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Abstract: The residue number system (RNS) is a non-positional number system that allows one to
perform addition and multiplication operations fast and in parallel. However, because the RNS is
a non-positional number system, magnitude comparison of numbers in RNS form is impossible,
so a division operation and an operation of reverse conversion into a positional form containing
magnitude comparison operations are impossible too. Therefore, RNS has disadvantages in that
some operations in RNS, such as reverse conversion into positional form, magnitude comparison,
and division of numbers are problematic. One of the approaches to solve this problem is using the
diagonal function (DF). In this paper, we propose a method of RNS construction with a convenient
form of DF, which leads to the calculations modulo 2n, 2n

− 1 or 2n + 1 and allows us to design efficient
hardware implementations. We constructed a hardware simulation of magnitude comparison and
reverse conversion into a positional form using RNS with different moduli sets constructed by our
proposed method, and used different approaches to perform magnitude comparison and reverse
conversion: DF, Chinese remainder theorem (CRT) and CRT with fractional values (CRTf). Hardware
modeling was performed on Xilinx Artix 7 xc7a200tfbg484-2 in Vivado 2016.3 and the strategy of
synthesis was highly area optimized. The hardware simulation of magnitude comparison shows
that, for three moduli, the proposed method allows us to reduce hardware resources by 5.98–49.72%
in comparison with known methods. For the four moduli, the proposed method reduces delay by
4.92–21.95% and hardware costs by twice as much by comparison to known methods. A comparison
of simulation results from the proposed moduli sets and balanced moduli sets shows that the use of
these proposed moduli sets allows up to twice the reduction in circuit delay, although, in several
cases, it requires more hardware resources than balanced moduli sets.

Keywords: residue number system (RNS); diagonal function (DF); Chinese remainder theorem (CRT)

1. Introduction

The residue number system (RNS) is a non-positional number system that allows large length
numbers to be presented as numbers in independent bits of a small length, which enables computations
and the organizing of their parallelisms to be sped up. RNS has several advantages, such as the
possibility of faster addition and multiplication compared to all other number systems. Moreover,
the use of short numbers in RNS computations can significantly reduce the power consumption of
digital devices [1]. It is useful in the synthesis of RNS computational devices with parallel structure,
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such as field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC).
All these attractive features increase interest to RNS in the areas where large amounts of computation are
needed. The applications of RNS are digital signal processing [2–4], cryptography [5–7], digital image
processing [8], cloud computing [9], Internet of Things [10] and others. In [11], the authors propose
a technique to estimate real-valued numbers by means of the Chinese remainder theorem (CRT),
employing for this goal a Kroenecker based M-Estimation, to improve robustness. A new method
based on the Chinese remainder theorem (CRT) is proposed for absolute position computation in [12].
This has advantages in terms of hardware and flexibility because it does not use memory. The authors
of [13] offer to use RNS to improve the performance of the convolutional neural network developed
for pattern recognition tasks. Reference [14] describes the method of construction for finite impulse
response filers using RNS.

However, the limitations of RNS include some operations such as reverse conversion into positional
form, magnitude comparison and division of numbers in RNS [15,16]. These limitations exist because
RNS is a non-positional number system, and magnitude comparison of numbers in RNS form is
impossible, so the division operation consists of a magnitude comparison operation that is also a
problematic operation. Improving the efficiency of the comparison operation in RNS is something
that can be used in the development of new approaches to the implementation of other problematic
operations in RNS, such as subtraction-based division and the detection of dynamic range overflow.
Dynamic range overflow detectors in RNS are widely applied in the design of fault-tolerant systems
and secure communication channels [17].

The state-of-the-art in the described problem is as follows. The most common approaches to
performing non-modular RNS operations are based on mixed radix conversion (MRC) and the Chinese
remainder theorem (CRT) [1,18]. Another class of approaches to perform magnitude comparison in
RNS, which is based on the core functions defined from the RNS to the integer [19], was first proposed
Akushskii et al. [20]. Recently new alternatives have been developed for the implementation of the
non-modular RNS operations problem. These approaches are the use of CRT with fractional values
(CRTf) [21] and diagonal function (DF) [22,23]. References [24] and [25] demonstrate that the use of
DF has a significant drawback in the necessity to perform modulo sum of quotients (SQ) operations.
The authors of these papers show that DF usually does not provide advantages in comparison with
MRC and CRT. Therefore, in this paper, we will discuss the issue of constructing RNS with a convenient
form of DF, which leads to the calculations modulo 2n, 2n

− 1 or 2n + 1 since the numbers of this form
have very effective methods of hardware implementation, as designed in [26–28]. How balanced the
moduli set is plays an important role in this method. Table 1 shows samples of known moduli sets.

Table 1. Known balanced moduli sets.

