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Abstract: Radio frequency identification (RFID) provides a simple and effective solution to the
passive indoor localization. The conventional wisdom about RFID localization is using reference
tags. It performs well in tag or passive single target localization. However, in the passive multiple
target scenario, reference tag based localization suffers from some limitations, including the array
aperture, mutual coupling of reference tags, and coherent superimposition signals. These problems
are harmless and ignored in tag or passive single target localization, but degrade the performance
severely in passive multiple target scenario. Therefore, in this paper, the authors propose a joint
interference cancellation method to mitigate the effect of these limitations. Uniform circular array
(UCA) of reference tags were used to reduce the interference of the array aperture. A carefully
designed relative position of adjacent reference tags and a modified channel model were combined to
reduce the mutual coupling. A virtual distributed reader antenna array was used to reduce the false
positive and false negative estimations. The system was evaluated in real indoor environment using
noodles and colas as targets and can work well in a smoky environment that is similar to some real
industrial environments. The accuracy of target number estimation is 97.5%. The spatial resolution is
about 30 cm, and the median error of 2-D multiple target localization is about 5.5 cm.

Keywords: multiple-target; passive indoor localization; interference cancellation; radio frequency
identification (RFID)

1. Introduction

Passive indoor localization has been researched for many years [1–4]. The goal of this
challenging problem is to estimate the coordinates of targets that do not carry any auxiliary devices.
The radio frequency identification (RFID) technology presents an efficient and low-cost solution [5–7].
The pioneers mostly focused on the localization methods for RFID reader [8], tags [9], or single tag-free
target. These kind of methods are excellent but unsuitable for the passive multiple target scenario.
There are two main problems. One is the interference that came from the array and among targets.
The other is how to distinguish the coherent signals, in other words, to estimate the number of targets
from the superimposed received signal. Some traditional methods such as the akaike information
criterion (AIC) and gerschgorin disks estimation (GDE) [10] are invalid for these coherent signals.
The sub-space methods, like space smoothing (SS) MUSIC algorithm [11], can distinguish the multiple
incident coherent signals efficiently under the far field assumption but become almost invalid in the
near field indoor environment.

Antenna array is an efficient way that obtains the spatial information of multiple passive
targets. One of the traditional methods is beamforming [12] that uses the phase shifts to obtain
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constructive interference in particular angles. Then co-located multiple-input multiple-output (MIMO)
radar [13] was introduced by researchers. The elements of co-located MIMO array have the ability
to transmit linearly independent signal simultaneously. Thus, the backscatter signals of targets are
linearly independent with each other, and some methods for direction of arrival (DOA) [14] could
be applied. Some researcher also focused on multi-static radar [15] or widely distributed MIMO
radar [16]. This widely distributed radar has the ability to break the Rayleigh resolution limit of the
transmit/receive arrays [17]. The inherent spatial diversity of transmitter/receiver brings the enhanced
resolution and the stable measured radar cross-section (RCS). However, the synchronization of multiple
antennas is usually difficult.

Recently, for the passive multiple target localization, channel blocking [18] or shadowing loss [19]
was used. The transmitters and receivers were deployed densely as the uniform linear arrays to make
the measured area almost full of the line of sight (LOS) propagation. The changes of channel parameters
indicate the information of positions. Radio tomographic imaging (RTI) method [20], which is inspired
from medical and geophysical imaging systems, is also based on shadowing loss. The measured area
was divided into small pixel and the shadowing loss is approximated as a weighted summation of
attenuation of each pixel [21]. The ellipsoid weighted model [22] was used to determine the weight of
each link. However, the “interest range” of channel blocking is small. The target, which is too far away
from the LOS path, will almost have no effect on the received signal strength (RSS) [23]. This means
a large number of transceiver nodes to ensure the coverage of LOS in the measured area. Besides,
the method based on channel blocking also need to match the paths with targets, and this process is
usually computational infeasible [24].

The reflected signals of targets are also important information for multiple target indoor localization.
Liu et al. [25] used the reflected signal to detect one person behind the wall, and Hidden Markov
Model was used to predict the trace. Then the reflected signal based method was expanded to 3D
localization for both tag and tag-free targets with higher accuracy [26]. Ma et al. [27] accelerated the
optimization and constructed a “smart wall” to detect the person. These methods just focused on
single target, and the multiple target indoor localization using reflected signal is still need to study.

