pulses with
specific aims for detection. To make closer to reality, the time interval between pulses utilized is
not constant. The whole time length of simulated data is 50 s. The number of valid pulses is set
as 667. The time interval between adjacent valid pulses is allocated randomly. Figure 8 shows the
pulse interval allocation of simulated data. So, the detection result from the ideal echo of the target is
not uniformly continues. Figure 7b demonstrates the target tracks points based on the pulse interval
allocation with measurement error.
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Besides, due to the flicker of target’s RCS in PBR, target can only be detected from part of
valid pulses. Figure 7c demonstrates the real target points detected. The signal to clutter ratio in this
experiment is defined in Equation (20).

SCR = log (
Nsig

Nclu
) (20)

where Nsig represents the mean number of the valid target detection points in each frame. Nclu represents
the mean number of the false alarm clutter points in each frame. Set SCR as −1.26 dB. Figure 7d shows
the final detection result from CFAR, which is the simulated data for following experiment.
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4.1.2. The Clutter Suppression Performance Analysis

For grid construction, the standard deviation of range is set as 300 m according to the bandwidth
of the illuminator. The standard deviation of angle is set as 0.3 according to the number of beams
simultaneously covering the surveillance range. The range is from 20 km to 120 km. The angle scope
is from 60◦ to 170◦. The baseline range is 400 km. For frame operation, we categorize the simulated
data into frame data by every 0.5 seconds. The structural element size is 3 × 3. The half number of the
reference frames is set as 3. Set SCR as −1.26 dB. Figure 9 demonstrates the contrast before and after
the suppression. In addition Table 3 shows three performance indexes of the suppression algorithm.
The detection accuracy rate is the ratio of the number of correct target points extracted to the whole
number of the correct target points. The false alarm decline rate is the ratio of the number of the false
points extracted to the whole number of the clutter points set before. The miss detection rate is the ratio
of the number of missing target points to the whole number of correct target points. From Table 3 and
Figure 9, we can conclude that near 90% of clutter points are suppressed, while 97.45% of target points
retain. To illustrate the algorithm performance comprehensively, change the SCR of the simulation
scenario from −3 dB to 1 dB. In each SCR scenario, do Mont-Carlo experiment for 50 times and calculate
the mean value of the performance indexes. We obtain following results, as Figure 10 shows. Red line
stands for the correct detection rate. Blue line stands for the CFAR decline rate. Green line stands for
the missing rate. Over 90% of target points can be extracted correctly in this algorithm. In addition
when SCR is up to −2 dB, the number of false alarm points can be decline to the 30% of the original
number. When SCR is up to −1 dB, over 90% of clutter points can be suppressed.
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Table 3. The performance indexes of the suppression algorithm.

Detection Accuracy Rate False Alarm Decline
Rate Miss Detection Rate

97.45% 10.24% 2.55%

4.1.3. Computation Analysis

When the uncooperative illuminator and the receiver of the PBR are located at fix sites,
the non-uniform polar grid is fixed according to the acquisition geometry. The calculation of the
grid is done in preprocess only once. So, the computation analysis of the grid construction is not
involved in this section. In frame processing, assume the grid size is m1 ∗m2. The calculation of
A for one processing point concludes m1 + m2 additions. The calculation of ΨA concludes m1m2
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additions. In interframe processing, assume the structural element size is s1 ∗ s2. The calculation of Γ
concludes 2m1 ∗m2 additions. The calculation of M needs (s1 ∗ s2 + 1)·(m1 ∗m2) multiplications and
(s1 ∗ s2 − 1)·(m1 ∗m2) additions.
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Suppose the frame number is k and the points number in each frame is n. So the whole process
needs k[n(m1 + m2) + (2 + s1 ∗ s2)·(m1 ∗m2)] additions and k(s1 ∗ s2 − 1)·(m1 ∗m2) multiplications.
That is o(k ∗ n) additions and o(k) multiplications. Therefore, the addition times depends on the total
number of points. In addition, the multiplication times only depends on the number of frames.

