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Abstract: Non-Gaussian noise may have a negative impact on the performance of the Kalman filter
(KF), due to its adoption of only second-order statistical information. Thus, KF is not first priority in
applications with non-Gaussian noises. The indoor positioning based on arrival of time (TOA) has
large errors caused by multipath and non-line of sight (NLOS). This paper introduces the inequality
state constraint to enhance the ranging performance. Based on these considerations, we propose
a constrained Kalman filter based on the maximum correntropy criterion (MCC-CKF) to enhance
the TOA performance in the extreme environment of multipath and non-line of sight. Pratical
experimental results indicate that MCC-CKF outperforms other estimators, such as Kalman filter and
Kalman filter based on maximum entropy.

Keywords: time of arrival (TOA); indoor localization; nonlin-of-sight (NLOS); non-white Gaussian
noise; maximum correntropy criterion (MCC); constrained Kalman filter

1. Introduction

In human civilization, the exact location of the target plays an important role in many vital
fields, like transportation, military, logistics, exploration, and environment protection, in which we
mightily demand for accurate location information. Usually, when we are in outside environment,
the global position system (GPS) nearly could meet our needs. Global Navigation Satellite Systems
(GNSSs), such as GPS, Galileo and Beidou, represent the satellite-based location technique and have
been committed to promoting location-based services. However, satellite-based location techniques
cannot function properly indoors, because the satellite signal strength is quickly undermined below
the receiving threshold by construction materials or the ground [1]. Therefore, the indoor target
localization demands us to find another positioning method that no longer uses the satellite.

As an effective method for indoor positioning, the wireless indoor location techniques have been
commonly used in the military, fire search and rescue, intelligent home and many other fields. Among
these methods, TOA-based ultra-wideband (UWB) ranging technology has been attracting much
attention for its excellent resolution and accuracy.

However, TOA-based ranging and positioning accuracy are affected by multipath and
non-line-of-sight (NLOS) scenarios. The error from NLOS [2–4] is considered as the most important
element affecting the accuracy. Therefore, the research on how to reduce TOA ranging error and
improving positioning accuracy has been a long-term concern of the academic world and the
industry. LOS (line-of-sight) and NLOS conditions could be distinguished by employing classification
methods [5,6], which can typically achieve, in previous studies, up to 92% accuracy in LOS/NLOS
identification [4–7]. In industry, the TOA-based measurement mostly uses RF chips that are DW1000
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and NanoLOC released by Decwave [8] and Nanotron [9] respectively. Above two RF chips, both offer
several RF signal parameters for LOS/NLOS identification, RSS and PFP, for instance. In addition,
these suppliers recommend some algorithms to help their chips distinguish LOS/NLOS scenes more
accurately. In summary, the NLOS identification can use its result to mitigate the measured error,
as well as enhance the localization accuracy. There have also existed other means to mitigate NLOS
influence like Kalman filter [10], redundant range estimations [11], and environmental geometrical
constrains [12]. In [13], we can find detailed overviews of the NLOS identification and mitigation.

Kalman filter (KF) is one of the most useful tools to observe linear dynamic systems. The TOA
ranging accuracy can be improved by smoothing TOA ranging results to mitigate the impact of the
NLOS propagation [14]. However, in practice, TOA ranging is more affected by non-Gaussian noises
rather than Gaussian ones, whose errors could achieve as high as 10 m [15,16]. If the system is disturbed
by non-Gaussian noise, such as this mismatch, the performance of Kalman filter will be degraded,
which has no ability to limit the large ranging error. Because when the noise is non-Gaussian, Kalman
filter cannot take advantage of the high-order information of process and measurement noise.

Besides, it is generally considered that KF [17] take advantage of minimum mean square error
(MMSE) as the optimal criterion in linear systems with white Gaussian noise. The standard is so
sensitive to large outliers and non-Gaussian noise that Kalman filters may not show good performance
when the systems are mixed with colored noise [16,18] appearing in many actual application scenarios.
In order to effectively work out the estimation problem when the system has colored Gaussian noise,
several optimization criteria have been proposed to replace the MMSE. It is worth noting that the
maximum correntropy criterion (MCC) has been successfully used in some applications mixed together
with colored Gaussian noises [19–21].

