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Abstract: Advanced motion control applications require smooth and highly accurate high-bandwidth
velocity feedback, which is usually provided by an incremental encoder. Furthermore, high sampling
rates are also demanded in order to achieve cutting-edge system performance. Such control system
performance with high accuracy can be achieved easily by FPGA-based controllers. On the other
hand, the well-known MT method for velocity estimation has been well proven in practice. However,
its complexity, which is related to the inherent arithmetic division involved in the calculus part of
the method, prevents its holistic implementation as a single-chip solution on small-size low-cost
FPGAs that are suitable for practical optimized control systems. In order to overcome this obstacle,
we proposed a division-less MT-type algorithm that consumes only minimal FPGA resources,
which makes it proper for modern cost-optimized FPGAs. In this paper, we present new results.
The recursive discrete algorithm has been further optimized, in order to improve the accuracy of
the velocity estimation. The novel algorithm has also been implemented on the experimental FPGA
board, and validated by practical experiments. The enhanced algorithm design resulted in improved
practical performance.
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1. Introduction

Nowadays, digital programmable circuits such as FPGAs are used widely for many industrial
applications [1]. They offer possibilities for integrating complex hardware systems and their interfaces
into a single FPGA chip. FPGA devices have reached a high maturity level in terms of performance,
power consumption, and cost, which makes them suitable for different application fields [2] that
involve sensor systems [3,4], control systems [5,6], haptic interfaces [7,8], robotics [9–11], and other
advanced electronic devices for signal processing and communications, e.g., [12–15]. They can also
be useful for advanced velocity estimation methods, since they can easily be designed for custom
signal conditioning and provide fast dedicated digital logic [16]. FPGAs can also ensure highly
accurate and short sampling periods, which are required for advanced motion control applications.
A short processing time of control algorithms is also possible; however, the feature-rich FPGAs have
overwhelming resources that are required for performing complex computation algorithms [17,18]
yet are still expensive, which may prevent their further use in low-cost applications. One of the
challenges in the electronics industry nowadays concerns fitting complex circuitry into small spaces.
Thus, the current FPGA development is also directed to smaller design solutions, with low-power
consumption in a low-occupied space at low cost, while maintaining a solid performance level [19].
Such low-power, small-size, and cost-optimized FPGAs introduce the possibility of developing new
cutting-edge solutions, e.g., in the area of smart sensors and other smart devices [20].

The importance of velocity feedback for the closed-loop control of mechatronic systems has
been well-known for many decades. Typical feedback devices in the control systems for servo drives
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in automation are incremental encoders [21]. These control loops must allow smooth motion in a
wide range from high speed to low speed. Incremental encoders, which are typically mounted on a
motor shaft, can provide high resolution and high accuracy in position measurement, which makes
them an optimal option for such a purpose [22]. On the other hand, the maturity level of digital
electronics technology has enabled their use not only for position feedback, but also for velocity
feedback [23]. They generate digital pulse train signals while their shaft rotates, which is coupled with
a motor shaft. However, precise feedback information is essential for motor control, e.g., in machine
tools, robotics, autonomous systems, and medical mechatronics. Regardless of the motor control
methods, the accuracy of feedback information has a major influence on the control performance.
Furthermore, advanced motion control applications require highly accurate wide-range velocity
information with high bandwidth [24,25]. Thus, since incremental encoders can only generate a
pulse train with its frequency related to the shaft velocity, a suitable estimation algorithm should
be applied in order to obtain smooth velocity information. Although there has been extensive past
research related to this issue over the past few decades [26,27], new emerging applications in robotics
and other areas with cutting-edge requirements foster further intensive research in this field, e.g.,
the motion control of hydraulic actuators [28], pneumatic actuators [29], haptic interfaces [30], mobile
robots [31], robot manipulators [32], humanoid robots [33], and collaborative robots for safe physical
human–robot interaction [34], automotive applications [35], etc. Since the performance of a velocity
control loop is related strongly to the quality of the velocity feedback information, achieving a smooth,
high-bandwidth velocity estimate, which is required for oscillation-free high-bandwidth control loops,
still presents quite a challenge.

