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Abstract: With the advent of 3D video compression and Internet technology, 3D videos have
been deployed worldwide. Data hiding is a part of watermarking technologies and has many
capabilities. In this paper, we use 3D video as a cover medium for secret communication using
a reversible data hiding (RDH) technology. RDH is advantageous, because the cover image can
be completely recovered after extraction of the hidden data. Recently, Chung et al. introduced
RDH for depth map using prediction-error expansion (PEE) and rhombus prediction for marking
of 3D videos. The performance of Chung et al.’s method is efficient, but they did not find the
way for developing pixel resources to maximize data capacity. In this paper, we will improve the
performance of embedding capacity using PEE, inter-component prediction, and allowable pixel
ranges. Inter-component prediction utilizes a strong correlation between the texture image and the
depth map in MVD. Moreover, our proposed scheme provides an ability to control the quality of
depth map by a simple formula. Experimental results demonstrate that the proposed method is more
efficient than the existing RDH methods in terms of capacity.

Keywords: 3D; depth map; inter-component prediction; MVD; reversible data hiding; texture

1. Introduction

Data hiding (DH) [1] plays an important role in secret communication. For this purpose, secret
information and metadata are embedded in the cover media, such as still image, video, audio, 3D
video, and so on. The visual quality and capacity of the cover image are important criteria for DH
schemes. In addition, reversible DH (RDH) techniques are developed to extract the embedded secret
information and restore losslessly the cover image.

Up to date, various RDH algorithms have been proposed, e.g., difference expansion-based
algorithms [2–6], histogram shifting [7–10], prediction-error expansion (PEE) [11–14] and integer-to-integer
transform [15–17], etc.

The approaches of difference expansion (DE) show good performance in respect of high-capacity.
The first introduction of this algorithm was by Tian, and the research has been extended by [3,4].
For data embedding, it has to make a room for a secret bit through a pixel extension, and inserts data
therein. Alattar [3] improved the performance of Tian’s work by generalizing a DE technique for all
integer conversions. The method proposed by Sachnev et al. is that image pixels are separated into
black and white squares of a chessboard with two identical sets diagonally connected. This prediction
method, called rhombus, is superior to the existing prediction methods (e.g., median edge detector
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predictor (MED) and gradient-adjusted predictor (GAP)) by making the average value of adjacent
neighbors of a specific pixel as a predictive value. Thereafter, various methods for improving prediction
performance were introduced.

The histogram shifting (HS) technique is also known as a method having relatively a few distortion
in a cover image. However, it requires a location map in RDHs to embed data and restore a cover
image. Al-Qershi and Khoo proposed a 2-dimensional DE (2D-DE) scheme achieving about 1-BPP
performance [6]. These histogram-based schemes may achieve good visual quality and adequate
embedding capacity, but it has the drawback having to send a pair of peaks and zero points to
the receiver.

PEE involves a process that obtains the prediction error (PE) from the neighborhood of a pixel
and embeds information bits into the expanded errors. If the difference between an original pixel and
a predicted pixel is large, the distortion of the cover image is greatly enlarged during the embedding
process. In this case, by enhancing the data embedding capacity of the region of low frequency in the
cover image, it may maintain the image quality and embedding capacity of the cover image. Compared
to DE and HS-based methods, it is well known that PEE performs better. When we are considering the
existing PEE methods, DH with order prediction has less distortion at low embedding rates.

Meanwhile, with the rapid development of multiview video technologies, viewers can experience
more realistic 3D scenes with highly advanced multimedia systems, such as 3D television and
free-viewpoint television. To overcome a limited bandwidth, the multiview video plus depth (MVD) is
adopted as a 3D video format [18,19]. In MVD (see Figure 1), a texture image indicates intensities of an
object, whereas a depth map represents a distance between an object and a camera as a grayscale image
having values between 0 and 255. Because MVD enables the advanced video system to arbitrarily
generate virtual views by using a depth image-based rendering (DIBR) method [20], a small number
of view information can be transmitted.

Figure 1. MVD consisting of a texture image (left) and its corresponding depth map (right).

Until now, various watermarking technologies [21–25] have been introduced for marking 3D
videos. Asikuzzaman and Pickering [21] proposed a digital watermarking approach that inserts
a watermark into the DT-CWT coefficients. Pei and Wang [22] introduced a 3D watermarking
technique based on the D-NOSE model which can detect the suitable region of the depth image for
watermark embedding. Since view synthesis is very sensitive to variations in-depth values, this scheme
focuses mainly on the synthesis error. Wang et al. [23] exploited scale-invariant feature transform
(SIFT)-based feature points to synchronize a watermark but focused on only signal processing and
omitted geometric attacks.