There are also some other feasible and innovative methods. Compressive sensing [28] and Sparse
Representation-based method [29] were introduced by using the sparse nature of multiple target
locations in the spatial domain. However, the construction of over-complete dictionary is complicated
such as the RSS fingerprint-based method [30].

Against this background, we propose a passive multiple target localization using the diffuse
reflection of the targets. Neither broadband signal nor complicated equipment is used in our system.
Spatial spectrum was calculated by 2-Dimensional maximum likelihood function and a joint interference
cancellation method was introduced to make spatial spectrum work well. Uniform circular array
(UCA) of reference tags were deployed instead of a uniform linear array (ULA) to reduce the aperture
limitation. A carefully designed relative position of adjacent reference tags and a modified channel
model were combined to reduce the mutual coupling. At last, virtual reader antenna array was
constructed to reduce false positive and false negative estimations.

The remainder of this paper is organized as follows. The signal extraction and modeling are
shown in Section 2. The details of the main design and technique are overviewed in Section 3.
The implementation and evaluation are elaborated in Section 4, and the conclusion is in Section 5.

2. Signal Extraction and Modeling

The RFID localization system mainly consists of reader antenna (A), reference tags (R), surrounding
obstacle (O), and target (T). The signal propagation of one reference tag is shown in Figure 1. It should
be noted that the number of reflections of the plotted paths in Figure 1 are all less than or equal to
two times that is, it is assumed that the paths with more than two reflections are weak enough to be
ignored. The signal sent from the antenna can be represented as a complex number:
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s = αe jω, (1)

where α is the amplitude, ω is the phase and j is the imaginary number. The channel parameter h is
also regarded as a complex number.

h = βe jδ, (2)

where β is the attenuation factor and δ is the phase factor.

Electronics 2019, 8, 426 3 of 15 

 

s =αejω, (1) 

where α is the amplitude, ω is the phase and j is the imaginary number. The channel parameter h is 
also regarded as a complex number. 

h=βejδ, (2) 

where β is the attenuation factor and δ is the phase factor. 

Obstacle
(O)

Path: AORA    
Path: ARA 
Path: ATRA

Reader antenna
(A)

Target
(T)

Reference tag
(R)

 
Figure 1. Signal propagation of a reference tag. 

Consider M targets and an array of L reference tags. The RFID system can be regarded as linear 
time-invariant, and the measured signal of lth reference tag received by the reader can be written as: = ∑ ℎ ( ) + , (3) 

where s is the source signal,  donates the additive noise of circuits of reader and tag,  is the 
coordinates of mth target, and ℎ ( ) indicates the channel parameter associated with the lth 
reference tag and mth target: ℎ ( ) = ℎ + ℎ + ℎ ( ), (4) 

where ℎ , ℎ , and ℎ ( ) indicate the channel parameters of lth reference tag’s three 
paths as shown in Figure 1: ARA, AORA, and AT RA. Equation (3) can be 
rewritten as: = (ℎ + ℎ + ∑ ℎ ( )) + . (5) 

The parameter ℎ ( ) is the only one channel that contains the information of mth target. 
Therefore, the unrelated parts ℎ  and ℎ  should be eliminated from the received signal. 
Fortunately, all these unrelated parts can be obtained from the initial state that the target is not 
present. Only a simple one-click operation is needed to measure the initial state of reference tags 
when deploying the system at first time. The initial received signal is denoted as  and can be 
written as: = (ℎ + ℎ ) +  (6) 

The difference between measured signals  and  can be denoted by ∆ : ∆ = − = ∑ ℎ ( ) + ∆ , (7) 

where ∆  is also the additive noise. These superimposed signals can be rewritten in matrix form: ∆ = ( ) + ∆ , (8) 

where , , ∆ , and ∆  are complex vectors: 

Figure 1. Signal propagation of a reference tag.

Consider M targets and an array of L reference tags. The RFID system can be regarded as linear
time-invariant, and the measured signal of lth reference tag received by the reader can be written as:

xl =
M∑

m=1

hl(θm)s + nl, (3)

where s is the source signal, nl donates the additive noise of circuits of reader and tag, θm is the
coordinates of mth target, and hl(θm) indicates the channel parameter associated with the lth reference
tag and mth target:

hl(θm) = hARA
l + hAORA

l + hATRA
l (θm), (4)

where hARA
l , hAORA

l , and hATRA
l (θm) indicate the channel parameters of lth reference tag’s three paths

as shown in Figure 1: A→R→A, A→O→R→A, and A→T→R→A. Equation (3) can be rewritten as:

xl = (hARA
l + hAORA

l +
M∑

m=1

hATRA
l (θm))s + nl. (5)

