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Abstract: Characterized by uniaxial magnetic anisotropy, the Stoner-Wohlfarth particle experiences
a change in magnetization leading to a switch in behavior when tuned by an externally applied
field, which relates to the perpendicular bias component (hperp) that remains substantially small
in comparison with the constant switching field (h0). The dynamics of the magnetic moment that
governs the magnetic switching is studied numerically by solving the Landau-Lifshitz-Gilbert (LLG)
equation using the Mathematica code without any physical approximations; the results are compared
with the switching time obtained from the analytic method that intricately treats the non-trivial bias
field as a perturbation. A good agreement regarding the magnetic switching time (ts) between the
numerical calculation and the analytic results is found over a wide initial angle range (0.01 < θ0 < 0.3),
as h0 and hperp are 1.5 × K and 0.02 × K, where K represents the anisotropy constant. However,
the quality of the analytic approximation starts to deteriorate slightly in contrast to the numerical
approach when computing ts in terms of the field that satisfies hperp > 0.15 × K and h0 = 1.5 × K.
Additionally, existence of a comparably small perpendicular bias field (hperp << h0) causes ts to
decrease in a roughly exponential manner when hperp increases.
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1. Introduction

Growing research attention has been paid to controlling the magnetization reversal in ferromagnetic
multilayer configurations in the past two decades [1–6]. To primitively describe the magnetic dynamics
of single-domain ferromagnets [7], it appears necessary to revisit the Stoner-Wohlfarth (SW) model that
was originally proposed by E. C. Stoner and E. P. Wohlfarth in 1948 [8]. Based on their early work,
many additional extensions [9–11] of the simplified SW model have undergone intensive investigation
motivated by the current progress in computational technology applied to solid-state physics.
The concept of “magnetic switching” plays a key role in the reading and writing of information and
monitoring the magnetization in magnetic material. In our study, the time-dependent magnetization
vector of a particle satisfying the SW model requirement is examined and associated with the applied
torque (due to externally applied magnetic fields) that causes magnetic moment reversal to occur.
For the crucial importance of investigating the dynamical behavior of magnetization in a SW particle
modulated by a significantly small bias field, one notices that discerning how to efficiently manipulate
the magnetic state of a primitive single-domain ferromagnet is key to the development of ferromagnetic
spintronics. Specifically, there exists two major aspects that motivate our current study. First, the
local modulation of magnetization being done by tuning the magnitude of the bias magnetic field
should be completed in a more efficient manner than the traditional method which uses electric fields
to store information in the computer memory named “dynamic random-access memory” (DRAM),
because information storage in such a conventional method is transient and easily lost when turning
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off the computer. Therefore, newer way of memorizing information such as “magnetic random-access
memory” (MRAM), which uses long-lasting ferromagnetism and ferroelectricity, is strongly desired.
Second, increasing the magnetic switching rates is required by the disk speed and recorded density
with respect to the physical equipment in computer memory part. Accordingly, ferromagnetic materials
have become increasingly essential and demonstrate many promising practical applications including
nano-scale memory devices and magnetic field probes [12–14].

At present, our work discusses the switching behavior of a Stoner-Wohlfarth particle (sometimes
called single-domain magnetic grain) for the instance when the external fields that involve the driving
field (h0) along with the small bias field (hperp) are simultaneously present. Among the results, the time
it takes for the magnetization vector to experience an angle change, which is a bit smaller than π/2,
and how the bias field strength (or initial angle parameter) effects the switching time are extensively
explored in this paper.

There exist many computational techniques that can be used to reveal the magnetic dynamics
governed by the Landau-Lifshitz-Gilbert (LLG) equation [15], which was developed after the
Landau-Lifshitz (LL) equation [16,17]. In general, many codes utilizing Monte Carlo methods, fast
Fourier transformations, etc., have been utilized to obtain a numerical simulation of the magnetization
occurring in actual magnetic grains, as well as the time evolution of other physical quantities, namely,
the vortex profile, dipole–dipole interaction, etc. [18–20]. In addition to these programs, which aim to
acquire the time evolution of magnetic quantities without any physical approximations, one learns that
an analytic solution within the framework of the LLG equation provides another valid and effective
method to interpret the actual magnetic behavior of various systems [21–23], including our study,
which uses appropriate analytic approximations, such as the perturbation theory. Specifically, for our
work, we compare the magnetic switching time gained using two different computational methods
(numerical and analytical approaches) and examine the apparent agreement (or slight discrepancy)
between these approaches.

