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Abstract: Image perception can vary considerably between subjects, yet some sights are regarded
as aesthetically pleasant more often than others due to their specific visual content, this being
particularly true in tourism-related applications. We introduce the ESITUR project, oriented towards
the development of ’smart tourism’ solutions aimed at improving the touristic experience. The idea
is to convert conventional tourist showcases into fully interactive information points accessible
from any smartphone, enriched with automatically-extracted contents from the analysis of public
photos uploaded to social networks by other visitors. Our baseline, knowledge-driven system reaches
a classification accuracy of 64.84 ± 4.22% telling suitable images from unsuitable ones for a tourism
guide application. As an alternative we adopt a data-driven Mixture of Experts (MEX) approach,
in which multiple learners specialize in partitions of the problem space. In our case, a location tag is
attached to every picture providing a criterion to segment the data by, and the MEX model accordingly
defined achieves an accuracy of 85.08 ± 2.23%. We conclude ours is a successful approach in
environments in which some kind of data segmentation can be applied, such as touristic photographs.

Keywords: computer vision; tourism; domain adaptation; Mixture of Experts; CNN

1. Introduction

One of the challenges in computer vision research is the development of models able to make
impersonal predictions from subjective data: The response to a given stimulus (either image or
video) of an audience when presented with it. For instance, given the visual features of an image,
to automatically infer the emotional, cognitive or aesthetic perception of the potential audience. It is
known that any visual stimulus has a cognitive effect in the receiver and can induce emotional
responses [1,2]. However, the mechanisms that underlie these processes are still largely unknown,
making it difficult to find an automatic computational solution to the problem, despite the currently
proposed methods [3].

This issue is faced within the frame of the ESITUR project, which narrows down to applications
related to tourism. Figure 1 displays the main modules of the general framework. The aim of this
project is to develop a system capable of automatically retrieve high-quality audiovisual content for
a given location and present it to new users through their smartphones in order to appeal them to
visit a given spot. The information displayed (either in a smartphone or in a virtual showcase) is

Electronics 2019, 8, 671; doi:10.3390/electronics8060671 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-7908-5400
https://orcid.org/0000-0003-3877-0089
http://www.mdpi.com/2079-9292/8/6/671?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8060671
http://www.mdpi.com/journal/electronics


Electronics 2019, 8, 671 2 of 15

continuously updated as social media are regularly checked in search of new multimedia content
and/or new metadata (GPS coordinates, reviews, comments, number of views, positive or negative
reactions, etc.). This collected data is then processed in 2 steps: First, relevant and representative
content is identified from both new material uploaded by the users and the reaction to the multimedia
content already present in the system. Afterwards, the resources identified as highly representative
and relevant to the community are evaluated in terms of their aesthetics value. The aesthetics value
here must be understood as a combination of the aesthetics quality and the suitability of a multimedia
resource for touristic promotion. A demonstration of a preliminary system working is available
in https://youtu.be/lvKL-GD5beM. This way, the introduction of places with touristic interest to
potential visitors can be done after an automatic selection of the available content that offers the best
possible view of a destination as perceived by most other visiting people. For instance, let us suppose
we are weighting two possible touristic routes: Route A includes a place with an aesthetic score of 9
whereas route B has two places with scores 6 and 8 respectively. Option B may be discarded given
that the average score is lower than route A’s. This ranked content is accessible to the users through
mobile devices, but in order to provide relevant material, an accurate selection of those resources is
fundamental. Therefore a processing based on how representative a picture is of a given touristic
location and on the aesthetics value of the presented audiovisual content is required. In this work
we focus on the automatic estimation of the aesthetics of images, adapting experts to homogeneous
regions that convey the geolocation of the pictures. We reckon our contribution may help in further
smart-tourism image selection work.

Figure 1. Schematic view of the complete framework for the ESITUR project.

The rest of this paper is organized as follows: In Section 2, related work on the topic is summarized.
The data used in this study is described in detail in Section 3. The methods for aesthetic value
assessment are introduced in Section 4. Section 5 presents the results and experimental setup.
We conclude the paper in Section 6.