During tracing, the calculation amount relating to the number of clutter points is mostly caused by
the Euclidean distance calculation between points. Assume M is the total number of points for tracing
in each frame. In two consecutive frames, there are M2 point pairs for processing. For each point pair,
the calculation of the Euclidean distance needs 3 additions and 3 multiplications. Thus, the calculation
amount of the Euclidean distance is o(k ∗M2) additions and o(k ∗M2) multiplications. Where k is the
total number of frames.

Suppose our algorithm can suppress 90% clutter points, and this suppression process only
consumes o(k ∗M) additions and o(k) multiplications. After suppression, the calculation amount of
the Euclidean distance will descend to the 1% of the original. Thus, we pay low calculation amounts
for reducing much more computation amounts of tracing.

4.1.4. Test the Performance Combining with Tracking Algorithm

We combine the proposed suppression algorithm with two typical tracking algorithms to test the
performance. One is traditional NN TO-MHT algorithm (Nearest Neighbor Track Oriented-Multiple
Hypothesis Tracking) [26], abbreviated as NN-MHT in this paper. The other is SNN-Kalman tracking
algorithm (Suboptimal Nearest Neighbor - Kalman) [27], which is proposed aiming at multi-target
tracking in non-cooperative passive system. To explicitly name the proposed algorithm, we name its
abbreviation as MCSNG (Multi-frame Clutter Suppression based on Non-uniform Grid). Combine
the clutter suppression with two tracking algorithms mentioned above respectively. For each frame,
the tracking process follows with the clutter suppression in pipeline operation. Based on the difference
of the tracking process, we name these compound algorithms as MCSNG-NN and MCSNG-SNN-K
respectively. To make comparison, we utilize the original data without clutter suppression for tracing.
Choose four indexes (total number of traces, mean trace length, maximum trace length, time consuming)
to evaluate the tracing performance. Set the maximum velocity and the maximum accelerated velocity
as 1000 m/s and 200 m/s2 respectively. In Kalman filtering process, the maximum time period of blind
prediction is set as 15 s.

Figure 11a,b illustrates the tracing result of NN-MHT and MCSNG-NN, respectively. In addition
Table 4 lists the tracing result indexes of both. Utilize different colors to distinguish different tracks.
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The number of false tracks produced from NN-MHT is 17, which is much more than MCSNG-NN.
Besides, the time consuming of the MCSNG-NN is 76% less than the one of the NN-MHT.
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tracing result.

Table 4. The performance indexes of NN-MHT and MCSNG-NN.

Total Number of Traces Mean Trace Length Max Trace Length Time Consuming (s)

NN-MHT 22 39.13 89 2.99
MCSNG-NN 6 78.83 89 0.7

Figure 12a,b illustrates the valid tracing result of SNN-Kalman and MCSNG-SNN-K respectively.
Comparing with five target tracks set before, we calculate the mean trace error of the valid tracing
results from both algorithms, as Table 5 list. It is obvious that the tracking precision of MCSNG-SNN-K
is higher than the one of SNN-Kalman. Since the time interval is not constant, the velocity estimation
accuracy will be affected. However, the velocity estimation of MCSNG-SNN-K is closer to the true value
than SNN-Kalman. Table 6 shows the index of the tracing result. It can be found that MCSNG-SNN-K
is more efficiency and produces less false tracks than SNN-Kalman.
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Table 5. The comparison of five targets tracing results between SNN-Kalman and MCSNG-SNN-K.

Mean Trace Error (m) Velocity (m/s)

Track NO. SNN-Kalman MCSNG-SNN-K SNN-Kalman MCSNG-SNN-K True Value

1 548.87 434.56 823.5 821.7 800
2 1596.55 389.63 873.6 809.4 750
3 644.06 141.85 614.7 612.0 600
4 1286.59 283.97 395.1 415.2 400
5 2721.07 1840.33 543.5 604.0 600

Table 6. The performance indexes of SNN-Kalman and MCSNG-SNN-K.