This paper is structured as follows. We briefly introduce the fundamental model (LLG equation)
used to explain the time evolution of the magnetic moment in the context of the Bloch equation along
with the LL equation, with the goal of establishing the analytic approach (involving appropriate
approximations) that applies to the switching time computation. Then, the interplay of the magnetic
driving field and the perpendicular bias field occurring in a Stoner-Wohlfarth particle is reviewed
and contrasted with our calculated results, which suggest that magnetic switching can be effectively
tuned using a significantly small bias field. In the discussion section, the magnetic switching time in
the case of axial symmetry (no bias field), as well as in the case of a small perpendicular bias field, is
analytically examined, exhibiting fair agreement with the numerically obtained data.

2. Model

2.1. Magnetic Moment Dynamics

For the purpose of characterizing the magnetic dynamics that govern the time evolution
of the magnetization vector M, the Bloch equation [24] was initially proposed via relation
dM/dt = γ0 × M × H, where γ0 described the gyromagnetic ratio while H represented the external
field. Then, Landau and Lifshitz extended the Bloch equation to the parameter M subjected to the
effective field (Heff), which arose from the negative functional magnetization derivative with respect
to the magnetic energy (−δEm/δM), as well as the dissipation terms, which were related to the loss
and relaxation processes in ferromagnetic materials. Consequently, the derived Landau-Lifshitz (LL)
equation is as follows:

dM/dt = −γ0 × M × Heff + λ × γ0/|M| × M × (M × Heff) (1)

where Landau and Lifshitz assumed that the dissipation was described by a nonlinear term (second
term in Equation (1)) of the form restricted by the same effective field, while introducing the coefficient
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λ and taking into account the gyromagnetic ratio γ0. The first term on the right-hand side (RHS) of
Equation (1) describes the dissipationless motion of the moment. Notice that the LL equation conserves
the magnetic moment |M|= (M·× M)1/2 and takes the scalar product of M and all terms, except for
the nonlinear term appearing in Equation (1), which leads to M·(dM/dt) = 0. Therefore, one finds that
|M| = Ms = a constant, where Ms represents the magnitude of the saturation magnetization under the
circumstance of a negligible second term in the RHS of Equation (1). This can be illustrated with the
example of a uniaxial anisotropic magnet placed into an external field (Heff) directed along the same
axis. The left panel of the figure below shows that without dissipation, the moment performs a circular
motion along the parallels of a unit sphere, so that |M| = a constant is maintained. In the absence of
dissipation, the precession of the moment persists for an infinitely long time and is shown in the left
panel of Figure 1.
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Figure 1. Dynamics of the magnetic moment M in the absence of dissipation losses (a) and with
damping action (b) within the scheme of the Landau-Lifshitz equation. The blue arrow notifies the
direction of moment trajectory.

In real experiments, dissipation losses play a crucial role in regulating the dynamics of the moment.
Even a small variation in the dissipation torque can cause the moment to change significantly. As the
right panel of Figure 1 shows, the dissipation torque is the only torque that actually pushes M toward
the minimum magnetic energy, resulting in a magnetization trajectory that is on the spherical surface
due to its constant module |M|, and eventually precesses to the direction which is almost aligned
along the −Heff field direction.

The divergence problem arises when significantly large dissipation losses (λ >> 1) are available in
the LL equation. To conquer this trouble, Gilbert modified the dissipation term by taking a damping
quantity of the form α × Ms

−1 × M × (dM/dt) into account. α acts as the Gilbert damping coefficient.
Consequently, the motion of a magnetic moment in the context of a redefined damping factor along
with effective field was mathematically given by the so-called Landau-Lifshitz-Gilbert (LLG) equation:

dM/dt = −γ × M × Heff + α × Ms
−1 × M × (dM/dt) (2)

where γ is another gyromagnetic ratio, and α turns out to be the Gilbert damping parameter. It appears
straightforward to verify that we can retrieve the LL equation format from the LLG counterpart. Taking
the cross product of the left-hand side (LHS) of Equation (2) with M, and using M norm conservation
(M·× (dM/dt) = 0), one can obtain the following:

M × dM/dt = −γ × M × (M × Heff) + α × Ms × (dM/dt) (3)

Notice that Ms represents the magnitude of the moment vector M. Inserting M × (dM/dt), which
roots from the LHS of Equation (3) into Equation (2), one eventually obtains the following:
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dM/dt = −γ × (1 + α2)−1 × (M × Heff) − α × γ × Ms
−1 × (1+α2)−1 × M × (M × Heff) (4)

Here, one may identify γ0 as γ × (1 + α2)−1 and λγ0/|M| as α × γ × Ms
−1 × (1+α2)−1, then

both equations (LL and LLG) become identical.
The next step was to transform Equation (4) into the dimensionless form. Dividing both sides of

Equation (2) by γ × Ms gave rise to the below expression:

(γ × Ms)−1 × dM/dt = −Ms
−1 × M × Heff + (α × γ−1 × Ms

−2) × M × (dM/dt) (5)

with the following definitions: n = M/Ms and heff = γ × Heff, one can rearrange Equation (5) to obtain
the dimensionless equation: dn/dt = −n × heff + α × n × dn/dt. Then, taking the cross product of n
and the expression involving dn/dt, one can finally determine the following:

(1 + α2) × dn/dt = −n × heff + α × heff (6)

2.2. Stoner-Wohlfarth Model

To understand how the presence of magnetic anisotropy leads to the existence of preferred
directions for moment M, one realizes that the origin of anisotropy energy EA stems from two factors:
The crystalline anisotropy ultimately caused by the spin–orbit interactions in the material [25] and
the shape anisotropy caused by the energy of the fields induced by the magnetic moment [26].
The properties of these two types of energy remain complex in multi-domain samples, while the
anisotropy energy EA(n) of a single-domain case has the uniaxial form:

EA = −1/2 × K × (n × z)2 (7)

where K is the anisotropy constant that stays positive, and z denotes a unit vector along the z-axis.
The minimum of the anisotropy is achieved for n = +z or n = −z in the context of a positive K, while the
z-axis here is defined as the easy axis of the magnetic material. Considering a single-domain magnet
that is placed into an external magnetic field H, one notices that an additional contribution to the
energy that is equivalent to (–M·× H) arises. Hence, the total energy is consequently defined by the
following:

EA = −1/2 × K × (n × z)2 − M·× H (8)

In terms of spherical angles, θ and ϕ are commonly used to parameterize the unit vector
n = (sinθcosϕ, sinθsinϕ, cosθ), and the total energy EA is rewritten based on the re-expressed component
(nx, ny, nz) as the following:

EA = −1/2 × K × cos2θ − |M| × |H| × cosθ (9)

Such energy, which depends solely on angle θ, can now be plotted as a series of E(θ) graphs in the
following (see Figure 2). The qualitative shape of each diagram appears to be different relying on the
value of |H| = Hz/cosθ.
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As shown in the figure above, for −K/|M| < |H| < K/|M|, there are two minima of energy in
the angle interval (0, π), while for |H| > K/|M| (or |H| < −K/|M|) there exists only one minimum
within the same parameter range. If one initially sets the field to a positive value, for instance, |H|
> K/|M|, the available energy minimum can only be acquired at θ = 0, which corresponds to the
moment pointing in the +z direction. By decreasing the field until it eventually approaches its negative
counterpart (from |H| = 1.4 × K/|M| to |H| = −1.4 × K/|M| in Figure 2), one can switch the
moment from up (cosθ = 1) to down (cosθ = −1). The switching behavior indeed occurs when the
energy minimum in the curves at θ = 0 disappears.