2. Related Work

Aesthetics evaluations are appraisals that arise after stimuli are perceived by the sensory system.
Humans are naturally gifted with means to continuously perform these evaluations on sensory
information such as audio [4] or images [1,2]. Decisions on the aesthetic value of a stimulus influence
many domains of our lives, therefore the desire to replicate these mechanisms with a particular
emphasis on visual stimuli since it is the sense humans depend on the most.

https://youtu.be/lvKL-GD5beM
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The interest in understanding which properties in the visual content drive a human response
began studying how different distortions in images such as blurring, noise patching and blockiness
could be automatically detected to estimate the perceived quality of an image [5–7]. While both
low-level and high-level visual attributes have shown promising results in detecting what makes an
image aesthetically pleasant [8–14], lately the use of convolutional neural networks has outperformed
any other approach [15–28]. More recently, the intrinsic memorability of images and visual content has
also been studied in relation to aesthetics, finding out that unusual or aesthetically pleasant images are
negatively correlated to their easiness to be remembered [29,30].

Gainful feature extraction is of uttermost importance in aesthetics assessment, and early work
was devoted to a fruitful extraction of low-level features from the visual content. In particular,
Datta et al. [8] selected different visual features based on artistic intuition to predict aesthetic and
emotional subjective evaluations, whereas Ke et al. [10] considered other features like average hue,
contrast, color distribution and the spatial distribution of edges as inputs for a Naïve Bayes classifier.
While they opened the path for further research [28], performance from these kind of models quickly
showed that an exclusively low-level approach was insufficient for this kind of task [9,14].

Luo and Tang [11] extracted subject regions to compute local features distinguishing between
foreground and background. The features they used were clarity, contrast, simplicity, color properties
and harmony, lighting and composition geometry. Marchesotti et al [31] and Dhar et al. [12] proposed
different sets of generic high-level describable attributes, mainly related to composition and content
rules. In Temel and AlRegib [13], they ran an exhaustive evaluation of several high-level descriptors,
from geometric (SIFT, GIST, DOG) and color-related (color histogram, hue, color naming) to hybrid
approaches, finding that some of these generic features could actually perform just as well as other
more complex global descriptors used in previous studies.

Recently, convolutional neural networks have consistently shown better performance than other
techniques based on handcrafted features [15–24]. To that aim, different strategies such as using
a different loss function [19] or parallel adaptive spatial filters have been studied [16], with promising
results that suggest interesting lines of research. Alternative proposals considered the problem of
visual aesthetics tightly related to the semantic information contained in the image. For instance,
in Mai et al. [15] images are processed by two different networks: The first of them predicts which
scene category the input belongs to (human, plant, architecture, landscape, static, animal and night),
the latter applies adaptive kernels to local regions of the image. A final aggregation layer combines the
output of both networks to predict the aesthethics label of that input image.

In Kao et al. [17], they categorize every image as either an open space scene, an object or a texture
pattern picture. For each of these three cases, they train a different specialized convolutional network
with different architectures, which process any given input selectively. An analogous procedure is
followed in Kao et al. [18], where the prediction of the aesthetics label and the semantics of an image’s
content is performed at the same time in a multi-task scheme. In all these studies, the semantic
classification is driven by knowledge taken from professional photography.

Similar to the idea of dividing the computation among different parts of the system, ensemble
models can be thought as a set of submodels in which the global output is given by a weighting of those
submodels’ [32]. The submodels do not access the same data, but rather specialize in subsets of the
training data, enabling the creation of expert models. This mixture of experts can be either cooperative
(when the global output comes as a linear combination of the experts’ outputs) or competitive,
when just one expert evaluates the input and is fully responsible for the global response [33]. Many
applications have benefited from this approach since it allows a model to characterize data distributions
that can be better understood in terms of more than one regime [34,35].

Our contribution in this paper extends on these systems to the problem of determining the
aesthetic relevance of tourism-oriented pictures. Firstly, we adopt a classical approach based on
handcrafted visual descriptors fed to a logistic regression model. Secondly, we explore the application
of a mixture of experts, all sharing the same architecture, but each specialized in processing images



Electronics 2019, 8, 671 4 of 15

retrieved from different locations of the target city. To our knowledge, this is the first study exploring
the aesthetic value estimation of both closed and open space tourism-oriented images.

3. ESITUR Data Collection

The aim of the ESITUR project is to build interactive showcases so pictures and metadata can
be retrieved regularly from social media, and attending to the feedback given by the users, update
the multimedia content displayed in such showcase. We provide further details of the framework in
Appendix 1. In order to carry out an experimentation process as close as possible to the final use case
of our model (the development of an interactive showcase that displays multimedia content based on
user interaction), we use images from a specific town that could be the subject of an intelligent tourism
solution. Therefore, in this section we explain the process followed to obtain aesthetically annotated
pictures of that town, shown in general terms in Figure 2.