The parameter hATRA
l (θm) is the only one channel that contains the information of mth target. Therefore,

the unrelated parts hARA
l and hAORA

l should be eliminated from the received signal. Fortunately, all these
unrelated parts can be obtained from the initial state that the target is not present. Only a simple
one-click operation is needed to measure the initial state of reference tags when deploying the system
at first time. The initial received signal is denoted as x̌l and can be written as:

x̌l =
(
hARA

l + hAORA
l

)
s + ňl (6)
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The difference between measured signals xl and x̌l can be denoted by ∆xl:

∆xl = xl − x̌l =
M∑

m=1

hATRA
l (θm)s + ∆nl, (7)

where ∆nl is also the additive noise. These superimposed signals can be rewritten in matrix form:

∆x = hATRA(θ)s + ∆n, (8)

where s, θ, ∆x, and ∆nl are complex vectors:

s = s[1, 1, . . . , 1]T1×M, (9)

θ = [θ1, θ2, . . . , θm, . . . , θM]T, (10)

∆x = [∆x1, ∆x2, . . . , ∆xl, . . . ∆xL]
T, (11)

∆n = [∆n1, ∆n2, . . . , ∆nl, . . . , ∆nL]
T, (12)

and hATRA(θ) is a L×M complex matrix:

hATRA(θ) =
[
hATRA

1 (θ), hATRA
2 (θ), . . . , hATRA

l (θ), . . . , hATRA
L (θ)

]T
, (13)

where hATRA
l (θ) is given by:

hATRA
l (θ) =

[
hATRA

l (θ1), hATRA
l (θ2), . . . , hATRA

l (θm), . . . , hATRA
l (θM)

]
. (14)

This situation is almost completely different from the conventional DOA estimation because the
source signals are fully coherent and the steering matrix is nonlinear.

3. Proposed Method

In this section, we first calculate the spatial spectrum using the signal model. Then we present
a joint method to reduce the interference in the spatial spectrum.

3.1. Spatial Spectrum Calculation

As the assumption that the signal propagates in the isotropic case [31], the approximated
relationship between the received power Pr and the distance d can be expressed as:

Pr = PtAe/4πd2, (15)

where Pt is the transmitted power of the reader antenna, and Ae is the RCS. The relationship of ideal
phase δ of the received signal and the distance d is:

δ = 2πd/λ, (16)

where λ is the wavelength of RF continuous wave. Combined (15) and (16), the channel parameter
hATRA

l (θm) can be expressed as:

hATRA
l (θm) = 1/d2

l (θm) exp(2π jdl(θm)/λ), (17)
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where j is the imaginary number and dl(θm) is the distance of the path A→T→R→A. In (8), the noise ∆n
can be considered as Gaussian noise: ∆n ∼ N

(
0, σ2I

)
. The complex likelihood function is specified by:

L
(
θ, s, σ2

)
= (2πσ2)

−L/2
exp (−

L∑
i=1

∣∣∣∣∣∣∆x− hATRA
i (θ)s

∣∣∣∣∣∣2/2σ2). (18)

For simplicity, the log(L
(
θ, s, σ2

)
) is expressed as:

Llog

(
θ, s, σ2

)
= −L/2 log(2π) − L/2 ln

(
σ2

)
− 1/(2σ2)

L∑
i=1

∣∣∣∣∣∣∆x− hATRA
i (θ)s

∣∣∣∣∣∣2. (19)

Before searching for θ that maximizes (19), s and σ2 need to be estimated. At first, θ and σ2 are treated
as constants, and it needs to find the s that maximizes the (19). This is equivalent to minimizing∑L

i=1

∣∣∣∣∣∣∆x− hATRA
i (θ)s

∣∣∣∣∣∣2. The estimated ŝ should be:

ŝ = hATRA(θ)+∆x, (20)

where hATRA(θ)+ = (hATRA(θ)HhATRA(θ))
−1

hATRA(θ)H and (·)H denotes the conjugate transposition.
Combined (19) and (20), and the log(L

(
θ, s, σ2

)
) can be rewritten as:

Llog

(
θ, s, σ2

)
= −L/2 log(2π) − L/2 ln

(
σ2

)
− 1/(2σ2)

L∑
i=1

∣∣∣∣∣∣∆x− hATRA
i (θ)hATRA

i (θ)+∆x
∣∣∣∣∣∣2. (21)