Number of
Modules Moduli Set Condition References

3
{2n
− 1, 2n, 2n + 1} [29,30]{

2n
− 1, 2n+p, 2n + 1

}
[31]{

22n+p, 22n
− 1, 22n + 1

}
n odd, p ≤ n−5

2 [32]

4

{
2n
− 1, 2n, 2n + 1, 2n−1

− 1
}

n even [33]{
2n + 1, 2n

− 1, 2n, 2n−1 + 1
}

n odd [32]{
2n + 1, 2n

− 1, 2n, 2n+1 + 1
}

n odd [34]{
2n+k, 2n

− 1, 2n + 1, 2n±1
− 1

}
n even, k ∈ [0, n] [35]

5

{
2n
− 1, 2n, 2n + 1, 2n+1

− 1, 2n−1
− 1

}
n even [36]{

22n+p, 2n
− 1, 2n + 1, 2n

− 2
n+1

2 + 1, 2n + 2
n+1

2 + 1
}

n odd, p ≤ n−5
2 [33]

8
{
2n−5

− 1, 2n−3
− 1, 2n−3 + 1, 2n−2 + 1, 2n−1

− 1, 2n−1 + 1, 2n, 2n + 1
}

n = 2k, k ≥ 4 [37]
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The proposed approach to the construction of RNS can be effective in those applications in
which the comparison operation is a significant part of the calculations. One of the examples of such
an application is the motion estimation on video, estimated by using high-efficiency video coding
(HEVC/H.265) [38]. Another example of a such application is customized signal processing units.
For example, the sorting network uses a large number of comparators and is one of the key elements
in electronic finance data management systems, digital computers and communication systems [39].
Due to the excessive number of magnitude comparisons required in sorting a large pool of data,
the speed of the magnitude comparator determines the overall delay of the sorting process [35].

The rest of the paper is organized as follows. Section 2 discusses RNS issues, represented numbers,
and arithmetic operations in RNS. The Section 3 presents the construction of RNS with a convenient
form of DF and the results of the hardware simulation of magnitude comparison and reverse conversion
into the positional form using CRT, CRTf, and DF. Section 4 discusses the methods of RNS construction
presented in this paper and hardware simulation results. The conclusion of the paper is reported in
Section 5.

2. Materials and Methods

2.1. Background on RNS

Numbers in RNS are represented in the form of relatively prime numbers which are called moduli

β = {m1, . . . , mk}, GCD
(
mi, m j

)
= 1, for i , j. Any integer number 0 ≤ X < M =

k∏
i=1

mi can be uniquely

represented in RNS as a tuple {x1, x2, . . . , xk}, where xi = |X|mi = X mod mi. Operations of addition,
subtraction, and multiplication in RNS are defined by the formulas showing the carry-free parallel
nature of RNS:

A± B =
(
|a1 ± b1|m1

, . . . , |an ± bn|mn

)
, A× B =

(
|a1 × b1|m1

, . . . , |an × bn|mn

)
(1)

The reverse conversion of a number X from residues {x1, x2, . . . , xk} is based on CRT

X =

∣∣∣∣∣∣∣
n∑

i=0

∣∣∣∣∣∣∣M−1
i

∣∣∣
mi

xi

∣∣∣∣
mi

Mi

∣∣∣∣∣∣∣
M

, (2)

where Mi = M/mi, γi =
∣∣∣M−1

i

∣∣∣
mi

and
∣∣∣M−1

i

∣∣∣
mi

means a multiplicative inverse of Mi modulo mi.
The DF is defined as

D(X) =

∣∣∣∣∣∣∣
n∑

i=1

kixi

∣∣∣∣∣∣∣
SQ

, (3)

where SQ =
n∑

i=1
Mi is called the “diagonal modulus” of the RNS and ki =

∣∣∣−m−1
i

∣∣∣
SQ. The principles

of applying the DF for reverse conversion and numbers comparison are thoroughly shown in [24]
and [25]. Reverse conversion using DF can be implemented by the formula

X =

M ·D(X) +
n∑

i=1
xiMi

SQ
, (4)

In [25], magnitude comparison is presented using DF. The work uses the magnitude comparison
Algorithm 1 of X and Y, presented in [22], which relies on the following properties of the DF.
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Algorithm 1. Magnitude comparison using DF [22].

Input: X = {x1, x2, . . . , xn}, Y =
{
y1, y2, . . . , yn

}
, k = {k1, . . . , kn}, SQ;

Variable: Dx, Dy;
Calculations:
Dx = 0; Dy = 0;
fori = 0, n− 1 do
Dx = |Dx + kixi|SQ;
Dy =

∣∣∣Dy + kiyi
∣∣∣
SQ;

end for;
if Dx < Dy then
return ("X < Y");
else
if Dx > Dy then
return ("X > Y");
else
if x1 < y1 then
return ("X < Y");
else
if x1 > y1 then
return ("X > Y");
else
return ("X = Y");
end if;
end if;
end if;
end if;

It is obvious that the main obstacle to the development of very-large-scale integration (VLSI)
architectures based on the DF is the necessity to perform modulo SQ operations. Below, we show how
to construct RNS with a convenient form of DF that leads to modulo 2n, 2n

− 1 or 2n + 1 computations.

2.2. Construction Methods of RNS with Hardware Efficient DF

The choice of the optimal moduli set is a very important question in RNS theory since it has
an impact on performance and the quality of operations. In [26–28], authors perform high-speed
architectures of modulo 2n

± 1 adders. The use of moduli 2n, 2n
− 1 or 2n + 1 allows for there to be an

increase in computation performance. In addition, the choice of enough RNS dynamic range is a very
important question too. In [40], authors considered the influence of the RNS dynamic range on the
quality of image filtering. Therefore, it is necessary to choose optimal moduli sets, so we propose the
method of RNS construction with a convenient form of DF.

Let us consider two possible cases.