The motor velocity is conventionally obtained by counting encoder pulses in a fixed sampling
period. However, despite its simple implementation, it cannot provide precise velocity information
in the case of a low-resolution encoder or short sampling periods. Furthermore, in these cases,
it produces large quantization errors due to the spatial position quantization that is inherent in
incremental encoders. Therefore, more advanced estimation methods should be applied in order
to obtain smooth velocity information. They can be classified as model-based or non model-based
methods [36]. Model-based methods use models of the dynamic systems for which the velocities
are to be estimated. In general, these methods rely on a mechanical system model, which must be
accurately available. This is often a significant obstacle in practice, since it may be difficult to obtain,
or it is time varying, or it may be unknown or uncertain. In these cases, non model-based methods
can be adopted. These methods are based on data processing techniques that use only measured
data without any of the information of the motion system. The aforementioned simplest conventional
method is usually referred to as the M method. Due to its problems at low speed, filtering of the data
may be applied, although it introduces phase lag, which is undesired in advanced motion control
applications. The alternative T method can be utilized instead, in which the time interval between
two adjacent encoder pulses should be measured by counting high-frequency clock pulses. Then,
the velocity information is obtained by the reciprocal of the measured time interval, i.e., by arithmetic
division. Although the method can provide fine velocity estimation at low speed, it is prone to errors
at high speed. Thus, the main stream of the velocity measurement methods combines the M method
and the T method. Since the pioneering work of Ohmae [37], the MT method has been applied widely,
because it works well within wide speed ranges. The method counts the number of encoder pulses in
a sampling period and measures the time interval between the boundary encoder pulses by counting
the high-frequency clock pulses. Then, the velocity information is computed by arithmetical division
of the number of encoder pulses over the time interval. Some variations of the MT method appeared
in [38–40]. Further research deals with performance improvement of the MT method and its enhanced
robustness to the encoder imperfections and hardware inaccuracies [16,25,41,42]. The time stamping of
encoder pulses presents a generalization of the MT method [43,44]. Here, the velocity is estimated by a
polynomial fitting through a number of time-stamped encoder counts, which significantly increases
the computation complexity.
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The MT method consists of signal reading and data processing. Common implementations
may conveniently combine an FPGA for the hardware part of the method, which involves signal
acquisition, counting encoder pulses, and counting clock pulses, and a computation engine such
as a DSP processor for processing the software algorithm of the method in real time [16,26,45,46].
Such a heterogeneous system structure significantly increases the system complexity. Thus, it may be
convenient to implement the velocity estimation method on an FPGA as a whole. However, one should
note that the algorithm of the MT method involves arithmetic division. Although it is easy to perform
the division operation by the DSP, on the other hand, it is particularly difficult for FPGA-based
embedded electronics, i.e., its implementation is characterized with high computation latency and a
high consumption of FPGA resources [47–49]. Although modern advanced and feature-rich FPGAs
with overwhelming resources are capable of performing such tasks, this solution raises the cost
drastically, which may be unacceptable in many cases. Therefore, for the efficient implementation
of the MT method on an FPGA, it is necessary to eliminate the division operation that is inherent
in the conventional algorithm. Then, its implementation will be possible on cost-optimized FPGAs
as well. Such FPGAs, on the other hand, can embed digital multipliers, or so-called DSP blocks,
that perform arithmetic multiplication and addition efficiently [50]. Therefore, division-less algorithms
can be implemented easily in an efficient way with high-speed processing. Zhu [51] proposed a
simple solution that seamlessly combines the M method and the T method. It applies a sophisticated
mechanism with two counters and an accumulator; however, it requires the execution of the algorithm
continuously in every clock cycle, which increases the resources and power consumption, and thus is
undesired [49].