Figure 2. Scheme of the data retrieval pipeline. Such data is multimedia content publicly uploaded by
the users to a social network(in this case, Flickr [36]).

3.1. Pictures Retrieval

About 10,000 images featuring different touristic spots in the town of Jerez de la Frontera, Cádiz,
Spain, are recovered from Flickr, a website that lets its community of users store, find and share amateur
pictures or videos online made by themselves [36]. Information regarding the user who uploaded a picture
and GPS coordinates of it are also retrieved. Next, two clustering algorithms are executed: one of them is
a clustering based on DBSCAN [37] that groups pictures coming from nearby GPS addresses, making up
to 31 clusters, indicating there are that many touristic spots featured in the data. Each of these clusters
denotes a particular location of the town. The other clustering algorithm is a Mean-Shift algorithm that
measures visual similarity between pictures [38]. This step allows us to identify several subclusters,
which denote different viewpoints of the same place. Four annotators sorted each of these subcluster’s
pictures attending to how representative of the cluster and the location they were. From this arrangement,
the top 10 images from the top 10 subclusters of each of the 31 clusters are taken. Not all the clusters had
that many examples, so this process yields a total of 984 images that conform the final dataset. The details
of the data retrieval methods introduced in this section can be found in [39].

3.2. Labeling Procedure

A collaborative annotation process was carried out online. Each user was presented with
50 randomly selected images, each along with the question of whether it was suitable or not, in terms
of aesthetics, for the touristic promotion of the town (e.g., by including it in a touristic guide). A total
of 232 people participated, so each image has on average about 12 annotations. In Figure 3, we include
the histogram of scores for all the images. Scores are computed as the ratio of accepting votes to the
total number of votes, i.e. number of people who considered the image as suitable divided by the total
number of people that were presented that image. Then, scores are normalized to lie between 0 and 10.



Electronics 2019, 8, 671 5 of 15

0

50

100

150

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

Figure 3. Histogram of scores in the ESITUR corpus.

The bulk of the annotations is concentrated around the central part of the histogram, like in other
picture aesthetics datasets such as AVA [40]. This can be explained because most of the human reactions
to the photographs are mild, not showing either great enthusiasm or displease. The agreement level on
the annotation process, estimated by computing the Krippendorff’s alpha coefficient [41], took a value
of 0.3 showing a relatively low agreement among annotators. This proves the strong subjectivity that
is implicit to the task of assessing aesthetics in tourism-oriented environments, making it particularly
challenging. In fact, the amount of images that show a clear agreement is small (only 47 images scored
9 or higher). Given the purpose of our annotation (the suitability of an image for tourism applications),
the labeling is not only driven by the aesthetics of the image. Instead, factors related to the fame or the
content of a picture, despite the intrinsic aesthetic experience it evokes, make the final distribution
look quite different from the distributions observed in other datasets [40,42].

3.3. Segmentation of the Corpus

Given that the data has been labeled in terms of touristic attractiveness, the score of an image
is not only driven by the aesthetics of its visual features, but also by how representative of a place it
is. This is an essential additional information. Because aesthetics score distribution in ESITUR is not
strictly dependent on the particular aesthetics of the pictures but rather on the object or place they
depict, we proceeded to compute the location average score: Each image contains a label indicating the
location it belongs to, so we can estimate the location aesthetic score as the mean value of the images’
of that location (Figure 4). It turns out that we can identify 3 groups of data driven by the location
average score: First, locations that are regarded as unsuitable for touristic promotion (those with
a score lower than 4). Second, those locations that look nice to most users and have an average score
above 5.5. In between, there is a set of locations that evoke mild reactions and have location average
scores between 4 and 5.5. However, it is fundamental to point out that in all these sets of locations,
the score of a particular picture can have any value. From a practical point of view, we nonetheless
seek to clearly tell unsuitable images, (those with a score lower than 4) from those that look nice to
most users (that have an average score greater than 5.5). This estimation is highly dependent on the
location a image depicts. Thus we treat the problem as a classification problem, in which the objective
is to tell apart the images based on their individual score, but supported by a data partition in three
data segments. This motivates a split of the corpus in three location segments given by the average
score of the different locations studied: Bottom (score smaller than 4.0), middle (score between 4.0 and
5.5) and top (score greater than 5.5).
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Figure 4. Average location score of the 31 locations found in the dataset (given by their indices within
the corpus) and data split into segments accordingly: Bottom, middle and top.