1. Among the RNS moduli m1, m2, . . . , mn there is an even one, and the others are odd. Then among
M1, M2, . . . , Mn there is an odd one, and the others are even and therefore SQ is odd.

2. All RNS moduli m1, m2, . . . , mn are odd. Then all M1, M2, . . . , Mn are odd and parity of SQ is the
same as the parity of the number of moduli n.

2.2.1. RNS with Even Module

One can suppose that m1, m2, . . . , mn−1 are odd and mn = 2ρ(2ln + 1) is even. We will choose m1,
m2, . . . , mn in such a way to satisfy SQ = 2k

− 1 or SQ = 2k + 1. We denote M0 = m1m2 . . .mn−1 and
S0 = M0

m1
+ M0

m2
+ . . .+ M0

mn−1
, thus SQ = S0mn + M0. If n is odd then S0 is even and therefore S0 = 2ω or

S0 = 2ω(2l0 + 1). If n is even then S0 is odd and S0 = 2l0 + 1.
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If SQ = 2k
− 1 then three cases are possible

2k
− 1 = M0 + 2ω2ρ(2ln + 1) or (5)

2k
− 1 = M0 + 2ω(2l0 + 1)2ρ(2ln + 1) or (6)

2k
− 1 = M0 + (2l0 + 1)2ρ(2ln + 1). (7)

Hence
2k = M0 + 1 + 2ω2ρ(2ln + 1) or (8)

2k = M0 + 1 + 2ω(2l0 + 1)2ρ(2ln + 1) or (9)

2k = M0 + 1 + (2l0 + 1)2ρ(2ln + 1). (10)

We choose M0 in a way that M0 = m1m2 . . .mn−1 = 2t
− 1 is a composite number and

GCD
(
mi, m j

)
= 1 for i , j. Since among the 2t

− 1 numbers, there are composite numbers much
more than prime numbers, then the choice of M0 is obviously possible. Therefore

2k = 2t + 2ω2ρ(2ln + 1) or (11)

2k = 2t + 2ω(2l0 + 1)2ρ(2ln + 1) or (12)

2k = 2t + (2l0 + 1)2ρ(2ln + 1). (13)

Hence, since t < k and t ≤ ω+ ρ we have

2k−t = 1 + 2ω+ρ−t(2ln + 1) or (14)

2k−t = 1 + 2ω+ρ−t(2l0 + 1)(2ln + 1) or (15)

2k−t = 1 + 2ρ−t(2l0 + 1)(2ln + 1). (16)

Suppose that ω+ ρ− t = 0 or ρ− t = 0. We have

2k−t = 1 + (2ln + 1) or (17)

2k−t = 1 + (2ln + 1) or (18)

2k−t = 1 + (2l0 + 1)(2ln + 1). (19)

Hence
2ln + 1 = 2 j

− 1, where j = 1, 2, 3, . . . (20)

or 2k−t
≡ 1(mod(2l0 + 1)) (21)

Congruence (21) is solvable due to the fact that GCD(2, 2l0 + 1) = 1. If r is an order of 2 modulo
2l0 + 1, then k− t = rj, where j = 1, 2, . . . , n. Hence 2ln + 1 = 2rj

−1
2l0+1 . From this, if it is necessary to find

M = m1m2 . . .mn, where mn is even and SQ = 2k
− 1 then proceed as follows.

1. Choose a composite M0 = m1m2 . . .mn−1 = 2t
− 1.

2. Compute S0.
3. Consider the possible cases.

a. If S0 = 2ω then ρ = t−ω, 2ln + 1 = 2 j
− 1, were GCD

(
2 j
− 1, mi

)
= 1 for i = 1, 2, . . . , n− 1.

mn = 2t−ω
(
2 j
− 1

)
, where j = 1, 2, 3, . . ., GCD

(
2 j
− 1, mi

)
= 1, i = 1, 2, . . . , n− 1.

b. If S0 = 2ω(2l0 + 1) then ρ = t − ω, 2ln + 1 = 2rj
−1

2l0+1 , where GCD(2ln + 1, mi) = 1,
i = 1, 2, . . . , n− 1, and r is order of 2 modulo 2l0 + 1.
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c. If S0 = 2l0 + 1 then ρ = t, 2ln + 1 = 2rj
−1

2l0+1 , where GCD(2ln + 1, mi) = 1, i = 1, 2, . . . , n− 1,
and r is order of 2 modulo 2l0 + 1.

Example 1. Suppose that M0 = m1m2 = 3 · 5 = 24
− 1, t = 4. Then S0 = 3 + 5 = 23, ω = 3.

m3 = 2ρ(2l3 + 1), ρ = 4− 3 = 1. 2l3 + 1 = 2 j
− 1, j = 1, 2, 3, . . ., GCD

(
2 j
− 1, 3

)
= 1, GCD(2ε j − 1, 5) = 1.

Examining a power of two, we have

21
− 1 = 1, 2l3 + 1 = 1, m3 = 2.

22
− 1 = 3, GCD(3, 3) , 1.

23
− 1 = 7, 2l3 + 1 = 7, m3 = 14.

24
− 1 = 15, GCD(15, 3) , 1.

25
− 1 = 31, 2l3 + 1 = 31, m3 = 62 etc.

Thus, we obtained the following RNS: {3, 5, 2}, SQ = 31 = 25
− 1, {3, 5, 14}, SQ = 127 = 28

− 1,
{3, 5, 62}, SQ = 511 = 29

− 1.
Note. For the case SQ = 2k + 1 one needs to take M0 = 2t + 1. The conclusions obtained are the

same as for SQ = 2k
− 1.