In our research, we are concerned with the efficient implementation of the MT method for
smooth velocity estimation on a low-cost FPGA, as illustrated by Figure 1. We introduced a novel
MT-type method in [52] that eliminates the arithmetic division from the algorithm, while preserving
the utmost accuracy of the conventional MT method. Thus, it is convenient for implementation
on small-sized cost-optimized FPGAs. The method is abbreviated as a DLMT (division-less MT).
It involves multiplication and addition, which are the only required arithmetic operations in the
real-time calculation. However, the method is recursive; thus, stability and convergence should be
considered strictly in the design phase. It has been found out that the basic method algorithm can
suffer from instability at low speed in the case of blank sampling intervals when encoder pulses are
widespread. Therefore, it has been adapted properly to guarantee asymptotically stable performance
at all speed ranges [53]. Such a generalized DLMT method has been abbreviated as the GDLMT
method. The method was implemented on the FPGA and verified experimentally. Although the
method performed well in practical experiments, it is represented as a time-varying discrete system
of the second order that may generate a weakly damped fluctuated response. Thus, in this paper,
we revise the algorithm to reduce the system order, and propose the division-less algorithm with the
simplified dynamics of the first order. We show that, inherently, it significantly reduces undesired
fluctuations during the transient phase. The stability and convergence is also discussed theoretically
and proven formally. Furthermore, the estimation error is reduced as well, which is confirmed by
experimental results.
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Figure 1. FPGA-based smooth velocity estimation with an incremental encoder.
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2. Materials and Methods

2.1. The Principle of the MT Method

The MT method for velocity measurement can be described by the following formula [26]:

v̂MT
k =

xk − xk−1
Ts + δtk−1 − δtk

(1)

where v̂MT
k = v̂MT(t = tk) and xk are the estimated velocity in the k-th sampling interval and

the encoder position sampled in the k-th sampling instant, respectively. Ts is the sampling period,
and δtk is the time elapsed between the time instant of the most recent encoder pulse in the current
sampling interval (tp

k ) and the current sampling instant (tk), such that it can be calculated as (for details,
see Figure 2):

δtk = tk − tp
k (2)

where tk = kTs, and xk = x(t = tp
k ) is the encoder position reading. However, it is not available for

processing before the current sampling instant (tk > tp
k ). Note that v̂MT

k equals the average velocity
vp

k on the time interval tp
k−1 ≤ t ≤ tp

k , such that v̂MT(t = tk) = vp
k . Thus, the measurement interval

matches the interpulse interval Tp
k and can be calculated as:

Tp
k = tp

k − tp
k−1 = Ts + δtk−1 − δtk (3)
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Figure 2. The timing diagram of the conventional MT method.

In order to implement the MT velocity measurement method in practice, it is required to measure
the position pulse train from the incremental encoder, and clock pulses that enable the determination of
the time interval measurement between the most recent (boundary) encoder pulses in two consecutive
sampling periods. Figure 2 shows the timing diagram of the conventional MT method with the actual
position trajectory, encoder position, encoder pulse train, sampling intervals with the constant period
Ts, and variable measurement intervals Tp

k . It is easy to figure out that the update of the velocity v̂MT
k

is delayed with reference to the average velocity vp
k . Moreover, the average velocity within the most

recent sampling period may differ from the latter value.
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In the following, we derive the estimation error, which is produced by the MT method. If we
define the average velocity va

k on a sampling interval such that:

va
k =

xa
k − xa

k−1
Ts

(4)

Then, we can assume that the average velocity va
k could be the best possible velocity estimation in

the case of accurate position reading at the sampling instants. If we further consider xk = xa
k−1 + (Ts −

δtk)va
k and xk−1 = xa

k−1 − δtk−1va
k−1 (see Figure 3), then, after short manipulation, we obtain:

Tsva
k − δtkva

k + δtk−1va
k−1 = ∆xk (5)
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Equation (1) can be rewritten as:

Tsv̂MT
k − δtk v̂MT

k + δtk−1v̂MT
k = ∆xk (6)

Now, we rearrange the previously derived Equation (5), such that it yields:

Tsva
k − δtkva

k + δtk−1va
k = ∆xk + δtk−1∆va

k (7)

If we define:
eMT

k = va
k − v̂MT

k (8)

then, by subtraction of Equation (6) from Equation (7), which results in:

TseMT
k − δtkeMT

k + δtk−1eMT
k = δtk−1∆va

k (9)

we get the estimation error of the MT method:

eMT
k =

δtk−1
Ts − δtk + δtk−1

∆va
k (10)
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If we define acceleration ak = ∆va
k/Ts that is always bounded in practice such that |ak| ≤ amax,

then the r.h.s. (right-hand side) expression of Equation (10) is evaluated as:

eMT
k =

δtk−1
Ts − δtk + δtk−1

Tsak (11)

We can evaluate its maximum absolute value considering the bounded interval 0 ≤ δtk < Ts as:

≤ δtk−1
Ts − δtk + δtk−1

|Tsak| ≤
Ts

2Ts − δtk
Tsamax ≤

Ts

2Ts − Ts
Tsamax = Tsamax (12)

The estimation error of the MT method is bounded by Tsamax. The error is due to the averaging
of the velocity in the most recent interpulse interval, and is caused by accelerated motion. However,
it can be reduced arbitrarily by the sampling period Ts , thus achieving the desired accuracy.