Then, θ is treated as constant and it needs to find the σ2 that maximizes (21). The derivative of (21) can
be expressed as:

∂Llog

(
θ, s, σ2

)
/∂σ2 = −1/2σ2 + 1/2σ4

L∑
i=1

∣∣∣∣∣∣∆x− hATRA
i (θ)hATRA

i (θ)+∆x
∣∣∣∣∣∣2. (22)

So the estimated σ̂2 is the value that makes (22) equal to zero:

σ̂2 =
L∑

i=1

∣∣∣∣∣∣∆x− hATRA(θ)hATRA(θ)+∆x
∣∣∣∣∣∣2. (23)

Merging (21) and (23), and the maximum likelihood is equivalent to maximizing cost function J(θ) :

max
θ

Llog

(
θ, s, σ2

)
⇔

equivalent
max
θ

J(θ) = 1/tr
(
I− hATRA(θ)hATRA(θ)+R

)
, (24)

where I is unit matrix and R = ∆x∆xH.
This basic maximum likelihood approach is just suitable for the single target application.

In multiple target scenario, the unknown number of parameters and the intensive computation
of multi-dimension search make it almost infeasible. However, this cost function still has the ability to
detect the targets. To avoid the above problems, we make a 2-D search of measured area using (24)
to construct a spatial spectrum. We placed two instant noodles in the measured area and the spatial
spectrum is shown in Figure 2. Positions A and B are the ground truth of two targets’ coordinates.
The preliminary spatial spectrum does not work well and we present a joint interference cancellation
method to make it work.
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3.2. Avoiding the Limitation of Array Aperture

One problem is the anomalous enhancement as the section C shown in Figure 2. This comes from
the interference between two targets at A and B, and the basic reason is the aperture limitation of
the linear array. A linear array can improve resolution in the plane containing the array, except for
the direction orthogonal to the array. For every target position in the spatial spectrum, this aperture
limitation brings a chain of peaks along the vertical direction of the linear array. The section C in
Figure 2 is the superimposition of the chains of peaks of targets at A and B. This is not an isolated
case. The linear synthetic aperture radar (SAR) localization method also suffers from this aperture
limitation [32]. To avoid this aperture limitation, we considered the uniform circular array, which has
balanced aperture in different directions. However, the problem of mutual coupling of adjacent
reference tags still needs to be solved.

3.3. Avoiding the Effect of Mutual Coupling

Mutual coupling of adjacent tags can result in the changes of RSS and phase [33]. In some extreme
cases, the coupled tags will become inactive. The tags that used in this paper are approximately
the dipole structure. The relative orientation and distance of adjacent tags of the UCA have great
influence on the mutual coupling. The intuitive idea is that the adjacent reference tags should be
placed perpendicularly to each other. However, this idea is invalid for UCA because that the relative
orientation of the adjacent tag is different with each other as shown in Figure 3a. We made similar
measurements as shown in Figure 3b. It is shown that this change of relative orientation is destructive.
Two tags were perpendicular and the interval is fixed at 15 cm. The turn angle is ranging from 0◦ to
360◦ with a step of 30◦. The reader reads from 1 m away and the phase changes of measured tag are
shown in Figure 4a. The change of relative orientation results in a counter-intuitive situation that the
mutual coupling still has drastic fluctuation while the tags are mutually perpendicular. The possible
reason should come from the meander or tip-loading structure of tag antenna.

We further evaluated the effect of relative distance to mutual coupling using three kinds of
placements: parallel, perpendicular, and coaxial. The turn angle is fixed to zero, and the distance
is ranging from 10 cm to 50 cm with a step of 5 cm. The measured phases are shown in Figure 4b.
The mutual coupling of parallel placement is still strong at the distance of 40 cm. This also makes the
perpendicular placement invalid because the two tags separated by one tag are parallel.
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According to these evaluations, to reduce the mutual coupling, each reference tag should have
the same relative position with adjacent tags, and should be the coaxial type of placement. Therefore,
we introduced a type of placement as shown in Figure 5. Each reference tag has the same relative
position, and is almost in the zero-power coaxial direction of the adjacent tags.
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3.4. Signal Model Modification

Due to the linear polarization of tag’s antenna, the designed relative position as shown in Figure 5
will lead to different polarization directions of reference tags. The placements of reference tags are fixed,
so the phase changes that came from different polarization directions are also fixed. We introduced
a modified channel parameter model that considers the polarization directions of reference tags.
The (17) can be rewritten as:

hATRA
l (θm) = 1/d2

l (θm) exp(−2π jdl(θm)/λ+ ϕl), (25)

where ϕl is a phase factor of the polarization direction of the lth reference tag. As the evaluations in
our previous work [26], this factor can be calculated by:

ϕl = 4πl/L. (26)

where L is the total number of reference tags. After solving the problems of aperture limitation and
mutual coupling, the spatial spectrum is shown in Figure 6a. It is obvious that this method is useful for
two targets. However, it will become invalid with the increasing number of the targets. Especially in
the symmetric type of placement, the results deteriorate obviously. The spatial spectrum of five targets
is shown in Figure 6b. The false positive and false negative estimations need to be solved.
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3.5. Avoiding the Effect of Interference of Targets

The reason for the false negative estimation should be the too small power of diffuse reflection
of the target in some incident angles. The power of diffuse reflection is various in different incident
directions and is difficult to predict. The false positive should come from the coherent superimposition
of multiple targets. To solve these two problems, we took inspiration from distributed antennas and
used a moving reader antenna to approximate a virtual distributed antenna array. Assume that the
reader antenna array has Q elements, and the weighted spatial averaging of spatial spectrum could be
written as:

J(θ) = 1/Q
Q∑
1

w/tr
(
I− hATRA(θ)hATRA(θ)+R

)
, (27)

where w is the weight of cost functions and its value is designed according to the number of close
peaks of spatial spectrum. The distance threshold that decides whether the two peaks are close or not
is the spatial resolution that evaluated in Section 4.4. It is shown that the spatial resolution is about
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30 cm, so the peaks of spatial spectrum with Euclidean distance less than 30 cm are very likely to be
false positive. If there are no close peaks, the w should be equal to one, and the more close peaks,
the closer w is to zero. So w is designed as a sigmoid function:

w = 1− 1/(1 + exp(2(1− 2p))), (28)

where p is the number of close peaks that the Euclidean distance is less than 30 cm. The spatial spectrum
calculated by (27) is shown in Figure 7. It is obvious that the false negative and false positive estimations
have been eliminated. After the normalization, the extremum points that exceed a threshold 0.5 were
regarded as targets’ position in our evaluation.
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4. Results and Evaluation

The prototype of our localization method was carried out in an indoor environment as shown in
Figure 8. It mainly consists of reader (Impinj R420 assembled in Penang, Malaysia), antenna (Laird
s9028PCR made in Shanghai, China), and tags (ALIEN AZ9662 made in Shanghai, China). The antenna
was fixed to the roof of 250 cm height, and the designed UCA was made up on the ground by 40
reference tags. The radius of the UCA is about 95.5 cm and the interval of reference tags is 15 cm.
Both antenna and reference tags have fixed coordinates. For effective reading, reference tags were
stuck on corrugated paper. The frequency of signal sent from R420 reader is 920.625MHz and the
transmitted power is 32.5 dBm. The element positions of the virtual reader antenna array are as the
black points shown in the lower right corner of Figure 8 and the interval is 30 cm. To reduce the impact
of accidental errors, the average of five measurements is used as an input. The target items used in our
experiment were instant noodles and colas, and their shapes are approximately cylindrical with the
sizes of π× (6 cm)2

×11 cm and π× (2.5 cm)2
×24 cm respectively. The targets were fixed on PVC tube

and tested in a 2 m × 2 m square.

4.1. Two-Dimensional Localization Measurements

The single target was fixed on a PVC tube at a fixed height of 160 cm. The height of target
can be any other values, and this 2-D localization method can be easy expanded to 3-D localization.
We repeated 100 times of each localization. The single target localization results (sixteen test positions),
the five targets localization results, and the cumulative distribution functions (CDFs) of localization
errors are shown in Figure 9a–c respectively.
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The median errors (ME), standard deviation (SD), and root mean square error (RMSE) of 2-D
single target localization are shown in Table 1.

Table 1. Statistics of single target localization results.

Target ME (cm) SD (cm) RMSE (cm)

Instant Noodles 2.3 1.8 3.9
Cola 3.2 3.7 6.4
Mean 2.8 2.8 5.2

In multiple target 2-D localization, the ME, SD, and RMSE of localization, and the accuracy of
target number estimation (ATNE) are shown in Table 2.

Table 2. Statistics of multiple target localization results.