To enhance the performance of the Kalman filter for TOA ranging and localization applications
that have colored Gaussian noise [16,18], maximum correntropy criterion Kalman filtering (MCC-KF)
has used the MCC instead of the MMSE as the optimization criterion for LOS/NLOS TOA ranging.
The MCC-KF can get much better performance than traditional KF in many cases. Furthermore,
the measured distance and its variance can be adopted to constrain the ranging error space, which are
regulated to eliminate the effects of colored Gaussian noises. Then, the proposed method can smooth
the adjusted distance, which minimizes the error according to the adjusted variance. By combining the
MCC with constrained estimation technology, the proposed MCC-based constrained Kalman Filter
algorithm (MCC-CKF) can perform better.

In this paper, we proposed a Maximum Correntropy Criterion Constrained Kalman Filter
(MCC-CKF) to solve the above mismatch in TOA ranging and localization applications with colored
Gaussian noises. By LOS/NLOS identification, Maximum correlation entropy kernel mapping
and constrained optimization to TOA ranging/localization process, the localization accuracy can
be significantly improved. The results of practical experiment shows that ranging errors fit the
Gaussian distribution, and MCC-CKF can dramatically increased the positioning accuracy in practical
applications. The rest of this paper is organized as follows: Section 2 analyzes the characteristics of
indoor TOA ranging error and its boundaries. Section 3 introduces Maximum Correntropy Criterion
(MCC) and MCC based Kalman filtering method for TOA ranging/localization applications. Section 4
elaborates the overall solution of constrained Kalman filter under MCC with considering TOA ranging
boundaries. Section 5 introduces performance evaluation based on practical use case. Section 6 comes
to the conclusion.

2. Indoor TOA Ranging Error Analysis

Firstly, we give a brief description about TOA distance measuring principle and then, analyze
the multipath channel conditions in the applications of TOA ranging, and finally, calculate the TOA
ranging error boundaries.
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2.1. Time of Arrival

As shown in Figure 1, under most circumstances, we make use of the two-way ranging method
to avoid high precision synchronization between two nodes, which are defined as target node and
reference node, respectively. In this algorithm, for the first step, the target node gives off an wide-band
impulse, which would be obtained by the reference node. At last, the reference node sends back the
ranging data in the acknowledgment (Ack) package containing a time stamp. As the Ack signal arrives
at the target, we would get the round trip flight time between above mentioned two nodes. Then,
the estimated distance could be formulated as follows:

d̂ = Tp × c =
Tround − Trelay

2
× c (1)

where Tp denotes the one-way signal propagation time between the target node and the reference
node, Trelay represents the ranging data processing time of the reference node and Tround denotes the
two-way spread time of the impulse. The round trip ranging algorithm is adopted in IEEE 802.15.4a
standard, which is an international standard of high accuracy localization technology for wireless
sensor network applications.

Figure 1. Principle of the two-way TOA ranging.

2.2. Characteristics of TOA Ranging Error

The TOA ranging error mainly comes from the hardware (εd) and the multipath channel condition.
Furthermore, in an indoor environment, the main error source is pulse shift error caused by multipath
condition. As shown in Figure 2, the line of sight (LOS) transmission and non-line of sight (NLOS)
transmission are two typical scenarios for indoor TOA ranging applications. Therefore, the signal error
for TOA ranging can be considered as the multipath error and UDP (undetectable direct path [19]) error:

• Multipath error (εm) is derived from the peak shift resulted from combining the first detectable
path with its adjacent paths.

• UDP error (εu) is derived from that FDP(first detected path) is not DP, as indicated in Figure 3.

According to the above analysis, We divide the ranging error (eTOA) into two parts:

eTOA =

{
eLOS ∼ N (µLOS, σ2

LOS) , s = LOS

eNLOS ∼ N (µNLOS, σ2
NLOS) , s = NLOS

(2)

where s indicates the channel state.
In the literature, such as in [3,10], is is shown that eLOS and eNLOS obey normal distribution,

namely eLOS ∼ N (µLOS, σ2
LOS) and eNLOS ∼ N (µNLOS, σ2

NLOS).
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Figure 2. LOS and NLOS scenarios.

Figure 3. Ranging error arizes whether direct path is detectable or undetectable.