Example 2. Suppose that M0 = m1m2 = 3 · 11 = 25 + 1, t = 5. Then

S0 = 3 + 11 = 14 = 21
· 7, ω = 1, 2l0 + 1 = 7.

m3 = 2ρ(2l3 + 1), ρ = 5− 1 = 4, 2r
≡ 1(mod7), r = 3 j.

23
−1
7 = 1, 2l3 + 1 = 1, m3 = 24

· 1 = 16.
26
−1
7 = 63

7 = 9, GCD(9, 3) , 1.
29
−1
7 = 511

7 = 73, 2l3 + 1 = 73, m3 = 16 · 73 = 1168 etc.

Thus we obtained the following RNS:{3, 11, 16}, S = 257 = 28 + 1, {3, 11, 1168}, S = 16385 = 214 + 1.

2.2.2. RNS with Odd Moduli

We only consider the most important practical cases, for example, when RNS contains three,
four or five moduli [41].

Case 1. RNS with three moduli. In analogy with the above notations M0 = m1m2, S0 = m1 + m2,
and SQ = M0 + S0m3. One can verify that S ≡ 3(mod4). Let us see whether it is possible for the odd m1

and m2 to choose such an odd m3, such that SQ = 2k
− 1. If S = 2k

− 1 then 2k = S+ 1 = M0 + 1+ S0m3.
It is clear that GCD(M0 + 1, S0) = 2ω(2l + 1). If 2l + 1 , 1, then the right part of equality

2k = M0 + 1 + S0m3 or (22)

divisible by 2l + 1, and left part of Equality (22) is not divisible by 2l + 1. This means that for the satisfy
Equality (22) it is necessary that

GCD(M0 + 1, S0) = 2ω. (23)

Under Condition (23) we have

2k−ω =
M0 + 1

2ω
+

S0

2ω
m3, (24)

where GCD
(M0+1

2ω , S0
2ω

)
= 1. If one of the numbers M0+1

2ω or S0
2ω is even, then (24) is impossible. Thus,

for the validity of (24), it is necessary that both numbers M0+1
2ω and S0

2ω are odd.
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Suppose that both conditions are performed.

1. GCD(M0 + 1, S0) = 2ω.

2. M0+1
2ω and S0

2ω are odd.

Let us write (24) as a congruence

2k−ω
≡

M0 + 1
2ω

(
mod

S0

2ω

)
. (25)

If S0
2ω is prime and 2 is a primitive root modulo S0

2ω then Congruence (25) will have solutions
concerning k−ω by mod

( S0
2ω − 1

)
. Suppose that ρ is the smallest non-negative solution of Congruence

(25). Then

k−ω = ρ+
( S0

2ω
− 1

)
t, t = 0, 1, 2, . . . (26)

And therefore 2ρ+(
S0
2ω −1)t = M0+1

2ω + S0
2ω m3. Hence S0

2ω m3 = 2ρ+(
S0
2ω −1)t

−
M0+1

2ω . This means that

m3 =
2ρ+(

S0
2ω −1)t

−
M0+1

2ω( S0
2ω

) , t = 0, 1, 2, . . . (27)

According to the RNS definition, the number m3 must be relatively prime with m1 and m2.
If the number S0

2ω is prime and 2 is not a primitive root modulo S0
2ω then Congruence (25) may have

no solutions. In addition, Congruence (25) may have no solutions if S0
2ω is a composite number. Thus,

to construct RNS with three odd moduli and SQ = 2k
− 1, four conditions must be fulfilled.

1. GCD(m1m2 + 1, m1 + m2) = 2ω.

2. m1m2+1
2ω is odd.

3. m1+m2
2ω is prime and not equal to 2.

4. 2 is a primitive root modulo mod m1+m2
2ω .

Note that these conditions are not sufficient, since the numbers m3 found by Formula (27) may
not be relatively prime with m1 or m2.

Example 3. Suppose that m1 = 3, m2 = 7. Then GCD(3 · 7 + 1, 3 + 7) = GCD(12, 10) = 2, 3·7+1
2 = 11 is

odd, 3+7
2 = 5 is prime, 2 is a primitive root modulo 5.

From the equality 2k−1 = 11 + 5m3, we obtain a congruence 2k−1
≡ 11(mod5) which implies

k− 1 = 4t, t = 1, 2, . . . or 24t = 11 + 5m3, m3 = 24t
−11
5 .

Testing of the value t gives the following result:

t = 1 gives m3 = 1 < 2,
t = 2 gives m3 = 256−11

5 = 49, GCD(49, 7) , 1,
t = 3 gives m3 = 4096−11

5 = 817, GCD(817, 3) = 1, GCD(817, 7) = 1.

So, we get the RNS {3, 7, 817}with SQ = 8191 = 213
− 1.