Based on MVD, Chung et al. [26] and Shi et al. [27] proposed RDHs for depth maps using a depth
no-synthesis-error (D-NOSE) model [28] and PEE. Each pixel in the depth maps has an allowable
pixel range and the pixel value is increased or decreased in an allowable range. However, it may be
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guaranteed that there are no errors in the synthesized image using D-NOSE. Taking advantage of this
characteristic may be used to improve embedding capacity for RDH. Chung et al. first proposed a
method based on PEE that could effectively hide data in depth maps of 3D images. The disadvantage
of Chung et al.’s method is that it does not provide sufficient embedding capacity. Shi et al. proposed
a way to use all of the acceptable range of pixels to solve the problem proposed by Chung et al.’s
method. However, Shi et al. did not suggest a systematic way of adjusting the embedding capacity
considering a quality of depth map.

In this paper, we first analyze the disadvantages of Chung et al.’s reversible data hiding algorithm
and propose a PEE-based DH technique that completely uses the allowable range of each pixel using an
inter-component prediction method. The performances of the proposed RDH are improved by using
the correlation between the texture and the depth map, which is an advantage of the inter-component
prediction. Also, we propose a method to control embedding rates and image quality systematically
which may be applied to various RDH applications such as medical or military fields.

The remainder of this paper is organized as follows. Section 2 briefly discusses view synthesis,
difference expansion, related RDH and watermarking methods. In Section 3, we introduce a reversible
data hiding method based on D-NOSE model, PEE, and inter-component prediction. In Section 4, we
compare and analyze the experimental result with conventional RDHs and our proposed RDH. Finally,
this paper concludes in Section 5.

2. Related Works

In Section 2, we explain a 3D view synthesis principle, a difference expansion (DE) method,
and Chung et al.’s [26] and Shi et al.’s [27] RDH methods based on 3D view synthesis. In addition,
Zhu et al.’s [24], Wang et al.’s [23], and Asikuzzaman et al.’s [25] digital watermarking methods are
also introduced.

2.1. View Synthesis

We can obtain a 3D version of the classical 2D videos with depth information via 3D view synthesis.
Depth information plays a key role in synthesizing virtual views and the quality of synthesized views
is critical in 3D video systems. In view synthesis, a pixel in the texture image is mapped to a new
position in the virtual view by using the corresponding depth value. First, the disparity d in a pixel of
depth map is obtained using the following equation.

di =
f · l
255

(
1

znear
− 1

z f ar

)
× qi. (1)

where f and l denote the focal length and the baseline distance between two horizontally adjacent
cameras, respectively, and znear and z f ar mean the nearest and farthest depth values, respectively. The
pixel q indicates the ith depth pixel value. After the calculation of a disparity di, it is rounded into an
integer value. Then, the pixel (x′, y′) is filled by shifting the pixel (x, y) with d (see Figure 2).(

x′

y′

)
=

(
x± d

y

)
(2)
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Figure 2. View synthsis based on disparity information.

Based on the D-NOSE model [28], the symbols L and U indicate the minimum and maximum
depth values within the allowable distortion range. If the marked pixel q′i is still in the range ([L, U])

after hiding the data in qi, the virtual view will not be distorted. The notation ϕ is a set collecting
depth pixel value with the disparity (di = n). N denotes the number of pixels (width × height) in the
depth map.

For example, assuming that a disparity n = 32 and the minimum and maximum pixels belonging
to n are [Lq, Uq] = {21...24}. It means that there are four pixels corresponding to disparity di = 32,
i.e., the pixels are 21, . . . , 24. The way to figure out the allowable range for each pixel of the depth map
is shown stepwise in the Algorithm 1.

ϕn = {qi ∈ (di = n)}N
1 (3)

Algorithm 1 DRange(q)
Input: input pixel q
Output: [L, U]

1: input pixel q
2: d← depth2disprity(q) // Equation (1)
3: for i = q− 1 To 0 Step − 1 do
4: if depth2disprity(i)! = d then break
5: end if
6: end for
7: L← i + 1
8: for i = q + 1 To 255 Step 1 do //8-bit depth pixel
9: if depth2disprity(i)! = d then break

10: end if
11: end for
12: U ← i− 1
13: return [L, U]