We use d to denote the true distance between the target node and the reference one. In addition,
d̂ represent the estimated distance via TOA. Define random variable:

d̂sub−mean =

{
d̂− µLOS, s = LOS

d̂− µNLOS, s = NLOS
(3)

where s is condition indicator which can be indicated by specific chip register [8] or LOS/NLOS
identification method, such as [5,22]. The error of d̂sub−mean obeys êsub−mean = d̂sub−mean − d, namely
esub−mean ∈ N (0, σ2

sub−mean), in which

esub−mean ∈ N (0, σ2
sub−mean) (4)

where p stands for the probability of LOS condition, whereas 1− p stands for that of NLOS condition.
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2.3. TOA Ranging Error Boundaries

Based on the above considerations, the ranging distance error in LOS and NLOS could be
confirmed to fit for a zero-mean Gaussian distribution, as shown in Equation (8). Thus, the 3σ law of
the normal distribution [23] could be employed to set the distance error interval.

Based on the 3σ law, the ranging error can be divided into the following:{
µLOS − 3σLOS ≤ eLOS ≤ µLOS + 3σLOS

µNLOS − 3σNLOS ≤ eNLOS ≤ µNLOS + 3σNLOS
(5)

Therefore, the range of estimated distance d can be represented as:{
d̂− µLOS − 3σLOS ≤ d̂ ≤ d̂− µLOS + 3σLOS, i f s = LOS

d̂− µNLOS − 3σNLOS ≤ d̂ ≤ d̂− µNLOS + 3σNLOS, i f s = NLOS
(6)

furthermore, which could be described as:{
d̂sub−mean − 3σLOS ≤ d̂ ≤ d̂sub−mean + 3σLOS, i f s = LOS

d̂sub−mean − 3σNLOS ≤ d̂ ≤ d̂sub−mean + 3σNLOS, i f s = NLOS
(7)

We define this constraint as C(∗) for the convenience of the following description.

3. Maximum-Correntropy-Criterion-Based Kalman Filter (MCC-KF)

Maximum correntropy criterion (MCC) has played a significant role in machine learning, pattern
recognition, and signal processing with the existence of non-White Gaussian noise, especially the large
outliers [24–26]. In this part, we introduce briefly to MCC and Kalman Filter (KF), and then present a
MCC-based Kalman filter method for non-White Gaussian noise applications.

3.1. Maximum Correntropy Criterion (MCC)

From the definition of the information theoretic and kernel methods, correntropy denotes the
metric similarity between two variables [24,27]. Cross-correntropy between two scalar variables
measures the second-order information as well as higher-order statistical information in the joint
probability density function [28,29]. We define the cross-correntropy of two random scalar variables X
and Y as

V(X, Y) = E[κ(X, Y)] =
∫

κ(x, y)dFXY(x, y) (8)

where E represents the expectation, and κ(·, ·) is a positive definite kernel function that satisfies the
Mercer theory. In this paper, we use the Gaussian kernel as a kernel function

κ(x, y) = Gσ(e) = exp(− e2

2σ2 ) (9)

where e = x− y, and σ ≥ 0 denotes the kernel bandwidth.
In most practical applications, the number of data we could access is scant and the joint

distribution FXY is usually unavailable. For solving this problem, one can use the sample mean
square to estimate the correntropy:

V̂(X, Y) =
1
N

N

∑
i=1

Gσ(e(i)) (10)

where e(i) = Xi −Yi, {Xi, Yi}N
i=1 are N samples drawn from FXY.
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The Gaussian kernel can use Taylor series expansion, we have

V̂(X, Y) =
∞

∑
n=0

(−1)n

2nσ2nn!
E[(X−Y)2n] (11)

Given a sequence of error data e(i)N
i=1, the expected cost function could be described as:

JMCC =
1
N

N

∑
i=1

Gσ(e(i)) (12)

Our goal is to get a parameter vector W for an adaptive model. Xi and Yi term the output of
the model and the desired response. The W in MCC can be denoted as the following optimization
problem:

Ŵ = argmax
W∈Ω

1
N

N

∑
i=1

Gσ(e(i)) (13)

where Ŵ means the optimal solution, and Ω represents a feasible set of parameter.

3.2. MCC-KF

A general Kalman Filter [17] makes all attempts to find the best running estimation for a recursive
system, whose state and measurement equation can be respectively described as:

xk = Fk,k−1xk−1 + uk,k−1, uk,k−1 ∼ N (0, Qk,k−1)

zk = Hkxk + vk, vk ∼ N (0, Rk)
(14)

Here xk is an n-vector that represents the true state of the underlying system. The state matrix xk
for TOA-based distance measurement can be defined as:

xk = [dk vk]
T (15)

where dk is the distance between target and reference node. Besides, vk stands for target node’s velocity.
The covariance matrices in the Kalman Filter provide us with the uncertainty in the state estimation.
For a more detailed discussion of Kalman Filtering, please consult [30].