Case 2. RNS with 4 moduli. In this case, SQ is even. Consider the problem: for m1, m2, m3 choose
m4 in such a way as to SQ = 2k. If we denote M0 = m1m2m3, S0 = m1m2 + m1m3 + m2m3 then
S = M0 + S0m4. It is clear that GCD(M0, S0) = 1. From the equality 2k = M0 + S0m4 follows

2k
≡M0(modS0). (28)
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If S0 is prime and 2 is a primitive root modulo S0 then Congruence (28) has a solution on k.
Suppose that ρ is the smallest non-negative solution of ongruence (28). Then k = ρ+ (S0 − 1)t,
t = 0, 1, 2, . . .. It means that 2ρ+(S0−1)t = M0 + S0m4 from which

m4 =
2ρ+(S0−1)t

−M0

S0
, t = 0, 1, 2, . . . (29)

Since GCD
(
2ρ+(S0−1)t, m1

)
= GCD

(
2ρ+(S0−1)t, m2

)
= GCD

(
2ρ+(S0−1)t, m3

)
= 1 then for any

t = 0, 1, 2, . . . it will be obtained that the number m4 is relatively prime with m1, m2 and m3. If S0 is a
composite number, then Congruence (28) may have no solutions. If S0 is prime and 2 is not a primitive
root modulo S0 then Congruence (28) may have no solutions too. In other words, to construct RNS
with four odd moduli and SQ = 2k, two conditions must be fulfilled.

1. S0 = m1m2 + (m1 + m2)m3 is prime.
2. 2 is a primitive root modulo S0

Example 4. Suppose that m1 = 3, m2 = 7, m3 = 11. In this case M0 = m1m2m3 = 231 and
S0 = m1m2 + (m1 + m2)m3 = 131 is prime. Two is a primitive root modulo 131. From the equality
2k = 231 + 131m4 follows congruence 2k

≡ 100(mod131). The least nonnegative solution of this congruence is
94, therefore k = 94 + 130t, t = 0, 1, 2, . . .

Hence m4 = 294+130t
−231

131 , t = 0, 1, 2, . . . For t = 0 we have m4 = 294
−231

131 .

We received RNS
{
3, 7, 11, 294

−231
131

}
with SQ = 294.

Case 3. RNS with 5 moduli. In analogy with the above notations, we denote M0 = m1m2m4m4 and
S0 = m1m2m3 + m1m2m4 + m1m3m4 + m2m3m4 and S = M0 + S0m5. One can verify that S ≡ 1(mod4).
Let us see whether it is possible for the odd m1, m2, m3 and m4 choose such an odd m5 that the
SQ = 2k + 1.

If S = 2k + 1 then 2k = S− 1 = M0 − 1 + S0m5. Similar to case 1, the equality

2k = M0 − 1 + S0m5 (30)

is possible if:

1. GCD(M0 − 1, S0) = 2ω;.

2. M0−1
2ω and S0

2ω are odd

Then 2k−ω = M0−1
2ω + S0

2ω m5 or

2k−ω
≡

M0 − 1
2ω

(
mod

S0

2ω

)
. (31)

If S0
2ω is prime and 2 is a primitive root modulo S0

2ω then Congruence (31) has solutions
concerning k − ω modulo S0

2ω − 1. Suppose that ρ is the smallest nonnegative such a solution.

Then 2ρ+(
S0
ω −1)t = M0−1

2ω + S0
2ω m5 and t = 0, 1, 2, . . .

Hence m5 =
2ρ+(

S0
ω −1)t

−
M0−1

2ω(
S0
2ω

) wherein t should be chosen so that m5 will be relatively prime with

m1, m2, m3 and m4.

Example 5. Suppose that m1 = 3, m2 = 5, m3 = 7 and m4 = 11. Then

M0 = 1155, M0 − 1 = 1154, S0 = 886.
GCD(M0 − 1, S0) = GCD(1154, 886) = 2.
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M0−1
2 = 577 is odd, S0

2 = 443 is prime and 2 is a primitive root modulo 443.

Hence, we can choose such an odd number as m5 that the following SQ = 2k + 1. From the equality
2k−1 = 577 + 443m5, we obtain 2k−1

≡ 557(mod443), from which k− 1 = 53 + 443t, t = 0, 1, 2, . . .
Hence m5 = 253+443t

−577
443 , t = 0, 1, 2, . . . where t needs to be chosen such that GCD(3, m5) =

GCD(5, m5) = GCD(7, m5) = GCD(11, m5) = 1.
The smallest t = 3 where this condition is performed t = 3, therefore m5 = 21382

−577
443 . We obtain

RNS
{
3, 5, 7, 11, 21382

−577
443

}
with SQ = 21383 + 1.

The above methods for constructing RNS with a diagonal function of the 2n, 2n
− 1 and 2n + 1

forms allow us to develop efficient circuits for comparing numbers and reverse conversion. In the rest
of this article, we demonstrate examples of such circuits and show the advantages of their technical
characteristics in comparison with the known analogs.