2.2. Difference Expansion

In this section, we describe the concept of RDH using pixel prediction and DE, where p and p̂
denote an original pixel and a predicted pixel. A prediction error is determined by ei,j = pi,j − p̂i,j. If
ei,j < T and no overflow and underflow on each pixel, the secret bits b may be embedded into the pixel
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p as p′i,j = pi,j + ei,j + b. If |ei,j| ≥ T, it is not appropriate to embed secret bits, because the carrier pixel
p′ may have higher prediction error than the other embedded pixels. This pixel is modified as follows:

p′i,j =

{
pi,j + T, if (ei,j ≥ T)
pi,j − (T − 1), if (ei,j ≤ −T)

The location information of the underflow or overflow is recorded in the location map and is used
for decoding. If the predictive values are the same before and after data hiding, the reversibility of
the watermarking is guaranteed. It should restore the shifted values T before obtaining the predictive
value. Then, it is possible to obtain the predictive values correctly.

2.3. Chung et al.’s Reversible Data Hiding

The D-NOSE model can guarantee zero synthesis distortion by determining an allowable
distortion range for each depth pixel. The previous two existing methods [26,27] use the rhombus
prediction to obtain the prediction pixel p̂ =

⌈
p1 + p2 + p3 + p4

4

⌉
, and the prediction error e = p− p̂

means the difference between the original pixel p and the predicted depth pixel p̂. Here, p1, p2, p3, and
p4 denote the four adjacent pixels, where they are placed on the top, left, bottom, and right sides of p,
respectively. The average value is rounded up in the calculation. If the number of hidden bits m for a
pixel p is blog2(U − p̂i + 1)c when e = 0 and m = blog2(pi − L + 1c)− 1c when e = −1. Otherwise,
m = 0.

The marked pixel p′ is obtained from p′ = p̂ + b when e = 0 and p′ = p̂− b− 1 when e = −1.
Here, b means a binary number of m bits, and the allowable range is [L, U]. On the receiving side,
the secret bits b can be simply obtained by the expression b = (e′ mod 2m), where e′ = p′ − p̂.

The location map in Chung et al.’s method is a simple way, i.e., mark “1” if there is no hidden data
at the position and “0” otherwise. If the surface of the image is the same color, most of the location
map may be zeros since most of prediction errors may be e = 0. For this reason, Chung et al. used
arithmetic coding to compress the location map and then hide the location map in the front or back
end of the depth map. Chung et al.’s method achieves the purpose of RDH for 3D synthesis images.
Unfortunately, it does not embed a sufficient amount of data.

There is a vulnerability in Chung et al.’s method. For example, if a pixel p and an error e is 85 and
0, respectively, and acceptable range of the pixel p is [83, 87], then it is allowed to hide only 1-bit in the
pixel p, because of m = blog2(87− 85 + 1)c = 1. If a pixel is p = 87 and e = 0, then it does not allow
to embed bits. That is because a room to hide bits is determined by the position of the predicted pixel
in an allowable range of a pixel. Thus, there is no room to hide a bit when the pixel is p = 87. Another
vulnerability is that the quality of the depth map is not considered sufficiently, because the quality
only depends on the feature of the depth map.

2.4. Shi et al.’s Reversible Data Hiding

Shi et al. [27] proposed a RDH based on D-NOSE model, where the method embed information
into double layer of depth maps. Here, the prediction method for PEE obtains p̂ by the method
of rhombus prediction. In order to use of the allowable range fully, it is embed the data into the
prediction-error (e = p− p̂) value 0, and the pixel is expanded toward either the maximum or the
minimum values. In the allowable range [ln, un] of the disparity di = n in the pixel, the number of bits
for the pixel qi is mi = log2(u∗n − l∗n + 1) where q̂i ≤ u∗n ≤ un and ln ≤ l∗n ≤ q̂i when ei = 0. Otherwise,
it is mi = 0. The marked pixel q′i may be expressed as q′i = l∗n + b, where b = {0, 1, 2, . . . , 2m − 1}.
For example, if a pixel p and an error e is 85 and 0, respectively, and acceptable range of the pixel p is
[83, 87], then it is allowed to hide m = log25.
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2.5. Zhu et al.’s Digital Watermarking

Zhu et al. [24] propose a watermarking method for a new viewpoint video frame generated by
DIBR (Depth Image-Based Rendering). To preserve the watermark information during the generation
of the viewpoint video frame, the blocks in foreground object of original video frame is selected to
embed the watermark because pixels in this kind of object are more likely to be preserved in the
warping. Here, for watermarking, DCT transformation of the blocks in foreground object is firstly
done. Then, after embedding the watermark into the DCT, IDCT should be done before the DIBR.