Therefore, we formulate a a new cost function to better describe the condition with the existence of
colored noises, in consideration of the weighting matrices of least squared (LS) method [3,31]. It could
be described as follows:

Jm = Gσ(||x̂k|k − Fk,k−1 x̂k|k−1||P−1
k|k−1

) +
1
m

m

∑
j=1

Gσ(||zjk − Hj x̂k|k||R−1
jjk
) (16)

where Gσ(|| · ||) = exp(−||·||
2

2σ2 ), || · ||M denotes the M-weighted two-norm of a vector, σ is the defined
bandwidth. Rjjk is the jth element of diagonal matrix Rk. Hj is the jth row of matrix H.

In order to minimize this objective function, we find its derivative with respect to x̂k by solving

∂Jm

∂x̂k|k
= 0 (17)
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Then, the new estimator could be derived as follows:

x̂k|k = x̂k|k−1 + Kk(zk|k − Hk x̂k|k−1) (18)

Kk = (P−1
k|k−1 + γk HT R−1

k )−1γk HT R−1
k (19)

where

γk =
Gσ(||zk|k − Hk ˆxk|k||P−1

k|k−1
)

Gσ(||x̂k|k − Fk,k−1 ˆxk|k−1||R−1
jjk
)

(20)

x̂k|k = x̂k|k−1 + Kk(zk|k−Hk x̂k|k−1
) (21)

Pk|k = (I − Kk H)Pk|k−1(I − Kk H)T + KkRkKT
k (22)

The Kalman filter based on maximum correntropy criterion (MCC-KF) make use of correntropy to
conquer colored Gaussian noise and also take advantage of the covariance in gain matrix computation,
as described in Algorithm 1.

Algorithm 1 Maximum correntropy criterion Kalman filter (MCC-KF)

0: Initialization:
1: x̂0 = E[x0], P0 = E[(x0 − x̂0)(x0 − x̂0)

T ]

Prior estimation:

% Compute the prior distance estimation
2: x̂k|k−1 = Fk,k−1 x̂k−1

% Compute the prior covariance matrix
3: Pk|k−1 = Fk,k−1FT

k,k−1 + Qk

Posteriori estimation:

% Compute the Gaussian kernel parameter for update

4: γk =
Gσ(||zk|k−Hk ˆxk|k ||P−1

k|k−1
)

Gσ(||x̂k|k−Fk,k−1 ˆxk|k−1||R−1
jjk

)

% Update the posterior Kalman gain
5: Kk = (P−1

k|k−1 + γk HT R−1
k )−1γk HT R−1

k

% Updata the posterior distance estimation
6: x̂k|k = x̂k|k−1 + Kk(zk|k−Hk x̂k|k−1

)

% Update the posterior covariance matrix
7: Pk|k = (I − Kk H)Pk|k−1(I − Kk H)T + KkRkKT

k
8: k + 1→ k, go to step 2.

4. Constrained Kalman Filter under MCC

In order to improve the performance of the Kalman filter in TOA ranging and localization
applications with heavy-tailed Colored-Gaussian noise, MCC-KF is detailed in the above section.
Furthermore, the measured distance and its variance can be adopted to constrain the ranging error
space. In this section, a constrained Kalman filter method under MCC will be proposed to combine
the MCC with the constrained estimation technology [32,33]. The unconstrained MCC-KF solution is
projected onto the constrained state surface (as shown in Equation C(∗)).
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In order to combine the constrained ranging information into the filter, we define the following
cost function:

Jm =Gσ(||x̂k|k − x̂k|k−1||P−1
k|k−1

) +
1
m

m

∑
j=1

Gσ(||zjk − Hj x̂k|k||R−1
jjk
) +

1
2
||x̂k|k − d||W−1

s.t. Cx̂k|k − D ≤ 0

(23)

where Gσ(|| · ||) = exp(−||·||
2

2σ2 ), || · ||M denotes the M-weighted two-norm of a vector, σ is the defined
bandwidth. Rjjk is the jth element of diagonal matrix Rk. Hj is the jth row of matrix H. Furthermore,

C =

[
1 0
−1 0

]T

(24)

D =



[
d̂k + 3σLOS
−(d̂k − 3σLOS)

]
, i f s = LOS[

d̂k + 3σNLOS
−(d̂k − 3σNLOS)