It is apparent to deduce from Equation (9) that this critical phenomenon can be numerically
captured at the field value |H| = −K/|M|. Continuing to tune the field toward −1.4 × K/|M|, one
finds that the moment abruptly jumps into a state with θ = π, (i.e., being directed along −z). In other
words, the moment stays in the downstate situation. If the field is increased up from a negative value
(e.g., |H| < −K/|M|), the moment remains in the minimum state (θ = π) until the field reaches the
value of |H| = +K/|M|, at which point this minimum configuration disappears and the moment
eventually jumps back into the “new” stable minimum at θ = 0. Consequently, Figure 3 shows the
magnetic energy E as a function of angle θ for the special cases where |H| = ±K/|M|. The |M|(|H|)
dependence has a form shown below (Figure 4).
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Figure 4. Magnetic hysteresis describing the moment’s |M| dependence on the applied field strength
|H| is shown on the basis of the anisotropic energy guided by Equation (9).

It is observed that this magnetic hysteresis has a rectangular hysteresis loop, and its width (or
coercive field) is K/|M|. A more complicated situation where H has two nonzero components given by
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H = (Hx, 0, Hz) is of great significance and is analogous to a Stoner-Wohlfarth particle. It is assumed that
the longitudinal component Hz stays extremely larger than the perpendicular component Hx which is
free to be tuned and is defined as a bias field for later discussion. Currently, the study of the switching
behavior of a uniaxial magnet in the presence of a bias field, in addition to a longitudinal field, has
been attracting increasing attention [27,28]. For the purpose of seeking the critical value of Hx at which
the switching occurs supposing that Hz is fixed, the functional dependence Hz(Hx) describing interplay
of these two critical fields is plotted in the following figure and given mathematically as [11,29–31]:

Hz
2/3 + Hx

2/3 = (K/|M|)2/3 (10)

Depicting the above relation between the bias field and the fixed field leads to the resulting
diagram, which is referred to as the asteroid curve, in which the dashed line in Figure 5 shows how
the total field H changes when Hz varies itself at a fixed value of Hx.

Electronics 2019, 8, x FOR PEER REVIEW 6 of 12 

 

describing interplay of these two critical fields is plotted in the following figure and given 
mathematically as [11,29–31]: 

Hz2/3 + Hx2/3 = (K/|M|)2/3 (10) 

Depicting the above relation between the bias field and the fixed field leads to the resulting 
diagram, which is referred to as the asteroid curve, in which the dashed line in Figure 5 shows how 
the total field H changes when Hz varies itself at a fixed value of Hx. 

 

Figure 5. Functional dependence of Hz on Hx simulating the Stoner-Wohlfarth model. 

It is assumed that the longitudinal field Hz is abruptly tuned from the field point A to the one 
corresponding to the field at point B, as a function of a constant Hx. This is due to the fact that, tangents 
to the asteroid give rise to magnetization directions with external energy. For a system with a uniaxial 
anisotropy, the tangents that are closer to the easy axis can result in stable solutions (minimum energy 
configuration). Specifically, in the initial state A, the magnetic moment is pointing mostly in the +z 
direction because of a slight deviation from +z due to the presence of a nonzero, yet very small, Hx 
(Hx << K/|M|). After an abrupt change of Hz to the value confined at state B, the “up equilibrium” no 
longer exists, and the moment rotates to the “down equilibrium”; however, the moment is directed 
almost along −z (again, a small deviation from –z is present due to Hx). An important characteristic of 
this switching process is numerically manifested by the switching time ts, since such parameter plays 
a crucial role in technological applications, pertinent to which the single-domain particles are used to 
store digital information. In other words, a smaller switching time means information is written into 
memory equipment faster. In this paper, the switching time of a uniaxial Stoner-Wohlfarth particle 
at a significantly small bias field was investigated by virtue of an analytical method along with a 
numerical calculation. 

3. Results and Discussion 

3.1. Switching Behavior under Axial Symmetry 

Before performing practical calculations to determine the magnetic switching time of an SW 
particle subjected to an additional bias field, it was necessary to convert the derived vector Equation (6) 
within the small damping approximation (α << 1) to a system of two scalar equations on (θ, φ). Figure 6 
introduces the two vectors eθ and eφ, both of which are tangent to the unit sphere. 

Figure 5. Functional dependence of Hz on Hx simulating the Stoner-Wohlfarth model.