3. Results

The goal of modeling is a comparison of the methods of implementing the numbers comparison
operation and reverse RNS to binary conversion by the proposed methods, a method based on
CRT [18] and a method based on CRTf [21]. We use {3, 5, 14}, {7, 9, 124} and {5, 29, 93, 313}moduli sets,
because their DF has form 2n

− 1 and 2n which are low-cost RNS [42]. Figure 1 shows the circuit for
numbers comparison in RNS with DF of the form 2n

− 1. The bit-widths of the RNS moduli {m1, m2, m3}

are denoted as a1, a2, a3. Multipliers by constants |Xi · ki|2n−1, i = 1, 2, 3 modulo 2n
− 1 implement the

generation of partial products modulo 2n
− 1. A modulo 2n

− 1 compressor is implemented as in [21].
Kogge–Stone adder with end-around carry (KSA-EAC) uses for modulo 2n

− 1 addition, and it is
implemented as in [27]. The circuit for numbers comparison in RNS with DF of the form 2n has a
similar structure to that presented in Figure 1, but it should have four inputs for compared numbers X
and Y, since in the theoretical part, we demonstrate that only RNS with four modules can have DF of
the form 2n. In addition, compressors and Kogge-Stone adders (KSAs) must implement modulo 2n

operations that are achieved by simply dropping the carrying of the most significant bit (MSB).
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Figure 2 shows the reverse conversion circuit for RNS with the DF of the form 2n
− 1. The bit-widths

of the RNS moduli {m1, m2, m3} are denoted as a1, a2, a3. Multipliers by constants |Xi · ki|2n−1, i = 1, 2, 3
modulo 2n

− 1, modulo 2n
− 1 compressor and KSA-EAC blocks are realized as in Figure 1. The rest

of the blocks are implemented in standard binary form. The symbol aR denotes the bit-width of

RNS range and symbol at denotes the bit-width of the value M ·D(X) +
n∑

i=1
xiMi. Division by SQ is

implemented as multiplication by multiplicative inverse SQ modulo 2at . The output of the circuit
presented in Figure 2 is a group of aR most significant bits (MSBs) of the last KSA output. The reverse
converter circuit for RNS with a DF of the form 2n has a similar structure to that presented in Figure 2,
with differences similar to the comparator described above.
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Also, modeling was done to compare the proposed moduli sets with balanced RNS moduli
sets. The following types of moduli sets were chosen for the simulation: {2n

− 1, 2n, 2n + 1} [29,30],{
2n
− 1, 2n+k, 2n + 1

}
[31],

{
2n
− 1, 2n, 2n + 1, 2n+1 + 1

}
[34],

{
2n
− 1, 2n + 1, 2n±1

− 1, 2n+k
}

[35].
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All simulated circuits were described in very high speed integrated circuit (VHSIC) hardware
description language (VHDL). Hardware modeling was performed on Xilinx Artix 7 xc7a200tfbg484-2
in Vivado 2016.3 and the strategy of synthesis was highly area optimized. The modeling results are
presented in Tables 2–4 and show time, hardware costs and the area·delay (A·D) metrics calculated as a
product of delay by a number of look up tables (LUTs).

Table 2. Modeling results of the circuit of magnitude comparison.

Moduli Set
Known Methods Proposed Method

CRT [18] CRTf [21]

Delay, ns
{3, 5, 14} 10.961 7.680 9.749
{7, 9, 124} 16.110 11.123 11.830
{5, 29, 93, 313} 15.363 12.611 11.991

LUTs
{3, 5, 14} 135 169 110
{7, 9, 124} 543 329 273
{5, 29, 93, 313} 1,141 863 549

A·D
{3, 5, 14} 1479 1297 1072
{7, 9, 124} 8747 3659 3229
{5, 29, 93, 313} 17529 10883 6583

Power, W
{3, 5, 14} 4.061 5.757 4.581
{7, 9, 124} 21.751 13.929 11.840
{5, 29, 93, 313} 40.950 47.128 24.733

Table 3. Modeling results of the circuit of reverse RNS to binary conversion.

Moduli Set
Known Methods Proposed Method

CRT [18] CRTf [21]

Delay, ns
{3, 5, 14} 8.181 8.157 10.085
{7, 9, 124} 15.493 13.351 13.531
{5, 29, 93, 313} 21.228 16.814 17.600

LUTs
{3, 5, 14} 63 59 105
{7, 9, 124} 289 358 285
{5, 29, 93, 313} 997 920 1,049

A·D
{3, 5, 14} 515 481 1,058
{7, 9, 124} 4,477 4,779 3,856
{5, 29, 93, 313} 21,164 15,468 18,462

Power, W
{3, 5, 14} 5.946 5.504 11.733
{7, 9, 124} 22.226 39.154 26.789
{5, 29, 93, 313} 65.901 106.867 117.797

A simulation of magnitude comparison shows that for the {3, 5, 14}moduli set, the method using
CRTf works 21.22% faster than the proposed method, and 29, 93% faster than the method using CRT.
However, the proposed method uses 34.91% fewer hardware resources than CRTf, and 18.52% less
than CRT. For {7, 9, 124}, the circuit, based on CRTf, works 5.98% faster than the circuit, which is based
on the proposed method, and 30.96% faster than the circuit which is based on CRT. Furthermore,
the circuit, based on the proposed method, uses 17.02% fewer hardware resources than CRTf method
and 49.72% less than CRT. For {5, 29, 93, 313}, the proposed method works 4.92% faster than the method
using CRTf, and 21.95% faster than the method using CRT. Moreover, the proposed method uses
36.38% fewer hardware resources than the method using CRTf, and two times fewer resources than the
method using CRT. Thus, for the magnitude comparison operation, the proposed method reduces the
consumption of hardware resources compared tp known methods. In addition, in the case of using
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the moduli set {5, 29, 93, 313} the proposed method also reduced the delay of the devices. Table 2 also
demonstrates the advantages of the proposed method in A·D metrics and power consumption.

Table 4. Modeling results of magnitude comparison and reverse RNS to binary conversion for proposed
and balanced moduli sets.