]
, i f s = NLOS

(25)

We could get the unconstrained estimate by solving the following minimization problem. Given
on a specific time-step k, x̂P

k|k is the inequality constrained estimate and Wk is any positive definite
symmetric weighting matrix, thus we could obtain:

x̂P
k|k =argmin

x
(x− x̂k|k)

′Wk(x− x̂k|k)

s.t. Cx̂k|k − D ≤ 0
(26)

With use of fmincon in Matlab [34], above mentioned inequality constrained optimization could
be easily solved. Here, we adopt a method of active set to solve the problem of inequality constraints,
where we convert inequality constraints into equality constraints by treating the active set as additional
equality constraints [35].

In the first step, we find the optimal estimation without consideration of inequality constraints,
and we call the estimation x̂P∗

k|k,j, in which j denotes the number of iterations. In order to find out if the
solution lies in the inequality constraint space, we ought to find the vector which we moved along to
obtain x̂P∗

k|k,j. The equation is shown as follows:

η = x̂P∗
k|k,j − x̂P

k|k,j−1 (27)

Now, let us check out that if each of our inequality constraints are satisfied. If so, we set τmax = 1.
Otherwise, we would tend to make the choice of maximum value of τmax to make sure that x̂k|k,j−1 +

τmaxη lies in the inequality constraints space. We choose our estimation as

x̂P∗
k|k,j = x̂P

k|k,j−1 + τmaxη (28)

Restricting the optimal Kalman gain is the solution of this problem. We find out the optimal Kk
for a specific time step k, which is written below

K̂R
k =argmin

K∈Rn×m
Tr{(I − Kk Hk)Pk|k−1(I − Kk Hk)

′ + KkRkK′k}

s.t. Cx̂k|k−1 + Kkvk ≤ D
(29)

where Tr(·) stands for the trace of given matrix.
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We could make use of a means of inequality constraints optimization to work out this problem.
In this paper, we solve the optimization problem by using CVX toolbox [36]. The restricted Kalman
Gain is applied to get the covariance matrix of the inequality constrained estimation. We can reduce
the convergence error, by taking the difference between the updated state estimations from the last
two iterations calculated by the restricted Kalman Gain. The detailed algorithm flow can be referred to
Algorithm 2.

Algorithm 2 Maximum Correntropy Criterion-Based Constrained Kalman Filter (MCC-CKF)

0: Initialization:
1: x̂0 = E[x0], P0 = E[(x0 − x̂0)(x0 − x̂0)

T ]

Prior estimation:

% Compute the prior distance estimation
2: x̂k|k−1 = Fk,k−1 x̂k−1

% Compute the prior covariance matrix
3: Pk|k−1 = Fk,k−1FT

k,k−1 + Qk

Posteriori estimation:

% Compute the best unconstrained estimate, if indicated channel state is LOS
4: if s = LOS then

5: x̂P
k|k = argmin

x
(x− x̂k|k)

′Wk(x− x̂k|k), s.t. Cx̂k|k −

 d̂k + 3σLOS

−(d̂k − 3σLOS)

 ≤ 0

6: end if

% Compute the best unconstrained estimate, if indicated channel state is NLOS
7: if s = NLOS then

8: x̂P
k|k = argmin

x
(x− x̂k|k)

′Wk(x− x̂k|k), s.t. Cx̂k|k −

 d̂k + 3σLOS

−(d̂k − 3σLOS)

 ≤ 0

9: end if

% Project above solution to the inequality constrained space
10: x̂P∗

k|k,j = x̂P
k|k,j−1 + τmaxη

% Update the posterior Kalman gain
11: K̂R

k = argmin
K∈Rn×m

tr{(I − Kk Hk)Pk|k−1(I − Kk Hk)
′ + KkRkK′k}, s.t. Cx̂k|k−1 + Kkvk ≤ D

% Update the posterior covariance matrix
12: Pk|k = (I − Kk H)Pk|k−1(I − Kk H)T + KkRkKT

k
13: k + 1→ k, go to step 2.

5. Experiments and Results Analysis

The performance of our proposed algorithm could be evaluated by employing the TOA-based
positioning system. Practical experiment is carried out in a typical indoor scenario to verify
the effectiveness of our proposed method. In this section, we firstly give a brief introduction
about the experiment setup, and then present a detailed analysis and discussion on corresponding
experiment results.