It is well-known that the MT method features accurate velocity measurement in a wide speed
range. However, in order to obtain the velocity information, it is necessary to perform an arithmetic
division in the processing hardware, since the denominator in Equation (1) is a variable time interval
that must be obtained by a dedicated hardware.

2.2. The MT-Type Division-Less Algorithm of the Second Order

The simplest method for velocity measurement only counts encoder position pulses in a fixed
sampling interval, and the velocity is then estimated, dividing the corresponding position increment
∆xk = xk − xk−1 by the sampling period, i.e., v̂k = ∆xk/Ts. It is called the M method.

Although the M method produces significant noise and low accuracy in the case of low velocity,
it is simple, not only in terms of its hardware implementation, but also in calculus, since the division
with the constant sampling period Ts can be replaced by multiplication with the constant sampling
frequency Fs = 1/Ts, which is performed easily by the processing electronics. Therefore, in order
to combine the low noise and high accuracy of the MT method and low computation complexity of
the M method, the authors in [52] proposed the so-called DLMT method (division-less MT method).
The concept of the algorithm, which simplifies the computation complexity in comparison with the
conventional MT method approach and maintains its most salient good features simultaneously,
is shown in Figure 3. The main assumption is that the actual position information is available at the
sampling instants xa

k = xa(t = tk). However, because the encoder pulses are asynchronous with the
sampling instants, this assumption cannot be realized solely by the measurement principle. Thus,
the actual position at the sampling instants is estimated by the extrapolation of the encoder position as:

x̂a
k = xk + δx̂k (13)

where x̂a
k = x̂a(t = tk), xk = x(tk − δtk), and δx̂k are the estimated actual position at the k-th sampling

instant, the recent encoder position read during the k-th sampling period, and the estimated position
correction in the k-th sampling period, respectively. δtk is the elapsed time interval at the k-th sampling
instant, since the recent encoder pulse in the k-th sampling period. The position correction could be
calculated simply as δx̂k = va

kδtk, where va
k stands for the average velocity within the k-th sampling

period, i.e., va
k = (va

k + va
k−1)/2, where va

k = va(t = tk). Unfortunately, this value is not available in
practice, and thus it should be estimated somehow. If we assume short sampling periods, then the
division-free velocity estimation algorithm can be read as [52]:

x̂a
k = xk + v̂k−1δtk (14)

v̂k = ∆x̂a
k/Ts (15)

where ∆x̂a
k = x̂a

k − x̂a
k−1, and v̂k is the value of estimated average velocity in the k-th sampling period.
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The MT-type division-less algorithm, as shown in Equations (14) and (15), can be described
graphically by the block scheme in Figure 4. Obviously, the inputs in the algorithm are the sampled
encoder position xk- and the elapsed time intervalsince the recent encoder pulse, i.e., δtk, whereas
the main output of the algorithm is the estimated velocity v̂k. Besides that, it can also provide
the position output, which approximates the actual position at the current sampling instant, i.e.,
x̂a

k = x̂a(t = tk) ≈ xa(t = tk). However, one can note that the algorithm is recursive. If we can
guarantee that the position estimation x̂a

k in Equation (14) will match the actual position xa
k closely,

then the velocity estimation v̂k in Equation (15) will match the actual average velocity in the sampling
period va

k closely. Nevertheless, the algorithm’s stability and convergence is therefore an open issue in
general, and must be verified. For details, please see [52].
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Figure 4. The block scheme of the MT-type division-less algorithm [52].