Moduli Set Ref.
Magnitude Comparison Reverse Conversion

Delay, ns LUTs A·D Delay, ns LUTs A·D

{2n
− 1, 2n, 2n + 1} n = 3 [29,30] 12.953 272 3,523 13.486 169 2,279{

2n
− 1, 2n+k, 2n + 1

} n = 2,
k = 2 [31] 11.533 150 1,729 11.246 91 1,023

{3, 5, 14}, Proposed 9.749 110 1,072 10.085 105 1,058

{2n
− 1, 2n, 2n + 1} n = 4 [29,30] 14.964 275 4,115 15.855 263 4,169{

2n
− 1, 2n, 2n + 1, 2n+1 + 1

}
n = 3 [34] 16.710 427 7,135 20.217 447 9,036

{7, 9, 124} Proposed 11.830 273 3,229 13.531 285 3,856{
2n
− 1, 2n + 1, 2n+1

− 1, 2n+k
} n = 4,

k = 4 [35] 16.669 303 5,050 24.163 572 13,821{
2n
− 1, 2n + 1, 2n−1

− 1, 2n+k
} n = 6,

k = 0 [35] 24.962 1,767 44,107 30.831 1,496 46,123

{5, 29, 93, 313} Proposed 11.991 549 6,583 17.600 1,049 18,462

A simulation of reverse RNS to binary conversion shows that for the {3, 5, 14}moduli set method
using CRTf works 19.12% faster than the proposed method, and 0, 29% faster than the method using
CRT. Moreover, CRTf method uses 43.81% fewer hardware resources than the proposed method
and 6.35% less than CRT. For {7, 9, 124}, circuit, based on CRTf, works 1.33% faster than the circuit
based on the proposed method, and 13.82% faster than circuit based on CRT. Furthermore, the circuit
based on the proposed method uses 20.39% fewer hardware resources than CRTf method and 1.38%
less than CRT. For {5, 29, 93, 313}, the method using CRTf works 4.47% faster than the proposed
method, and 20.79% faster than the method using CRT. Moreover, it uses 12.30% fewer hardware
resources than the proposed method and 7.72% fewer resources than the method using CRT. Therefore,
the proposed method allows us to reduce hardware resources for the moduli set {7, 9, 124} compared to
known methods.

For the {3, 5, 14}moduli set, the RNS dynamic range is equal to M = 210. Due to comparing the
performance of the circuit using the proposed moduli set with a circuit using known common moduli
sets, two balanced moduli sets were chosen: {2n

− 1, 2n, 2n + 1}, n = 3 [29,30] and
{
2n
− 1, 2n+k, 2n + 1

}
,

n = 2, k = 2 [26], which are close to this dynamic range. Modeling of the magnitude comparison showed
that the circuit using the proposed {3, 5, 14} moduli set works 24.73% faster than {2n

− 1, 2n, 2n + 1},
n = 3 moduli set and 15.47% faster than

{
2n
− 1, 2n+k, 2n + 1

}
, n = 2, k = 2 moduli set. Moreover, the

proposed moduli set uses 2.5 times fewer hardware resources than {2n
− 1, 2n, 2n + 1}, n = 3 moduli set

and 26.67% less than
{
2n
− 1, 2n+k, 2n + 1

}
, n = 2, k = 2 moduli set. Hardware simulation of reverse

RNS to binary conversion showed that using the proposed moduli set {3, 5, 14} requires 25.22% fewer
time costs than the {2n

− 1, 2n, 2n + 1}, n = 3 moduli set and 10.32% less than the
{
2n
− 1, 2n+k, 2n + 1

}
,

n = 2, k = 2 moduli set. Although the proposed moduli set uses 13.33% more hardware resources
than

{
2n
− 1, 2n+k, 2n + 1

}
, n = 2, k = 2 moduli set, it uses 37.87% less than the {2n

− 1, 2n, 2n + 1}, n = 3
moduli set.

For the proposed {7, 9, 124} moduli set, the dynamic RNS range is equal to M = 7812. For this
dynamic range, two known balanced moduli sets were chosen:{2n

− 1, 2n, 2n + 1}, n = 4 [29,30] and{
2n
− 1, 2n, 2n + 1, 2n+1 + 1

}
, n = 3 [34]. Modeling of magnitude comparison showed that circuit using

proposed {7, 9, 124}moduli set works 20.94% faster than the {2n
− 1, 2n, 2n + 1}, n = 4 moduli set and

29.20% faster than the
{
2n
− 1, 2n, 2n + 1, 2n+1 + 1

}
, n = 3 moduli set. In addition, the proposed moduli

set uses 0.73% fewer hardware resources than the {2n
− 1, 2n, 2n + 1}, n = 4 moduli set and 36.06% less

than the
{
2n
− 1, 2n, 2n + 1, 2n+1 + 1

}
, n = 3 moduli set. Hardware simulation of reverse RNS to binary

conversion showed that using the proposed moduli set {7, 9, 124} requires 14.66% less time cost than
the {2n

− 1, 2n, 2n + 1}, n = 4 moduli set and 33.07% less than the {2n
− 1, 2n, 2n + 1}, n = 4 moduli set.
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Although the proposed moduli set uses 7.72% more hardware resources than the {2n
− 1, 2n, 2n + 1},

n = 4 moduli set, it uses 36.24% less than the {2n
− 1, 2n, 2n + 1}, n = 4 moduli set.