5.1. Settings

A practical indoor positioning system based on the UWB-TOA, developed based on DW1000,
have been applied to perform the field testing. The experiment scene was shown in Figure 4,
which is located in the hall (10 m × 17 m × 4 m) inside the building of School of Computer and
Communication Engineering, University of Science and Technology Beijing (USTB). Four reference
nodes are respectively located as (1, 1), (9, 1), (1, 16) and (9, 16). The experimenter is asked to
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periodically walk along a rectangular trajectory within the region. In the experiment, we have used
the TOA node in our localization system, which consists of a 32-bit RISC processor (STM32F103)
and an on-board UWB module DWM1000. The experimenter holds the TOA node in hand. Thus,
the NLOS condition was mainly resulted from the human body and the obstacle between the target
node and the base stations. Empirical measurements have been conducted in the test filed, and totally
1549 times of localization were conducted. During the whole experiment process, about 6196 items of
estimated distances are collected, and 1549 items of coordinates are derived to satisfy the ranging and
localization accuracy.

Figure 4. TOA node use in the test and measurement scenario set up.

5.2. Ranging Error Optimization Analysis

The statistical results of ranging errors in the experiment are firstly considered in this section.
We compared the original distance ranging errors, the errors filtered by KF, MCC-KF and MCC-CKF,
respectively. The mean and variance of ranging error in practical use case are summarized in Table 1.

The ranging distance error’s distribution could be seen in Figure 5. Figure 5a shows the original
distance measurement results, from which we can see two peaks of Gaussian distribution, respectively
belonging to LOS and NLOS distance errors. Correspondingly, Figure 5b presents the ranging error
distribution when processed by proposed MCC-CKF method, which basically accords with White
Gaussian noise distribution, which could also be refered to Table 1. Thus, we can conclude that with
the use of proposed MCC-KF method, the Colored Gaussian noise casued by LOS/NLOS conditions
could be significantly mitigated.
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Figure 5. The PDF (probability distribution function) of TOA ranging errors in practical use case.
(a) PDF of original estimated distances. (b) PDF of MCC-CKF enhanced distance.
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Figure 6 shows the cumulative distribution of original distance errors and the results filtered by
KF, MCC-KF and MCC-CKF, from which we can see that proposed MCC-CKF shows much better
performance than the others. The quantized distribution parameters, as well as means and variances,
of above mentioned TOA estimated distances, are detailed in Table 1.
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Figure 6. CDF (cumulative-probability distribution function) curves of distance estimation errors in
field testing.

Table 1. The quantized distribution parameters, as well as means and variances, of TOA estimated
distances in practical use case.

Initialization: Measured Error KF MCC-KF MCC-CKF
Mean (m): 1.13 0.86 0.45 0.04

Variance (m2): 0.67 0.37 0.58 0.35

5.3. Positioning Error Optimization Analysis

Similar to the distance ranging error results, the proposed MCC-CKF still works toward
localization of moving targets. With the use of least squared localization method, the localization
errors vary with the distance ranging filtering method. KF and MCC-KF show some superiorities on
the whole, but there is still some disturbance in the small error range. It is possibly because KF does
not work well with non-White Gaussian noise and MCC-KF diverges due to the lack of constraints.
Proposed MCC-CKF method shows the best performance in localization experiments, whose mean
and variance are also the smallest among the comparison methods, as shown in Table 2.

Table 2. The quantized distribution parameters, as well as means and variances, of TOA estimated
distances in practical use case.

Initialization: Measured Error KF MCC-KF MCC-CKF
Mean (m): 5.41 4.16 3.22 1.28

Variance (m2): 45.44 11.17 0.96 1.25

6. Conclusions

This paper presents a new distance mitigation algorithm based on constrained Kalman filter under
maximum correntropy criterion (MCC-CKF) to enhance the performance of TOA distance ranging.



Electronics 2019, 8, 478 12 of 13

Proposed method are proved to be able to decrease the ranging errors resulting from non-White
Gaussian noises in the indoor scenarios. The performance of our algorithm was compared with the
other traditional and state-of-the-art TOA distance mitigation algorithms, such as Kalman filter and
maximum correntropy based Kalman filter (MCC-KF), with implementation of practical experiments
in typical indoor scenarios. Significantly, results show that our method has significant advantages in
improving distance ranging and localization accuracy.

It is worth mentioning that, our current research is limited to the localization and tracking of a
single target. In future studies, we intend to put more effort in sequential and cooperative targets
tracking using modified MCC-CKF methods.
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