Further analysis focuses on the algorithm dynamics’ behavior. The input–output dynamics can
be derived as [52]:

v̂k −
δtk
Ts

v̂k−1 +
δtk−1

Ts
v̂k−2 =

∆xk
Ts

(16)

One can note that the right-hand side expression equals the simplest M method for the velocity
estimation (the position change occurred in the sampling time interval ∆xk divided by the sampling
period Ts). Therefore, the proposed method can be understood as filtering the M method. However,
the coefficients on the left-hand side of the expression are time-variant, since their values depend
on the time instants of the encoder position pulses’ occurrence. Thus, the DLMT algorithm yields a
linear time-variant discrete filter, which is of the second order; therefore, in this paper, the algorithm is
abbreviated as DLMT2 (division-less MT-type algorithm of the second order). The DLMT2 filter in
Equation (16) can be illustrated by the block scheme depicted by Figure 5.
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It is easy to derive the dynamic equilibrium, which can be written as [52]:

v̂eq
k =

xk − xk−1
Ts + δtk−1 − δtk

(17)
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One can note that the equilibrium equals the output of the algebraic MT method (1). Furthermore,
the convergence dynamics can be derived as [52]:

εk −
δtk
Ts

εk−1 +
δtk−1

Ts
εk−2 =

∆δtk
Ts

∆v̂eq
k −

δtk−1
Ts

∆v̂eq
k−1 (18)

where ∆δtk = δtk − δtk−1, ∆v̂eq
k = v̂eq

k − v̂eq
k−1 and εk is the convergence error:

εk = v̂eq
k − v̂k (19)

In the following, we show the estimation error dynamics. We define the velocity estimation error:

ek = vk − v̂k. (20)

If we rearrange Equation (5) into:

vk −
δtk
Ts

vk−1 +
δtk−1

Ts
vk−2 =

∆xk
Ts

+
δtk
Ts

∆vk −
δtk−1

Ts
∆vk−1 (21)

then we derive the estimation error dynamics by subtraction of Equation (16) from Equation (21).
It yields:

ek −
δtk
Ts

ek−1 +
δtk−1

Ts
ek−2 =

δtk
Ts

∆vk −
δtk−1

Ts
∆vk−1 (22)

It is obvious that the error dynamics in Equations (18) and (22) are driven by acceleration, which
is manifested by velocity change. If we define acceleration ak = ∆va

k/Ts that is always bounded
in practice such that |ak| ≤ amax, then by considering 0 ≤ δtk < Ts, we can evaluate the r.h.s. of
Equation (22):

|δtkak − δtk−1ak−1| ≤ |δtkak|+ |δtk−1ak−1| ≤ Ts|ak|+ Ts|ak−1| ≤ 2Tsamax (23)

The latter result is very conservative; the value that is more realistic is Tsamax. However,
the response of the second order filter in Equation (23) may result in overshoot; therefore,
the aforementioned value cannot be considered strictly as a maximum value of the error. Nevertheless,
if we assume relatively fast sampling intervals, then the velocity change in a single sampling interval
can be considered negligible, and the equation’s right-hand side can be zeroed in practical advanced
motion control applications. However, the stability of the system should be investigated. The stability
issue of the DLMT2 algorithm has been discussed thoroughly in [52].

2.3. The MT-Type Division-Less Algorithm of the First Order

2.3.1. The Main Idea

The velocity estimation algorithm in Equations (14) and (15) can be developed further. Its accuracy
is based on the accuracy of the position estimation accuracy of x̂a

k . In order to estimate its value,
the algorithm applies the best velocity value that is only available at the time of the calculation, i.e.,
the estimated average velocity from the previous sampling period v̂k−1. However, when the calculation
of the algorithm in a single sampling period is completed, then the estimation of the average velocity in
the current sampling period becomes available. Thus, the estimation of the position can be improved by
the estimated average velocity in the current sampling period v̂k. Therefore, the estimation algorithm
can be rewritten as:

x̂a
k|k−1 = xk + v̂k−1δtk (24)

v̂k = (x̂a
k|k−1 − x̂a

k−1|k−1)/Ts (25)

x̂a
k|k = x̂a

k|k−1 + ∆v̂kδtk (26)
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where ∆v̂k = v̂k − v̂k−1. One can note that the improved position estimation equals:

x̂a
k|k = xk + v̂kδtk (27)

If we denote δx̂k|k−1 = δtk v̂k−1 and δx̂k|k = δtk v̂k, then the algorithm can be presented by the block
shown by Figure 6.
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2.3.2. The Input–Output Dynamics