An image is considered to have a high aesthetics score if at least half of the annotators considered
it suitable for the touristic promotion of the town, otherwise it is tagged with a low score. Table 1
shows the amount of instances and the mean score of each data segment considered,as well as the
mean difference between the images rated with high score and those rated with a low score. In all the
data segments there are both photographs with high and low score, although it can also be seen that
the mean score of the samples increases progressively as we go from the bottom to the top segment.

Table 1. ESITUR corpus segments’ distribution of samples, split for both train and test sets. Indices are
indicatives of a location within the data set.

Phase Data Segment # Locations # Pics. Mean Score Mean Diff (Low,High) % High Aesthetics Pics.

Train

All 31 492 4.22 4.74 38.41
Bottom 13 203 2.21 5.02 9.36
Middle 10 147 4.96 3.82 46.26
Top 8 142 6.33 3.44 71.83

Test

All 31 492 4.23 4.75 38.62
Bottom 13 221 2.61 5.11 16.29
Middle 10 149 5.17 3.94 48.99
Top 8 122 6.02 3.59 66.39

The difference between the mean score of high-valued images and the mean score of low-valued
images reaches its peak in the bottom domain. The lower this difference, the more similar pictures rated
as suitable to a touristic guide will be to those that do not. As a consequence, the task of separating
them becomes more complex. This suggests that, although in general the locations in the bottom data
subset are usually not regarded as aesthetically pleasant, some of them have obtained a high score and
cannot be ignored by the model. This split of the data in three independent segments will define the
creation of expert learners explained in Section 4.2.2.

4. Aesthetics Label Prediction Models and Experimental Setup

4.1. Feature-Based Model

First, we use a traditional approach that relies on the extraction of visual descriptors from images.
These descriptors are handcrafted, meaning that they are manually designed beforehand, rather than
having a model that learns which features to extract, as a neural network would do. In the rest of this
section, we first describe in detail every visual descriptor, and then we present the techniques and
algorithms used to create our model.
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4.1.1. Visual Descriptors

We compute a total of 18 visual features. The capacity of these descriptors to effectively reflect
image characteristics that influence its perception by humans is crucial. Consequently, we use
descriptors related to properties such as color, composition, texture, etc. While most of them were used
and validated previously in works on automatic perception assessment [8,43], some others, like the
ones related to the horizon, are designed from scratch by ourselves. Vanishing point detection and
horizon line location within an image determine the perspective of it, which in turn have an impact on
the aesthetics. The visual descriptors that are used in our feature-based model are briefly explained
in Table 2.

Table 2. Summary description of the handcrafted features computed for aesthetics estimation.
Feature Description

Intensity Mean brightness
Hue Mean value of hue channel after transforming to HSV color space
Saturation Mean value of saturation channel after transforming to HSV color space
Entropy Entropy of image’s pixels
Colorfulness Difference between image’s color histogram and an uniform color histogram
Color profiles Difference between image’s color histogram and a reference histogram for 8 colors
Rule of thirds Measure of how consistent the horizontal lines in the image are with this composition technique
Horizon line Presence and properties of an horizon line in the image, estimated using the vanishing point position.

4.1.2. Feature Selection and Classification Model

Even though our descriptors have been specifically designed taking into account the purpose of
modeling aesthetics, there may be some of them that do not provide any useful information for this
task. Eighteen visual features are presumably not enough to describe all the aspects of an image that
influence its aesthetic perception but still, it is convenient to carry out a feature selection procedure to
discard those that might obstruct the learning process.

We select the K best features according to the scores obtained computing chi-squared statistics
between the target class and each one of them. The number K of selected features is tuned in order to
find the one that provides best results when using a simple classification algorithm. We have decided
to use a basic logistic regression algorithm for classification, since this feature-based method will only
serve as baseline and reference for comparison with our model based on deep learning techniques.
We are aware that the exploration of classifiers that incorporate additional information such as location
could lead to better results using this same set of visual descriptors.

4.2. Deep Learning Approach

Contrarily to hand-crafted feature extraction, neural networks are able to automatically extract
a dense representation of the visual stimuli. We use an two network architectures: Alexnet, made up
by 5 convolutions followed by 3 fully connected layers [44], and a VGG-19 with batch normalization
architecture [45]. The latter is composed of 19 convolutional layers of different kernel size with ReLU
activations [46] and batch normalization [47] after each layer, followed by a final fully connected layer.