2.6. Wang et al.’s Digital Watermarking

Wang et al. [23] propose a novel watermarking method for DIBR 3D images by using SIFT to select
the area where watermarking should be embedded. Then, the watermark information is embedded
into the DCT coefficients of the selected area by using Spread spectrum technology. The SIFT is
used to select suitable areas in which watermarking should be embedded by applying n× n 2D-DCT
to the areas selected. Next, spread spectrum technique and orthogonal spread spectrum code are
applyed to embed the watermark. In order to extract watermarks from images, we can compute the
correlation between DCT coefficients of every area and the spread spectrum code to estimate the
embedded message.

2.7. Asikuzzaman et al.’s Digital Watermarking

Asikuzzaman et al. [25] proposed a blind video watermarking algorithm in which a watermark
is embedded into two chrominance channels using a double tree complex wavelet transform.
The chrominance channel has a watermark and preserves the original video quality and the double tree
composite wavelet transform ensures robustness against geometric attacks due to the shift invariant
nature. The watermark is extracted from a single frame without the original frame. This approach is
also robust to downscaling in arbitrary resolution, aspect ratio change, compression, and camcording.

3. Proposed Scheme

In this section, we introduce RDH based on the D-NOSE model by using PEE and inter-component
prediction to improve the accuracy of predictive pixel in our proposed method. The accuracy of the
prediction maximizes the performance of the proposed RDH based on the D-NOSE model using
maximum allowable pixel range of each pixel. Moreover, our proposed scheme has the capability
controlling the quality and embedding capacity of the depth map.

RDH methods based on the 2D texture images usually have a trade-off between the capacity
and quality of the cover signal. However, since the depth map is used to synthesize virtual views as
non-visual data, we may embed secret data into the depth map without degrading the quality of the
virtual view synthesis. The D-NOSE model can guarantee zero synthesis distortion by determining an
allowable distortion range for each depth pixel. Besides, since we apply the existing PEE technology to
the 3D depth map and use the location map, our proposed method is also a perfect way to restore the
original depth map.

3.1. Inter-Component Prediction

Here, we will introduce inter-component prediction to obtain a better prediction for high
embedding capacity. Figure 3 illustrates the configuration of the depth pixel, and inter-component
prediction based on the corresponding texture pixels. A depth map in Figure 3a is composed of
marked ‘�’ and ‘♦’. The pixels in depth map are subdivided into two sets, Φ1(∈ {� . . .�}) and
Φ2(∈ {♦ . . .♦}). The inter-component prediction (in Figure 3b) selects adaptively the predicted
direction for the depth pixel by comparing the corresponding texture pixel and its adjacent pixels.
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When the depth pixel qi,j is predicted from neighbor pixels, q1, q2, q3, and q4, as shown in Figure 3b,
the corresponding texture pixel ti,j is compared with t1, t2, t3, and t4 as follows

dirD = min
dirT

(|t1 − t|, |t2 − t|, |t3 − t|, |t4 − 4|), (4)

where dirT and dirD denote the prediction direction of the texture image and the depth maps,
respectively. For example, if the pixel having the minimum texture difference is t1, qdirD is set as q1. The
existing rhombus prediction method was an efficient prediction method for color and grayscale images.
However, the rhombus method is less effective than the proposed method for depth map pixels. That is
why we propose a way to predict the pixel of depth map by considering the texture image. Obviously,
considering 3D synthesis, it seems that inter-component prediction is an excellent method.

The prediction is alternately performed for two sets, Φ1 and Φ2. That is, Φ2 is used to predict
Φ1, and vice versa. When predicting Φ2, the prediction may not be accurate because there are hidden
pixels in Φ1. To tackle this matter, we use the average of the unmarked pixel in Φ1. This is because the
correlation between the marked depth pixels and the associated pixels is low, and the prediction is
not accurate.

Figure 3. Diagram for configuration of the depth map, and inter-component prediction based on the
corresponding texture pixels.

3.2. Embedding Algorithm

Here, we will examine in detail the data embedding procedure. To extract hidden bits and recover
the original depth map, we have to record locations on whether each pixel contains hidden bits or not.

Step 1: Reads 3× 3 block from the given depth map and assigns it to the variable B. Obtain the pixel
qi,j and predicted pixel qdirD from B using Equation (4).