It is assumed that the longitudinal field Hz is abruptly tuned from the field point A to the one
corresponding to the field at point B, as a function of a constant Hx. This is due to the fact that, tangents
to the asteroid give rise to magnetization directions with external energy. For a system with a uniaxial
anisotropy, the tangents that are closer to the easy axis can result in stable solutions (minimum energy
configuration). Specifically, in the initial state A, the magnetic moment is pointing mostly in the +z
direction because of a slight deviation from +z due to the presence of a nonzero, yet very small, Hx (Hx

<< K/|M|). After an abrupt change of Hz to the value confined at state B, the “up equilibrium” no
longer exists, and the moment rotates to the “down equilibrium”; however, the moment is directed
almost along −z (again, a small deviation from −z is present due to Hx). An important characteristic of
this switching process is numerically manifested by the switching time ts, since such parameter plays
a crucial role in technological applications, pertinent to which the single-domain particles are used to
store digital information. In other words, a smaller switching time means information is written into
memory equipment faster. In this paper, the switching time of a uniaxial Stoner-Wohlfarth particle
at a significantly small bias field was investigated by virtue of an analytical method along with a
numerical calculation.
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3. Results and Discussion

3.1. Switching Behavior under Axial Symmetry

Before performing practical calculations to determine the magnetic switching time of an SW
particle subjected to an additional bias field, it was necessary to convert the derived vector Equation (6)
within the small damping approximation (α << 1) to a system of two scalar equations on (θ, ϕ). Figure 6
introduces the two vectors eθ and eϕ, both of which are tangent to the unit sphere.Electronics 2019, 8, x FOR PEER REVIEW 7 of 12 
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α × ((dθ/dt) × eϕ − (dϕ/dt) × sinθeθ)

(11)

where ESW is identified as the energy pertaining to an SW particle of interest, and the LHS of
Equation (6) is approximated as dn/dt. Next, by equating the coefficients pertinent to both tangent
vectors appearing in the LHS of Equation (11) and rearranging the appropriate time derivatives with
respect to the angles, one finally finds the following:

dθ/dt = −sin−1θ × (
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We now investigated the switching behavior in the case of axial symmetry (Hx = 0) in the context 
where the magnetic energy was assumed to depend solely on the θ parameter (E(θ) = −1/2 × K × cos2θ 
− |M| × |H| × cosθ). Therefore, two independent equations associated with the angle variables are 
given: 

dθ/dt = −α × sinθ × (K × cosθ + hz) (14) 

Here, conducting an integration of Equation (14) over θ and t subjected to a provided initial 
angle θ0 ≡ θ(t = 0) was apparently responsible for resolving the magnetic switching time. The 
switching field hz is denoted as Hz × |M|. Suppose one initiates with a magnetic moment positioned 
close to the +z direction and applies a negative magnetic field –H0 (aligned along −z) sufficient to 
induce a switch. A representation of the dependence of θ on t (in the unit of α × K) according to the 
model described mathematically in Equation (14) is shown in Figure 7. As the switching process 
progressed, different curves reflecting angle θ (given in the unit of radian) versus time, arose due to 
the distinct values of θ0. By the end of the switching process, the moment had approached the –z 
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We now investigated the switching behavior in the case of axial symmetry (Hx = 0) in the context
where the magnetic energy was assumed to depend solely on the θ parameter (E(θ) = −1/2 × K × cos2θ

− |M| × |H| × cosθ). Therefore, two independent equations associated with the angle variables
are given:

dθ/dt = −α × sinθ × (K × cosθ + hz) (14)

Here, conducting an integration of Equation (14) over θ and t subjected to a provided initial angle
θ0 ≡ θ(t = 0) was apparently responsible for resolving the magnetic switching time. The switching
field hz is denoted as Hz × |M|. Suppose one initiates with a magnetic moment positioned close to
the +z direction and applies a negative magnetic field −H0 (aligned along −z) sufficient to induce a
switch. A representation of the dependence of θ on t (in the unit of α × K) according to the model
described mathematically in Equation (14) is shown in Figure 7. As the switching process progressed,
different curves reflecting angle θ (given in the unit of radian) versus time, arose due to the distinct
values of θ0. By the end of the switching process, the moment had approached the −z direction, and
the angle θ approached π.
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Figure 7. θ angle of the moment is analytically determined in terms of parameter t for three characteristic
initial angles θ0 of approximately 0.03 (~1.72◦), 0.17 (~9.74◦), and 0.32 (~18.33◦). A solid straight line
representing θ = π/2 acts as a guide for reference.