Total Number of Traces Mean Trace Length Max Trace Length Time Consuming (s)

SNN-Kalman 104 64.89 654 0.6715
MCSNG-SNN-K 23 124.47 474 0.6081

4.2. Testing by the Field Data

In this part, we utilize the field data to test the performance of the proposed algorithm.
The PBR field experiment is done with an uncooperative radar with frequency, PW and PRI agile,
and it aims to detecting the air-flights. We make validations with the ADS-B (Automatic dependent
surveillance-broadcast) dataset. The detection scope is from 80◦ to 170◦. The detection range is from
50 km to 200 km. Due to unknown parameters of illuminator, the performance of pulse compression
among several pulses degrades. To increase the detection probability, we reduce the CFAR rate to 10−2.
After CFAR detection, we adopt the multi-beam amplitude comparison direction measurements.
Figure 13a illustrates the final detection point map of the field data with 390 s duration. Two directions
of jamming are located at 144◦ and 148◦. Suppress the jamming in two directions and adopt the
proposed clutter suppression algorithm. The structural element size is 5 × 5. The half number of the
reference frames is set as 2. The suppression result is shown in Figure 13b. It is obvious that most of
points are filtered out. Instead, points in three suspected track areas are retained. Referring to the
ADS-B dataset, we plot the real-time civil flight information in Figure 13c, which is selected with
the same duration and detection scope as the field data. The line with different colors stands for
different flight track. There are three flights in the detection scope. Comparing with the ADS-B data,
we can find that the proposed algorithm can effectively suppress the clutters and retain most of the
target information.

Like the operations in Section 4.1.4, we test two compound tracking algorithms (MCSNG-NN
and MCSNG-SNN-K) by the field data. The maximum velocity is set as 1200 m/s. The maximum
accelerate velocity is set as 200 m/s2. In Kalman filtering process, the maximum time period of blind
prediction is set as 15 s. Each frame consists of the clustered point data with 0.5 s period. Figure 14
and Table 7 illustrates the tracing results and the performance indexes of NN-MHT and MCSNG-NN.
Figure 15 and Table 8 illustrates the tracing results and the performance indexes of SNN-Kalman
and MCSNG-SNN-K. Comparing with the ADS-B dataset, we marked the true tracks by the ellipses
with dotted line. It is obvious that MCSNG-NN reduces the occurrence probability of false tracks
relative to NN-MHT. In addition its time-consumption drops to 28.16% of the original NN-MHT
time-consumption. Besides, similar conclusions are suitable to SNN-Kalman and MCSNG-SNN-K.
We can find that MCSNG-SNN-K reduces the occurrence probability of false tracks and saves time
relative to traditional SNN-Kalman.
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Table 7. The performance indexes of NN-MHT and MCSNG-NN.

Total Number of Traces Mean Trace Length Max Trace Length Time Consuming (s)

NN-MHT 31 38.7 135 4.83
MCSNG-NN 9 39.3 120 1.36
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Table 8. The performance indexes of SNN-Kalman and MCSNG-SNN-K.

Total Number of Traces Mean Trace Length Max Trace Length Time Consuming (s)

SNN-Kalman 23 254.5 734 0.8536
MCSNG-SNN-K 13 196.6 424 0.6467

5. Conclusions

For PBR detection, especially for those illuminators with frequency, PRI and PW agile, it brings
many challenges in following target tracing due to heavy clutters. Thus, combining with the features
of PBR, a preprocessing operation is introduced before target tracing. In this paper, we propose
a PBR cluttering suppression algorithm based on dilation morphology of non-uniform grid. According
to the acquisition geometry of PBR, the nonuniform grid construction method is proposed at first.
Then, iteratively separate false-alarm clutters from the point data based on dilation morphology.
We perform experiments utilizing both simulated data and field data. Experiment results show that the
proposed algorithm can effectively filter most false alarm clutters. Besides, combining with the tracing
algorithm, it can enhance the PBR tracing performance, reduce the occurrence probability of false tracks
and meanwhile save time. Furthermore, the theory of the proposed algorithm is also applicable for
3-D passive tracking, if the non-uniform grid for dilation is modified into cube. In current algorithm,
the non-uniform grid is calculated through the first order Taylor expansion. Its reminder term is larger
compared to the one of the higher order Taylor expansion. To balance the computation cost and the
model accuracy, it is meaningful to exploit the maximum acceptable magnitude of measurement
error in different positions. Future researches will focus on building up more specific non-uniform
grid for clutter suppression combined with the target tracing, especially for the grids close to the
baseline direction.
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for vehicle traffic monitoring. In Proceedings of the Microwaves, Radar and Remote Sensing Symposium,
Kiev, Ukraine, 25–27 August 2011; pp. 271–274.