Step 2: The prediction error e is calculated by subtracting the prediction pixel qdirD from the original
pixel qi,j as follow

ei,j = qi,j − qdirD. (5)

Step 3: If (ei,j = 0), the number of bits m that can be embedded into the pixel qi,j is calculated using
the allowable pixel range of the pixel qi,j (Equation (6)), where (Lq, Uq) is obtained from the
Algorithm 1. {

m = blog2(Uq − Lq + 1)c.
if (m < 1), goto Step 1

(6)

Here, (bxc) is the integer less than or equal to x.
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Step 4: The binary secret bits ηm are embedded in qi,j using Equation (7). (Note: the function b2d(·)
is to converts binary values to a decimal value). That is, the ηm is included in the expanded e′

by DE.

q′i,j =

{
e′i,j = 2m × ei,j + b2d(ηm)

Lq + e′i,j
(7)

Step 5: if (ei,j = 0), LMi,j = 0, otherwise LMi,j = 1. (Notes: location map LMi,j = 0 means that
hidden bits exists.)

LMi,j =

{
0, if (ei,j = 0)
1, otherwise

(8)

Step 6: Go to Step 1 until all pixels are processed.

After the embedding procedure is finished, all pixels including the hidden bits are still within the
acceptable range. Therefore, 3D synthesis images have no distortion.

Example 1. Given two blocks in Figure 4a, we demonstrate how to hide secret bits in the pixel qi,j. First, we
obtain the predictive pixel from the texture block and depth block. Applying Equation (4), it is observed that
t1 = 51 is the optimum pixel, so qdirD becomes qi−1,j = 22.

After applying Equation (5), if ei,j = (qi,j − qdirD) = 22− 22 = 0, we may obtain disparity and
allowable range through Algorithm 1. i.e., [Lq, Uq] = (20, 23). The number of embedded bits in the
pixel can be obtained via the Equation (6), i.e., m = 2. Thus, it takes 2-bits from the secret data and
converts it into a decimal value. By applying the Equation (7), q′i,j = 20 + 2 = 22. Finally, the pixel q′

has secret bits ′10′2. In this case, qi,j is the same as q′i,j, so there is no noise in the marked pixel q′i,j.

Figure 4. Example of the data embedding using the proposed method.

3.3. Extraction Algorithm

Suppose that a depth map containing secret data and a location map was delivered to the receiver
side. We describe the procedure of extracting the hidden data and recover original pixels from the
depth map. The detail (stepwise) is as follows.

Step 1: Reads 3× 3 block from the given depth map and assigns it to the variable B. Obtains the pixel
q′i,j and the predicted pixel qdirD from the B, respectively.
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Step 2: If the location map LMi,j = 0, we obtain the size of hidden bits m = b(Uq − Lq + 1)c from the
allowable range of qi,j.

Step 3: Obtain the error e′i,j from the pixel q′i,j including secret bits by using Equation (9). (Notes:
d2b(x, m) converts the decimal number x to a binary number of m bits.)

ηm =

{
e′i,j = q′i,j − Lq

b = d2b(e′i,j, m)
(9)

Step 4: The original pixel qi,j is restored by replacing the pixel q′ with qdirD. Go to Step 1 until all
pixels are processed.

Example 2. First, Assuming that through the data embedding procedure (see Figure 4) in Example 1, the pixel
q′i,j having the binary bits ′10′2 was transferred to the receiver. On the receiving side, some of the procedure for
extracting the hidden bits in q′i,j are similar to the embedding procedure. The pixel qdirD is determined using the
neighboring pixels of the pixel q′i,j and the inter-component prediction method. In this case, the predicted pixel
is qdirD = 22. Since the location map LMi,j = 0 at position (i, j) of q′i,j, it can be seen that the data is hidden.
Thus, the number of hidden bits from the allowable pixel range of the pixel q′i,j may be determined. That is, if we
apply Equation (6) to the pixel q′i,j, then we obtain the m = blog2(Uq − Lq + 1)c = blog2(23− 20 + 1)c = 2.
Next, the error bit e′i,j = 2 obtains from q′i,j = 22 and Lq = 20 by using Equation (9). The value hidden in the
pixel qi,j is e′i,j = q′i,j − Lq = 22− 20 = 2, which is converted to the binary number ′10′2. The marked pixel q′i,j
is reconstructed to the original pixel qi,j by assigning the prediction value qdirD to the position (i, j).

3.4. Embedding/Extraction Procedure for Location Map

The location map (LM) is necessarily required for data extraction and depth map restoration,
and thus, the location map should be transferred to the receiver side. There are many ways to transfer
location map, but the most common way is to hide it into a cover image. At this step, it should
minimize the location map, because the capacity of the secret data is reduced with the size of the
location map. Thus, the compression of location map is a common procedure before embedding it into
the cover image. There are several compression methods, but here we use arithmetic coding. The map
size may be reduced by less than 10% by arithmetic coding, because the ratio of “0” in the map is more
than 90%.