Two features of this graph are important for us to revisit. First, the switching behavior occurred
much faster for larger values of θ0. Second, each trajectory path describing the time-dependent angle
approached a final value that was sufficiently close to π in an exponential form. That is, the curve
formally took a comparably long time to achieve the entire variation process (from θ < 0.5 to θ = π).
To efficiently define a finite switching time, it is customary to select a cutoff angle θs and to calculate
the corresponding time ts it takes to reach that angle. Figure 7 shows that the switching behavior
confined in the angle range of 0 to π exists over a relatively short time interval. Prior to this interval,
the angles inside different curves were close to θ0, and beyond this interval, the angles remained close
to π. The midpoint for the time of this interval was roughly located at θs = π/2. This explains why it
made sense to select π/2 as a cutoff angle. Such a critical angle value has been frequently used in the
literature [32,33]. Additionally, it is noted that at the same time (t = ts), the projection moment Mz had
reached zero.

Continuing with the exact analytic expression of Equations (12) and (14), we resolved the analytic
solution to obtain the switching time of the magnetic particle in the context of axial symmetry by
means of integration using separation of variables. By integrating Equation (14) over time parameter t
as well as angle θ while imposing the condition θ(t = 0) = θ0, the analytic solution finally becomes the
following:

ts ≡ t(0)
s(θ0) = −(1/2) × α−1 × ((K + hz)−1 × In(hz × (1 − cosθ0) × (K × cosθ0 + hz)−1) +

(K − hz)−1 × In(hz × (1 + cosθ0) × (K × cosθ0 + hz)−1))
(15)

One crucial thing about the understanding of the initial angle θ0 requires emphasis. The switching
time t(0)

s(θ0) ultimately approached zero once θ0 was close to π/2. Additionally, this conclusion was
certainly consistent with common sense. A similar expression concerning Equation (15) was derived
in another report, in particular for the case where K = 0, and for an arbitrary K [34].

3.2. Switching Behavior of an SW particle in a Small Perpendicular Bias Field

In the presence of the switching field H0 pointing in the negative z-axis and the bias field Hperp

pointing in the positive x-axis, the energy density of a Stoner-Wohlfarth particle is expressed as
the following:

Esw = −1/2 × K × cos2θ − |M| × |Hperp| × sinθ × cosφ − |M| × |H0| × cosθ (16)

Here, the switching field and the bias field were also recognized as hperp = Hperp × |M| and
hz = H0 × |M|. If the bias field Hperp was significantly small (hperp = |hperp| << hz = |hz|), one can
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hope to find an analytic approximation to obtain the switching time by taking such a bias field into
account as a small perturbation. Similar reports addressing the precessional magnetization switching
under a biased perpendicular anisotropy can be found in [35,36]. The result can be formulated as
follows. Combining Equation (12) and (15), one notes that the magnetic switching time was identified
from the following expression after integration over angle θ and time t, respectively:

dθ/dt = −α × sinθ × (K × cosθ + hz) − hperp × sinφ (17)

Treating the −hperp × sinφ term as a perturbation and depending on the previously obtained
switching time appearing in Equation (15), the determination of t(0)

s(θ0) in the case of a perpendicular
bias field was found by substituting an “effective initial angle” θin for the initial angle θ0. The initial
unit vector n(t = 0) was designated by the angles (θ0, ϕ0). Accordingly, this effective initial angle
was defined as the angle between the initial unit vector n(t = 0) and the position of the total energy
maximum, which was characterized by the spherical angles θmax = θ* = |Hperp| × (|H0| − K/|M|)−1,
φmax = π. In a word, the following approximation was effective as a method of computing the magnetic
switching time as long as the angle θ* stayed typically small (e.g., θ* < 0.5), while the calculational
accuracy turned out to be quadratic in terms in θ*:

ts = t(0)
s(θ0) = t(0)

s(θin) + O(θ*
2) (18)