7. Raja, R.A.; Noor, A.A.; Nur, A.R.; Asem, A.S.; Fazirulhisyam, H. Analysis on target detection and classification
in lte based passive forward scattering radar. Sensors 2016, 16, 1607. [CrossRef] [PubMed]

8. Hong-Cheng, Z.; Jie, C.; Peng-Bo, W.; Wei, Y.; Wei, L. 2-d coherent integration processing and detecting of
aircrafts using gnss-based passive radar. Remote Sens. 2018, 10, 1164. [CrossRef]

9. Ma, H.; Antoniou, M.; Pastina, D.; Santi, F.; Pieralice, F.; Bucciarelli, M.; Cherniakov, M. Maritime Moving
Target Indication Using Passive GNSS-based Bistatic Radar. IEEE Trans. Aerosp. Electron. Syst. 2018, 54,
115–130. [CrossRef]

10. Suberviola, I.; Mayordomo, I.; Mendizabal, J. Experimental results of air target detection with a gps
forward-scattering radar. IEEE Geosci. Remote Sens. Lett. 2012, 9, 47–51. [CrossRef]

11. Wang, Y.; Bao, Q.; Wang, D.; Chen, Z. An experimental study of passive bistatic radar using uncooperative
radar as a transmitter. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1–5. [CrossRef]

12. Zhu, Q.; Bao, Q.; Hu, P.; Chen, Z. Experimental study of aircraft detection by PBR exploiting uncooperative
radar as illuminator. In Proceedings of the International Conference on Information, Electronic and
Communication Engineering, Beijing, China, 28–29 October 2018; pp. 185–190.

13. Wang, Y.; Bao, Q.; Chen, Z. Robust adaptive beamforming using IAA-based interference-plus-noise covariance
matrix reconstruction. Electron. Lett. 2016, 52, 1185–1186. [CrossRef]

14. Yang, X.; Xie, J.; Li, H.; He, Z. Robust adaptive beamforming of coherent signals in the presence of the
unknown mutual coupling. IET Commun. 2018, 12, 75–81. [CrossRef]

15. Meller, M. Cheap Cancellation of Strong Echoes for Digital Passive and Noise Radars. IEEE Trans. Signal Process.
2012, 60, 2654–2659. [CrossRef]

16. Dwivedi, S.; Aggarwal, P.; Jagannatham, A.K. Fast block lms and rls-based parameter estimation and
two-dimensional imaging in monostatic mimo radar systems with multiple mobile targets. IEEE Trans.
Signal Process. 2018, 66, 1775–1790. [CrossRef]

17. Guan, X.; Hu, D.H.; Zhong, L.H.; Ding, C.B. Strong echo cancellation based on adaptive block notch filter in
passive radar. IEEE Geosci. Remote Sens. Lett. 2015, 12, 339–343. [CrossRef]

18. Colone, F.; O’Hagan, D.W.; Lombardo, P.; Baker, C.J. A multistage processing algorithm for disturbance
removal and target detection in passive bistatic radar. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 698–722.
[CrossRef]

19. Colone, F.; Palmarini, C.; Martelli, T.; Tilli, E. Sliding extensive cancellation algorithm for disturbance removal
in passive radar. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1309–1326. [CrossRef]