After a fine-tuning of the hyperparameters, we found optimal results for a learning rate decay of
γ = 0.98, learning rate 0.001, with batch size 64. The rest of hyperparameters are the default ones when
downloaded from Pytorch framework’s repository, which is the framework we use [48]. We update
the weights of the models following a Stochastic Gradient Descent [49] with backpropagation as the
training algorithm, using an early stopping strategy so the training is interrupted after 15 epochs
without improvement in the accuracy over the validation set, to prevent overfitting. No data
augmentation procedure is applied since any change in the images would affect its aesthetics. However,
all pictures are converted to 224 × 224 pixels before feeding them to the neural network.
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4.2.1. Canonical Model

Our deep learning baseline approach consists of models pretrained on Imagenet [44] or in
AVA [40], and thus knowing nothing about data distribution in ESITUR. Transfer learning is a training
procedure that allows for an efficient retraining of neural networks when the amount of data would be
insufficient to effectively train the net from scratch on the task of interest [50]. This is indeed our case,
since the total number of samples in our corpus accounts up to just 984 images. A model pretrained on
Imagenet or in AVA is thereafter fine-tuned over the ESITUR data. The result is a canonical model,
and it conforms the initialization point for the mixture of experts we explain next.

4.2.2. Model-Wise Mixture of Experts

The domain-wise adaptation strategy has proved to be a successful approach in aesthetics
prediction [17]. However, instead of strictly following some intuition-based rules of photography to
conform our experts creation, we have defined 3 data segments based on the location of the images,
as described in Section 3.3. Hence, for the ESITUR corpus three different splits are considered.

The training scheme of this combination of model-wise experts is depicted in Figure 5; each expert
is fine-tuned from the canonical model on the specific segment of data it is associated with,
thus providing us with three different models. All the models are trained separately to avoid unwanted
learning correlations [51,52] since we want them to be independent experts.

Figure 5. Traning phase scheme for domain adaptation experts. Ultimately we end up having 3
different, adapted models, depending on the origin of the input image.

In test time, the pipeline is shown in Figure 6. The data segment selection part acts as the
gating network in conventional mixture of experts approaches, given that each data segment has
a unique model expert associated. In the ESITUR corpus all the images are assigned a precise location
(Section 3.1), so it is feasible to perfectly select an expert for each input image attending to which data
segment its location belongs to. In case of missing labels, a possible way to scale up our solution
could be to rely on an external model trained in scene categorization so input images would be
automatically segmented.

Figure 6. Test phase scheme for domain adaptation experts.
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Models trained on datasets such as Places365 [53] offer a reasonable starting point for mixture
of experts approaches similar to the one we propose here. In the experiments involving deep neural
networks, the setup considered is a stratified 10-fold cross validation over the whole ESITUR
corpus [54], while experiments on the handcrafted features were performed using a uniformly
distributed 50%/50% train/test split of the data.

5. Results

5.1. Hand-Crafted Features

First, we present the results when employing our feature-based model both for AVA2 and
ESITUR datasets. The AVA2 dataset is a reduced version of the original AVA distribution first used
in Jin, X. et al. [42]. Instead of considering all data, only the top 10% of both edges of the distribution
are taken, yielding samples that are either clearly aesthetically pleasant or disgusting. Therefore,
it can be regarded as a simplified version of the data that allows us to easily train and evaluate our
low-level, feature-based model. The feature selection process shows that all the features were valuable
to solve the classification task when using AVA2. In Figure 7a, it can be seen how both train and
test accuracy plots have an increasing trend with respect to the number of selected features. While
choosing always one class (since half of the set is tagged as positive and the other half as negative)
would yield a 50.00± 0.43% accuracy, the highest accuracy obtained is 60.09± 0.60% and 59.6± 0.61%
for train and test splits, respectively. This suggests 18 visual features are not enough to fully model an
image from the point of view of aesthetics perception.
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(a)AVA2 dataset.
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(b)ESITUR dataset.

Figure 7. Accuracy rates for the train and test splits when varying the number K of selected features.

However in the case of the ESITUR dataset, the best test results are achieved when discarding
more than half the total number of features. In Figure 7b, we plot the evolution of the accuracy
value for the train and test splits when varying the number of selected features. As illustrated in the
figure, the best result is obtained when using 8 features, reaching a test accuracy of 64.84 ± 4.22%,
only slightly above from the zeroR classification (choosing the majority class) of 61.48 ± 3.04. Again,
this result suggests that the gain margin with this kind of approaches is limited, barely improving
upon the baseline.