The location map LM compressed by arithmetic coding is assigned into variable δ.
The compressed location data δ is embedded by the LSB replacement as follows, but the data are
embedded considering the allowable pixel range.

q′i,j =



if (Uq − Lq ≥ 3) {

qi,j + 1,

{
if (δi,j = 0 & qi,j % 2 = 1)
if (δi,j = 1 & qi,j % 2 = 0)

}
≡ A

qi,j − 1, if (qdirD = Uq & A)

}

(10)

The compressed location data δ is embedded in front of the depth map. The data δ does not cause
a synthesis error since it also adopted a D-NOSE model that hides the data within the allowable pixel
range. The last position of the location information is sent on a separate channel. On the receiving side,
the compressed location map can be extracted by the following Equation (11).

δi,j =


if (Uq − Lq ≥ 3) {

0, if (qi,j % 2 = 0)
1, otherwise
}

(11)
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3.5. Quanlity Control

In our proposed method, the quality of the depth map can be somewhat reduced if the allowable
pixel range on all pixels is fully used. It can certainly be an advantage in terms of embedding capacity,
but it is not desirable in terms of quality. Therefore, it is also important to find a balance between
the two criteria. Adjustment of the allowable pixel range may be used to achieve such a purpose.
Equations (12) and (13) can be used for managing depth map quality and embedding capacity through
Equation (6). The control of depth map is achieved by using a limited allowable range [L′q, U′q] instead
of the [Lq, Uq].

L′q =

{
qdirD − σ, if (qdirD − σ < Lq)

Lq, otherwise
(12)

U′q =

{
L′q + 2σ − 1, if (L′q + 2σ − 1 > Uq)

Uq, otherwise
(13)

Here, σ is an integer variable and the range of values is {σ ≥ 1 & σ ≤ n}. That is, increasing the value
of σ can increase the embedding capacity of RDH, while decreasing the value of σ may improve the
quality of the depth map. We may increase the usefulness of the proposed method if we adjust the
value of σ appropriately for the application.

4. Experimental Results

To better demonstrate the performance of our proposed scheme, we graphically show the results
of experiments and analysis of 3D images with various features. All experiments are performed
with eight 3D sized 1920× 1088 (or 1024× 768), “Poznan_Hall2”,“Poznan_Street”, “Undo_Dancer”,
“GT_Fly”, “Kendo”, “Balloons”, “Newspaper”, and “Shark” (see Figure 5), which are often used for 3D
video coding standards, such as 3D-AVC [19] and 3D HEVC [18], and the view synthesis reference
software (VSRS) in JCT-3V [29]. Since the schemes such as Chung et al.’s, Shi et al.’s, and the proposed
methods adopt the D-NOSE model, the synthesis using the original depth map is identical to that of
the synthesis with the marked depth map.

In this paper, we use two criteria to evaluate the performance of the existing and our proposed
schemes. The first criterion is the embedding rates (ERs) and the second is the peak signal-to-noise
ratio (PSNR). The most well-known measurement method for objective evaluation of images is PSNR.
That is, PSNR is the intensity of noise over the maximum intensity the signal can have. The MSE used
in PSNR is an average difference in intensity between the marked depth map and the reference depth
map. If the MSE value of the depth map is low, it is evaluated that the quality of the image is good.
The MSE is calculated using a reference depth map p and the distorted depth map p′ as follows.

MSE(p, p′) =
1
N

N

∑
i=1

(pi − p′i)
2 (14)

The error value ε = pi − p′i denotes the difference between the original depth map and the distored
depth map signal. The 2552 means the allowable pixel intensity in Equation (15).

PSNR = 10log10
2552

MSE
(15)

Meanwhile, ER is a measurement of how much information is included in the marked depth
map. That is, ER is the ratio of the embedded information contained in the marked depth map.
In Equation (16), N is the total number of pixels and ||η|| denotes the number of message bits.

ρ =
||η||

N
(16)



Electronics 2019, 8, 514 11 of 17

(a) Poznan_Hall2 (a)

(b) Poznan_Street (b)

(c)

(d) GT_Fly (d)

(c) Undo_Dancer

(e)

(f) Balloons (f)

(e) Kendo

(g)

(h) Shark (h)

(g) Newspaper

Figure 5. Test images; (a–d,h): 1920 × 1088, (e–g): 1024 × 768.