Target ME (cm) SD (cm) RMSE (cm) ATNE

Instant Noodles 5.4 1.03 15.0 95%
Cola 5.5 1.0 14.7 100%
Mean 5.5 1.0 14.9 97.5%
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4.2. Localization Accuracy of Different Number of Targets

We evaluated our method using different number of instant noodles ranging from one to five,
and the median errors of are shown in Figure 10. All the median errors are less than 5.4 cm, and it
is probably the larger error with more targets. The reason of this trend should come from the
signal propagation between targets. The more targets, the more interference signal. This factor is
unpredictable, and hard to be included in the signal model.Electronics 2019, 8, 426 11 of 15 
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4.3. Range of Detection

We placed the target at different distances from the center of reference tag array. The localizations
errors and estimation accuracy of target’s number are shown in Figure 11. The system works well
when the target is less than 120 cm away from the center of array. Then the error and the estimation
accuracy of target’s number deteriorate when the targets are outside of 120 cm. This detection range
should limited by the beam width of reader antenna. The reader antenna used in this method is
Larid 9028PCR with the −3dB beam width of 70◦. When the target is outside the beam, the reflected
energy becomes small and the target becomes hard to be detected. This limitation can be alleviated by
an omnidirectional reader antenna.
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4.4. Multiple Target Spatial Resolution

Two instant noodles were placed with different intervals to test the spatial resolution. The spatial
spectrums that do not use weighted spatial averaging are shown in Figure 12. The intervals of the test
positions are about 170 cm, 50 cm and 30 cm. It is obvious that the two targets could be detected when
the interval is larger than 50 cm. When the interval of two targets is less than 50 cm, the targets cannot
be detected.Electronics 2019, 8, 426 12 of 15 
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Weighted spatial averaging has the ability to enhance this resolution. All the initial spatial
spectrums of 21 elements of virtual reader antenna array are shown in Figure 13a. Most of them have
obvious interference and cannot obtain right results. The spatial spectrum using weighted spatial
averaging method is shown in Figure 13b. It is obvious that the two targets with 30 cm interval can be
distinguished. Hence, the weighted spatial averaging can improve the resolution to 30 cm.
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4.5. Impact of Reference Tags

Reference tags have significant impact on system performance. The important factor is the number
of reference tags that is related to both the accuracy and resolution capability. The accuracy of target
number estimation and localization errors using different number of reference tags are shown in Table 3.
With the increasing reference tags, the accuracy of target number estimation increases and the error of
localization decreases.
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Table 3. The results using different number of reference tags.

Number of Reference Tags 10 20 30 40

Accuracy of target number estimation 23% 51% 72% 95%
Median error(cm) 10.0 8.8 9.0 5.4

4.6. The Results in Smoky Environment

In some industrial environment, the targets may be blocked by the smoke or fog. To test our
method in this environment, we constructed a sight-blocked environment using smoke as shown in
Figure 14. We place two instant noodles as targets and the indoor localization was repeated 100 times.
The median error of localization is 2.0 cm and all the 100 measurement obtain the right targets’ number
as shown in Table 4. This shows that our method can be applied in similar industrial environment
where visibility is blocked by smoke.
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Table 4. The results in smoky environment.

Environment Normal Smoky

Accuracy of target number estimation 100% 100%
Median error(cm) 1.9 2.0

4.7. Comparison with Recent Works

The performance of this paper and some other methods were compared. ARTI [21] and D-Watch [19]
are efficient passive localization methods that presented recently. The comparison of ARTI, D-Watch,
and this paper is shown in Table 5.

Table 5. Comparison with recent works.

Methods Maximum Number of Targets
that can be Estimated

Median Error of Positions
Estimation

ARTI [21] One 7.6
D-Watch [19] Three 5.8

This paper Five 5.4
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The measured data and corresponding codes are available in the IEEE DataPort with DOI:
10.21227/b8j8-6r18. We hope that these will be of great use to others.

5. Conclusions

In this paper, passive multiple target indoor localization relying on diffuse reflection is proposed.
More explicitly, the aperture limitation was reduced by using a uniform circular array of reference tags.
Mutual coupling of reference tags was avoided by the carefully designed relative position of adjacent
tags and a modified channel parameter model. The false positive and false negative estimations were
eliminated by a virtual distributed reader antenna array. This method can distinguish the coherent
signal of the targets and obtain the corresponding positions. We demonstrated this method in the real
indoor environment. The accuracy of the estimated number of the target is about 97.5%, the spatial
resolution of multiple targets is about 30 cm, and the median error of multiple target localization is
about 5.5 cm.
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