Since some features are discarded for ESITUR images, we consider relevant to analyze which
ones led to the best accuracy result. These features were: Intensity, entropy, colourfulness, red color
profile, lower and upper rule of thirds measure, and two horizon-related features. We can see that
the final best selection of features is highly varied, being present low-level features such as intensity
and entropy, color-related features, and, predominantly, features related to composition: The presence
and position of the horizon and the use of the rule of thirds. This is not a surprising result, given
that the relation between the aesthetics of an image similar high-level describable features is already
well studied in the literature [8,10,31]. What is worth commenting, however, is that results on the
larger AVA2 dataset lead to worse accuracy values when compared to the accuracy over ESITUR data.
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This can be due to the fact that models based on describable visual features offer just a partial solution
to a significantly complex problem, and AVA2 displays a much larger range of environments, topics
and locations than ESITUR.

5.2. Deep Convolutional Models

In this section, results on the experiments carried out using neural networks are presented.
Model’s architecture, as well as the pretrained weights on Imagenet are downloaded from the official
Pytorch’s repository. By training models on AVA and using them as a pretrained initialization point
for other models, we are compelled to assess their performance before actually adapting those models
to any other domain. In Table 3, a list of the accuracy rates obtained with some of the most relevant
systems in the literature are shown. Low-level feature-based models achieve low accuracy compared
to data-driven convolutional neural networks approaches, and hence, in light of our results using
low-level handcrafted features (Section 5.1), we focus on deep convolutional networks for the rest
of this study. It can be noticed that our pretrained models do not reach state-of-the-art performance.
It is not a concern since we are only interested in having a simple model easily adaptable to our
domain of interest (ESITUR). Therefore, the pretrained canonical models we consider here suggest
reasonable initialization points, given that their performance is considerable better than low-level
feature-based models, yet not too far from deep learning models specifically designed for another
aesthetics evaluation problem.

Table 3. Results available in the literature using the complete AVA dataset.

Strategy Model Accuracy on AVAδ=0(%) ± 95% Conf.

Low-Level Features

Murray et al. [40] 66.70 ± 0.18
Marchesotti et al. [31] 68.55 ± 0.18
Datta et al. [8] 68.67 ± 0.18
Ke et al. [10] 71.06 ± 0.18

Convolutional Networks
Alexnet (pretrained) 74.04 ± 0.17
VGG-19 (pretrained) 77.59 ± 0.16
Talebi, H. & Milanfar, P. [19] 80.60 ± 0.15
Ma et al. [16] 82.5 ± 0.15

Table 4 shows the accuracy rates over the ESITUR corpus obtained by the different approaches
considered: Pretrained models directly applied on ESITUR, models once they are adapted to the
ESITUR domain and MEXs. It is noticeable that, with no exception, the pretrained models without
domain adaptation perform even worse than a simple zeroR (classifier that predicts the majority class)
that yields a baseline accuracy of 61.48 ± 3.04 over ESITUR data. This result highlights the differences
between our corpus and other aesthetically annotated datasets (as explained in Section 3.2), and the
need to develop models adapted to the task at hand.

In both Alexnet and VGG architectures the experiments show similar results, this is, that in all
cases the MEX approaches outperform their canonical counterparts. It is relevant to analyze the results
obtained with the Alexnet network, the smallest one studied, which has about 57 M parameters (VGG
has about 139 M parameters). A MEX approach enables the experts to take advantage of being allowed
to specialize in just a small subset of the data, concentrating all its efforts in learning the main features
within that subset. We reckon that a larger dataset would allow the architecture to better learn more
complex features present in the images. These results suggest that small models may benefit the most
from this MEX approach, particularly when they cannot afford to learn the complete data distribution
but rather smaller, homogeneous partitions of it.



Electronics 2019, 8, 671 11 of 15

Table 4. Aesthetics tag prediction accuracy over the ESITUR dataset for the models considered in this
study. We distinguish between aesthetic models pre-trained on AVA but with no adaptation to ESITUR,
adapted canonical models and MEX models (derived from adapted canonical models).