Figure 6 shows the comparison of data embedding rates using three methods (two existing
methods and the proposed method) and eight depth maps: (a) Poznan_Hall2, (b) Poznan_Street,
(c) Undo_Dancer, (d) GT_Fly, (e) Kendo, (f) Balloons, (g) Newspaper and (h) Shark; 1920 ×1088: (a)–(d)
and (h), 1024 ×768: (e)–(g).

The ERs of Chung et al.’s method is much less than that of Shi et al.’s and our proposed methods.
That is because Chung et al.’s method does not fully use the allowable range. On the other hand,
Shi et al.’s and our proposed method may achieve better results by adopting an allowable pixel
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range. For example, we show that the ERs of “Poznan_Hall2” in Chung et al.’s method is very low.
For the “GT_Fly”, the embedding rates of our proposed method is 0.22 BPP higher than that of
Shi et al.’s method. As shown in Figure 6, the coefficients of difference between these two methods
show that the performance of our inter-component prediction is superior to the rhombus prediction.
Therefore, our proposed method outperforms the existing two methods, including Chang et al.’s and
Shi et al.’s method.

Figure 6. Performance comparison of three data hiding methods using eight depth maps.

In Table 1, we compare the performance of the proposed method and the existing methods by
using PSNR with various BPPs and the depth map, “Shark”. As the embedding rates increases, it
appears that Chung et al.’s PSNR is sharply decreased. The reason is that Chung et al.’s method does
not use the same method of quality control and the allowable depth ranges in the data embedding
procedure. On the other hand, Shi et al.’s and our methods use the allowable pixel ranges and quality
control, thus, they have good performance. In addition, our method shows slightly better performance
than Shi et al.’s method because it uses an accurate prediction method.

Table 1. The comparision of the PSNR at the different BPP for the depth map, “Shark”.

Chung et al.’s Method Shi et al.’s Method The Proposed Method
BPP PSNR (dB) PSNR (dB) PSNR (dB)

0.1 59.6257 61.1498 61.1504
0.2 54.2950 58.1325 58.1328
0.3 51.6756 56.3714 56.3744
0.4 49.6793 55.1210 55.1246
0.5 47.5926 54.1483 54.1521
0.6 46.6222 53.3583 53.3613
0.7 45.9716 52.6881 52.6907
0.8 45.5451 52.1081 52.1113

As shown in Table 2, we know that the maximum BPP of Chung et al.’s method is less than that
of both Shi et al.’s and our proposed method. However, since the BPP is low, the PSNR is relatively
higher than that of Shi et al.’s and our method.
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Table 2. PSNR comparison for maximum BPP on each image using various methods.

Image Chung et al. Shi et al. Our Scheme

BPP PSNR (dB) BPP PSNR (dB) BPP PSNR (dB)

(a) Poznan_Hall2 0.0050 74.5704 0.7559 49.2263 0.7700 49.1044
(b) Poznan_Street 0.4222 53.9985 0.7713 49.3750 0.8339 48.9424
(c) Undo_Dancer 0.4215 53.6574 0.7693 49.0931 0.8094 48.8123
(d) GT_Fly 0.7956 48.6470 1.0363 44.5942 1.2603 43.5969
(e) Kendo 0.9393 51.4107 1.1485 45.6550 1.2093 45.4096
(f) Ballons 0.9179 51.5102 1.0813 45.5657 1.1633 45.2515
(g) Newspaper 0.6621 52.9301 1.0533 49.0001 1.1661 48.5315
(h) Shark 0.9608 45.2074 1.5194 41.0606 1.6274 40.7411

Therefore, if the BPP is the same for the three methods, the PSNRs of Shi et al.’s and our proposed
method are better than that of Chang et al.’s method. In “Newspaper”, there is the highest difference
of PSNR between our proposed and the Shi et al.’s method, because it seems that the depth map is an
image including a high-frequency property. Thus, it can be seen that the proposed method had high
prediction competence on depth maps with high-frequency characteristics. Moreover, the average
BPP of our proposed method is higher (by 0.09) than that of Shi et al.’s method, while our method
is less than 0.39 dB compared to that of Shi et al.’s method in the aspect of PSNR. However, in this
case, it is indistinguishable from the viewpoint of the usual human visual system. Therefore, it can be
recognized that the proposed scheme improves somewhat regarding BPP.

In Figure 7, the control variable σ (Equations (12) and (13)) is applied to adjust the embedding
capacity and quality of the depth map. Its principle is that the amount of embedding capacity increases
in proportion to the value of the variable σ, while the quality of depth map decreases as σ increases.
When the control variable σ = 1, the maximum embedding rate is 0.8 and the PSNR is 52 dB. When
the variable σ = 7, BPP is measured from the lowest 0.1 to the maximum 1.6 and we obtain that the
PSNR is from 48.5 dB to 41 dB. Under a strict communication environment, it may be useful to use the
control variable for secret communication.