20. Fu, Y.; Wan, X.; Zhang, X.; Yi, J.; Zhang, J. Parallel processing algorithm for multipath clutter cancellation in
passive radar. IET Radar Sonar Navig. 2018, 12, 121–129. [CrossRef]

21. Zhao, Z.; Zhou, X.; Zhu, S.; Hong, S. Reduced complexity multipath clutter rejection approach for drm-based
hf passive bistatic radar. IEEE Access 2017, 5, 20228–20234. [CrossRef]

22. Zhao, Z.; Wan, X.; Shao, Q.; Gong, Z.; Cheng, F. Multipath clutter rejection for digital radio mondiale-based
HF passive bistatic radar with OFDM waveform. IET Radar Sonar Navig. 2012, 6, 867–872. [CrossRef]

http://dx.doi.org/10.1109/MAES.2018.160146
http://dx.doi.org/10.1049/iet-rsn.2015.0632
http://dx.doi.org/10.1049/iet-rsn.2013.0185
http://dx.doi.org/10.1109/TSP.2012.2236324
http://dx.doi.org/10.1109/TVT.2015.2392936
http://dx.doi.org/10.3390/s16101607
http://www.ncbi.nlm.nih.gov/pubmed/27690051
http://dx.doi.org/10.3390/rs10071164
http://dx.doi.org/10.1109/TAES.2017.2739900
http://dx.doi.org/10.1109/LGRS.2011.2159477
http://dx.doi.org/10.1109/LGRS.2015.2432574
http://dx.doi.org/10.1049/el.2015.4420
http://dx.doi.org/10.1049/iet-com.2017.0314
http://dx.doi.org/10.1109/TSP.2012.2187286
http://dx.doi.org/10.1109/TSP.2018.2795571
http://dx.doi.org/10.1109/LGRS.2014.2339826
http://dx.doi.org/10.1109/TAES.2009.5089551
http://dx.doi.org/10.1109/TAES.2016.150477
http://dx.doi.org/10.1049/iet-rsn.2017.0106
http://dx.doi.org/10.1109/ACCESS.2017.2756075
http://dx.doi.org/10.1049/iet-rsn.2012.0011


Electronics 2019, 8, 708 18 of 18

23. Chabriel, G.; Barrère, J.; Gassier, G.; Briolle, F. Passive Covert Radars using CP-OFDM signals: A new efficient
method to extract targets echoes. In Proceedings of the IEEE International Radar Conference, Lille, France,
13–17 October 2014; pp. 1–6.

24. Kellner, D.; Klappstein, J.; Dietmayer, K. Grid-based dbscan for clustering extended objects in radar data.
In Proceedings of the IEEE Intelligent Vehicles Symposium, Madrid, Spain, 3–7 June 2012; pp. 365–370.

25. Zhang, T.; Mao, X.; Zhao, C.; Liu, J. A novel grid selection method for sky-wave time difference of arrival
localization. IET Radar Sonar Navig. 2019, 13, 538–549. [CrossRef]

26. Guo, J.; Zhang, R. Efficient radar data processing algorithm for dense cluttered environment. In Proceedings
of the IEEE Cie International Conference on Radar, Chengdu, China, 24–27 October 2011; pp. 1692–1695.

27. Pan, S.S. Research and Engineering Realization of Multi-Target Tracking Technology for Non-Cooperative
Passive Detection System. Master’s Thesis, National University of Defense Technology, Changsha, China, 2017.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/iet-rsn.2018.5308
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Non-Uniform Polar Grid Construction for PBR 
	Separate False Alarm Clutter from Data 
	Mark the Point on Grid 
	Separate False Alarm Clutter from Data Based on the Dilation Morphology 
	Iteratively Calculation Frame by Frame 

	Experiment result and Analysis 
	Testing by Simulated Data 
	Scenario for Simulation 
	The Clutter Suppression Performance Analysis 
	Computation Analysis 
	Test the Performance Combining with Tracking Algorithm 

	Testing by the Field Data 

	Conclusions 
	References