For the proposed {5, 29, 93, 313}moduli set, the dynamic range of RNS was equal to M = 4220805.
For this dynamic range, two known balanced moduli sets were chosen:

{
2n
− 1, 2n + 1, 2n+1

− 1, 2n+k
}
,

n = 4, k = 4 and
{
2n
− 1, 2n + 1, 2n−1

− 1, 2n+k
}
, n = 6, k = 0 [33]. Modeling of the magnitude

comparison showed that the circuit using the proposed {5, 29, 93, 313} moduli set works 28.06%
faster than the

{
2n
− 1, 2n + 1, 2n+1

− 1, 2n+k
}
, n = 4, k = 4 moduli set and 2 times faster than the{

2n
− 1, 2n + 1, 2n−1

− 1, 2n+k
}
, n = 6, k = 0 moduli set. Although the proposed moduli set uses 44.81%

more hardware resources than the
{
2n
− 1, 2n + 1, 2n+1

− 1, 2n+k
}
, n = 4, k = 4 moduli set, it uses 3 times

less than the
{
2n
− 1, 2n + 1, 2n−1

− 1, 2n+k
}
, n = 6, k = 0 moduli set. Hardware simulation of reverse

RNS to binary conversion showed that the using of the proposed moduli set {5, 29, 93, 313} requires
27.16% fewer time costs than the

{
2n
− 1, 2n + 1, 2n+1

− 1, 2n+k
}
, n = 4, k = 4 moduli set and 42.91%

less than the
{
2n
− 1, 2n + 1, 2n−1

− 1, 2n+k
}
, n = 6, k = 0 moduli set. Although the proposed moduli set

uses 45.47% more hardware resources than the
{
2n
− 1, 2n + 1, 2n+1

− 1, 2n+k
}
, n = 4, k = 4 moduli set,

it uses 29.88% less than the
{
2n
− 1, 2n + 1, 2n−1

− 1, 2n+k
}
, n = 6, k = 0 moduli set.

Thus, in comparison to known balanced moduli sets, the proposed moduli sets reduce the
delay of magnitude comparison and reverse conversion in devices. In case of operation magnitude
comparison, using the proposed moduli sets, {3, 5, 14} and {7, 9, 124}, reduces the use of hardware
resources in devices.

The experimentally obtained results showed that the approach developed in this paper allows us
to improve two problem operations in the RNS: the comparison of numbers and reverse conversion.
The proposed devices for such operations can be used in those applications of the RNS for which these
operations are the most important, for example, in video processing systems, sorting networks, etc.

4. Discussion

The results obtained in Section 3 are summarized in Table 5. The main conclusion we can assume
is that the RNS construction with all cases SQ = 2n, SQ = 2n

− 1, SQ = 2n + 1 is principally possible.
The cases SQ = 2n

− 1 and SQ = 2n + 1 for RNS with one even module are easiest for practical
implementation. All cases for RNS with all odd moduli are more complicated. However, among these
cases, there is one particularly attractive option. As we have demonstrated, there is the possibility of
RNS constructing with SQ = 2n. This case requires the use of four odd RNS moduli.

Table 5. The possibility of RNS constructing with a given sum of quotients (SQ) form.

Type and Number of RNS Moduli Form of SQ

SQ=2n
−1 SQ=2n SQ=2n+1

one even module exist not exist exist

all moduli are odd
3 moduli exist not exist not exist
4 moduli not exist exist not exist
5 moduli not exist not exist exist

According to the proposed construction method of RNS with a convenient form of DF, moduli sets
with three and four moduli were chosen: {3, 5, 14}, {7, 9, 124} and {5, 29, 93, 913}. We performed the
hardware simulation of magnitude comparison and reverse RNS to binary conversion using RNS with
the presented moduli sets and using different approaches to perform the non-modulo comparison
operation: the proposed method, method [18], and method [21]. The hardware simulation results of
magnitude comparison show that, for three moduli, the use of the proposed method reduces hardware
resources, and the use of method [21] reduces circuit delay. For four moduli, the proposed method
reduces both time and hardware costs. The modeling of reverse RNS to binary conversion shows that
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method [21] works faster and requires fewer hardware resources than the others considered methods.
Comparison of the simulation results of proposed moduli sets and balanced moduli sets shows that
the use of the proposed moduli sets reduces circuit delay, although, in several cases, it required more
hardware resources than balanced moduli sets.

5. Conclusions

The paper concerns the problem of RNS construction with convenient forms of DF. We propose
several methods of RNS construction with SQ forms 2n, 2n

− 1 and 2n + 1. The use of these forms of
moduli allow for developing efficient methods of hardware implementation. We performed hardware
implementation of magnitude comparison and reverse RNS to binary conversion using the proposed
method, method [18] method [21]. A comparison of the implementation results shows that using the
proposed method is effective for magnitude comparison operation, but for the reverse RNS to binary
conversion operation, method [21] performs better modeling results than the proposed method and
method [18]. In addition, according to the simulation results, the proposed moduli sets reduce circuit
delay in comparison with balanced moduli sets, although, in several cases, require more hardware
resources than balanced moduli sets.

The proposed method allows more efficient and problematic operations in RNS, such as sign
detection, number comparison, and division, to be performed. It can be used in the development of
video processing systems and customized signal processing units using RNS.
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