Figure 7. The relationship between BPP and PSNR according to control variable σ with depth map “Shark”.

Table 3 shows PSNRs for the eight depth maps under various BPPs using three methods (two
existing and the proposed methods) when σ = 1. In the table, we can see that depth maps (a), (e),
and (f) may hide data up to 0.9 BPP.
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Table 3. PSNR measurement for the eight depth maps when σ = 1.

PSNRs
BPP (a) (b) (c) (d) (e) (f) (g) (h)

0.1 61.1483 61.1333 61.1505 61.1533 61.1649 61.1649 61.1421 61.1504
0.2 58.1324 58.1279 58.1374 58.1310 58.1378 58.1378 58.1260 58.1328
0.3 56.3710 56.3680 56.3769 56.3762 56.3735 56.3735 56.3642 56.3744
0.4 55.1215 55.1214 55.1246 55.1220 55.1250 55.1250 55.1171 55.1246
0.5 54.1511 54.1503 54.1547 54.1511 54.1514 54.1514 54.1458 54.1521
0.6 53.3607 53.3599 53.3635 53.3602 53.3635 53.3635 53.3590 53.3613
0.7 52.6905 52.6890 52.6929 52.6900 52.6921 52.6921 52.6886 52.6907
0.8 52.1107 − 52.1138 52.1091 52.1116 52.1116 52.1085 52.1113
0.9 51.5992 − − − 51.6007 51.6007 − −

The depth map of (a), (e), and (f) has a higher embedding capacity than the other depth maps;
because the sum of pixels ϕn (Equation (3)) of these depth maps are high. In other words, there are a
number of pixels having a wide range of allowable pixels. From this point of view, it can be seen that
sum of pixels ϕn of the depth map (b) is low. It is proved that the proposed method maintains very
high PSNR like the conventional DHs through various simulations.

Figure 8 is a visual comparison of the marked depth maps generated from the simulation results
derived from three methods in “Poznan_Street”. In Figure 8, the BPP for (c), (d), and (f) are 0.4222,
0.7713, and 0.8339, respectively, and the PSNRs of these are 53.9985 dB, 49.3750 dB, and 48.9424 dB,
respectively. As mentioned above, the embedding rates of the proposed method are about twice as
high as that of Chung et al.’s method, and also our proposed scheme provides a good depth map
quality about 49 dB.

(a) (b)

(d)

(e)

(c)

(f)

Figure 8. The relationship between BPP and PSNR according to control variable, σ in depth map on
“Poznan_Street”.
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Figure 9 shows a visual representation of how much pixels are distorted during the
data-embedding procedure for the depth map, “Shark”. The two marked depth maps by Shi et al.’s
and the proposed method include 0.4 BPP. We can easily observe the distortion of the original pixels
through the comparison of the histogram made by Shi et al.’s and the proposed method. As shown in
the histogram, it seems that the marked histograms are very similar to the original histogram. For this
reason, the two marked depth maps show a very high image quality about 55 dB. In graylevel 106 and
107, we may recognize that there is a small difference between the the two methods. As a result, it is
proved that our proposed method has fewer errors compared to Shi et al.’s method.

Figure 9. Comparison of histogram coefficients on depth map—“Shark” between Shi et al.’s method
and the proposed method.

5. Conclusions

In this paper, we introduced a method to hide metadata in 3D videos using RDH technology,
which is one of many watermarking technologies. The proposed RDH is the PEE method, which
hides a large amount of data while minimizing the damage of cover image using LSB of depth
map. The accuracy of the pixel prediction is very important to the performance of the PEE method.
To improve the accuracy, we proposed an efficient MVD-based RDH using inter-component prediction
that predicts depth pixels using MVD-related texture pixels. The newly introduced inter-component
prediction may improve the performance of the RDH because the prediction precision is higher
than the conventional diamond shape prediction. Especially, the prediction of the depth map in the
texture image with high frequency characteristics showed excellent performance. Experimental results
demonstrated that the proposed method achieves higher embedding capacity than the all the previous
methods by improving the prediction accuracy.
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the data and the obtained inference. J.Y.L. simulated the design using Visual C ++. C.K. and C.-N.Y. wrote the
paper. J.Y.L., C.K., C.-N.Y. checked and edited the manuscript. The final manuscript has been read and approved
by all authors.
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