Model Type Model Model Model Adaptation Accuracy ± 95% Interval (%)
Number Training Data (Starting Model) AlexNet VGG-19

Regular pre-trained models 1 AVAδ=0 - 45.7 ± 3.11 46.29 ± 3.11

(no ESITUR adaptation) 2 AVAδ=1 - 45.7 ± 3.11 50.39 ± 3.12

Canonical 3 ESITUR Model 1 77.64 ± 2.6 76.51 ± 2.65

(adapted to ESITUR from 4 ESITUR Model 2 77.76 ± 2.6 76.92 ± 2.63

pre-trained models) 5 ESITUR Imagenet pre-trained 82.02 ± 2.4 81.46 ± 2.43

MEX 6 ESITUR Model 3 80.72 ± 2.46 80.37 ± 2.48

(adapted from 7 ESITUR Model 4 83.53 ± 2.32 79.5 ± 2.52

canonical models) 8 ESITUR Model 5 84.27 ± 2.27 85.08 ± 2.23

In order to evaluate the performance on the MEX approach, we carry out an ablation study
(Table 5). All the experts become specialist learners on their subset of data, outperforming the canonical
model. However, due to that specialization, the learners also get worse at different data segments that
the ones they are trained from. Such learners’ specialization is shown in Figure 8, where the activation
maps of the last convolutional layer of the network are superimposed to the original image to that
particular image. Red areas denote parts of the image that make the model predict a high aesthetics
value, while blue or purple ones mark those with low aesthetics. For each input image, we can see
that each expert has learned to focus its response on different regions of the image depending on the
picture’s content. The canonical model shows a combination of the experts’ learned features. Given the
particular nature of our dataset, having different learners that can specialize in particularly relevant
features within touristic images allows the model to increase the accuracy in telling guide-suitable
pictures from the ones to reject.

Table 5. Ablation study of the accuracy (%) of the canonical and expert VGG-19 models over all the
segments of the ESITUR corpus.

Initialization Data Segment
Model

Low Medium High Canonical zeroR

AVAδ=0

All 76.52 75.29 77.32 76.51 61.38
Bottom 91.52 84.91 88.46 88.7 83.71
Middle 70.03 74.93 69.23 71.51 51.01

Top 60.81 61.84 68.58 63.5 66.39

AVAδ=1

All 76.72 76.51 76.4 76.92 61.38
Bottom 90.84 87.07 86.81 88.96 83.71
Middle 69.62 74.53 70.36 73.03 51.01

Top 62.78 63.1 66.85 63.1 66.39

Imagenet

All 77.71 76.53 78.91 81.46 61.38
Bottom 92.95 79.85 84.45 90.11 83.71
Middle 64.54 81.8 73.13 77.71 51.01

Top 67.67 67.06 76.12 72.43 66.39
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Figure 8. Example of VGG-19-like experts’ different feature activation maps after the last convolutional
layer on a bottom-image (upper) and a top-image (down) in the ESITUR corpus.

6. Conclusions

Convolutional neural networks have proved to be a more accurate solution to the problem of
giving an aesthetics label to an image than handcrafted visual features, particularly when considering
the suitability of those pictures to tourism applications. Whereas handcrafted features seem to reach an
upper limit hard to overcome, neural approaches generalize much better to unseen images. Even more,
handcrafted approaches have been unable to scale up to larger sets of data with a wider variaty of
perspectives and environments, showing a performance only slightly above the zeroR classification in
both small and large sets of data.

We have sought data-driven neural experts whose architectures (Alexnet and VGG-19 with batch
normalization) are well known, in order to fully explore the benefits purely derived from the Mixture
of Experts approach rather than from the complexity of the network. We have shown that a noticeable
improvement can be achieved independently of the model architecture, encouraging research towards
dense models that can be trained quickly in a real-world application.

In particular, our results show that a single global model that spans the whole dataset is not an
option as good as a Mixture of Experts whose gating function is driven by implicit features present in
the data. In our study, that additional information comes from the location a given picture depicts,
which is automatically computed from the GPS coordinates associated with it.

As future work we leave the exploration of turning the task into a regression one. With the current
approach, an image is either accepted or rejected. This can be troublesome in the case of images with
a very weak acceptance score (cases for which the number of people who liked it is roughly equal to the
number of those who disliked it), since once its aesthetics value is classified, it will be indistinguishable
from another with a higher score. In addition, we are interested in scaling up the Mixture of Experts
approach to new gating strategies, based on attributes different from the location of the input image.
Such attributes can come from other metadata commonly available in social media such as interaction
with the content.
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