Furthermore, relying on the primitive LLG model, we numerically solved the magnetic switching
time of an SW particle in the case of a small perpendicular bias field via the computational package
Mathematica [37] while fulfilling the requirement that θ(ts) = π/2. Performing this calculational
process for different initial directions governed by n(t = 0), we determined under what circumstance
the approximate expression (18) may lose its validity. First, we tested the case in which the field Hperp

was assumed to be constant, and the moment was set up at the initial position stated by (θ0, 0), while
the switching field satisfied h0 = hz = 1.5 × K. Using the analytic solution derived from Equation (18)
along with the numerically solved LLG equation, we then plotted the ts(θ0) relations in Figure 8, where
time parameter was shown in the unit of α × K, and the magnitude of Hperp was alternatively given
by hperp = 0.02 × K. The initial angle θ0 is expressed in the unit of radian.
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Figure 8. The magnetic switching time ts calculated using a numerical approach (points) and an
analytical method (solid line) is shown as a function of the initial angle θ0 in the context of the
switching field (h0 = 1.5 × K) supplied along the −z axis, in addition to the bias field (hperp = 0.02 × K)
given in the (π/2, 0) direction.
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In general, the anasof Equations (12), (16) and (18) qualitatively agreed well with the numerical
solutions (solid line) considering that the pserturbation parameter θ* was kept small throughout
the entire simulation process. Moreover, we observed from the graph that consistent and accurate
correspondence was found among these two different calculational approaches for nearly all of the
values of θ0. Additionally, the existence of the typically small bias field (hperp = 0.02 × K << h0 = 1.5 × K)
somehow significantly decreased the switching time from approximately 600 × α × K at θ0 ≈ 0.01 to
approximately 320 × α × K at θ0 = 0.15 (corresponding to approximately 8.6◦).

Second, we considered a situation where the vector n(t = 0) started its motion from the energy
minimum state corresponding to the applied field H0, which was aligned along the positive z-axis. This
typical starting point (initial unit vector) was parameterized by the angles θ0 = hperp × (h0 + K)−1 and
φ0 = 0. Figure 9 illustrates how analytic approximation coincides with the numerical results represented
by discrete points.
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Figure 9. Magnetic switching time ts calculated using the numerical approach (points) and analytical
method (solid line) is shown as a function of the bias field hperp applied along the (π/2, 0) direction in
the context of the switching field (h0 = 1.5 × K) supplied along the −z axis in addition to the initial
angle determined to be hperp × (h0 + K)−1.

Compared to Figure 8, the correspondence among the two different calculational approaches
became slightly worse as the bias field hperp was increased beyond approximately 0.15 × K, as seen
in Figure 9. On the other hand, with the increase of the bias field hperp lying in the range of 0.01 × K
and 0.15 × K, the determined switching time arising from the analytic approximation decreased
and agreed fairly well with the numerical data points, indicating that the remainder term (O(θ*

2))
occurring in Equation (18) became non-trivial. Although the quality of the approximation begins to
deteriorate slightly when hperp > 0.15 × K, the analytical approach in studying the magnetic switching
is still believed to be acceptable because the actual bias field is normally set to be a few percent of the
anisotropy field K.

4. Conclusions

The SW model appears to be quite an effective simulation of magnetic systems and exhibits
extremely rich physical properties from, for instance, a dynamic point of view. The combined use of
a uniaxial anisotropy and an externally applied field provided a thorough insight into the magnetic
switching behavior tuned by a weak bias component hperp (or small initial angle θ0). The validity of
the analytic approximation that treats a comparably small hperp (<<h0) as an effective perturbation
is confirmed by the good agreement found between the numerical solution to the LLG equation
and the results arising from the analytic method. Utilizing these two computational approaches, we
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consistently found that the calculated magnetic switching time during which the moment vector
changed its angle by π/2 − θ0 demonstrated decreasing behavior in a somewhat exponential manner
when hperp was increased from 0.01 × K to 0.15 × K (or θ0 was increased from 0.01 to 0.3). Furthermore,
a slight discrepancy existed between the numerical data points and the analytic results, given that
hperp was tuned beyond 0.15 × K when ts was shown as a function of the perpendicular bias field.
It is expected that the derived analytic expression, which treats hperp as small perturbation, can be
extended to simplify the determinations for magnetic switching in granular magnetic media; however,
the bias field can originate from the induced field of other grains or from the misalignment of the
individual grain’s axes with the applied field.
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