If we compare the block scheme from Figure 4 with the block scheme from Figure 6, then the
higher complexity of the latter is evident. However, further analysis of the improved estimation
algorithms in Equations (24)–(27) show simplification of the filter input–output structure. If we insert
Equations (24) and (27) into Equation (25), then we can derive:

v̂k =
x̂a

k|k−1 − x̂a
k−1|k−1

Ts
=

(xk + v̂k−1δtk)− (xk−1 + v̂k−1δtk−1)

Ts
=

∆δtk
Ts

v̂k−1 +
∆xk
Ts

(28)

where ∆δtk = δtk − δtk−1, and ∆xk = xk − xk−1. The latter result can be rewritten by the difference
equation of the first order:

v̂k −
∆δtk

Ts
v̂k−1 =

∆xk
Ts

(29)

Thus, the proposed improved algorithm works as a linear time-variant filter of the first order,
and is therefore called the division-less MT-type algorithm of the first order (abbreviated as the
DLMT1). Accordingly, the filter structure can be described by the block scheme shown in Figure 7.
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2.3.3. Stability Analysis

The stability analysis of the DLMT1 algorithm is significantly simplified in comparison with
the DLMT2 algorithm. Since we assume 0 ≤ δtk < Ts, and, thus, −Ts < ∆δtk < Ts, then the only
time variable coefficient of the linear difference in Equation (29) stays bounded, since 0 ≤ τk < 1 and
|∆τk| < 1 on bounded interval 0 ≤ δtk < Ts for any k > 0, where we denoted τk = δtk/Ts. Therefore,
the stability proof is rather simple (please see the preliminaries of the stability analysis in [52]). If we
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introduce the auxiliary input variable uk = ∆xk/Ts, then the response of the linear time-variant filter
of the first order (29) can be derived as a unique solution that yields:

v̂k = Φk(0)v̂0 +
k−1

∑
j=0

Φk(j + 1)uj+1 (30)

where:

Φk(j) =

{
∆τk∆τk−1 . . . ∆τj+1 k > j ≥ 0

1 k = j
(31)

The un-driven filter is exponentially stable if, and only if, there exists a finite positive constant
γ > 0 and a constant λ with 0 ≤ λ < 1, such that [54]:

|Φk(j)| ≤ γλk−j, ∀k, j : k ≥ j (32)

The linear system under consideration is uniformly asymptotically stable if, and only if, it is
uniformly exponentially stable [54]. It means that uniform exponential stability and uniform
asymptotic stability are equivalent.

From the property of τk, we can consider that |∆τk| ≤ λ < 1. Then:

|Φk(j)| =
∣∣∆τk∆τk−1 . . . ∆τj+1

∣∣ ≤ |∆τk||∆τk−1| . . .
∣∣∆τj+1

∣∣ ≤ λk−j, ∀k, j : k > j ≥ 0 (33)

The latter expression proves the validity of the stability condition in Equation (32) for k > j. Furthermore,
from the definition in Equation (31) follows:

Φk(k) = 1 (34)

which proves the existence of γ > 0 (i.e., γ = 1) and, consequently, it proves the validity of the stability
condition in Equation (32) for k = j. Thus, we proved the asymptotic stability of the time-variant linear
filter of the first order in Equation (29). In our case, asymptotic stability implies BIBO stability [48].
Therefore, we can simply conclude that the proposed DLMT1 algorithm is inherently asymptotically
stable, and BIBO stable as well.

2.3.4. The Error Analysis

In the following, we can derive the dynamic equilibrium of the DLMT1 algorithm. If we assume
v̂k = v̂k−1 in the filter Equation (29), then it yields the equilibrium v̂eq

k :

v̂eq
k =

Ts

Ts − ∆δtk

∆xk
Ts

=
xk − xk−1

Ts + δtk−1 − δtk
(35)

which equals the dynamic equilibrium of the DLMT2 method in Equation (17), and the output of the
MT method in Equation (1) as well. With the definition of the convergence error as in Equation (19),
we can derive its dynamics as follows. Firstly, we can derive ∆xk from the equilibrium equation:

∆xk = Tsv̂eq
k − ∆δtk v̂eq

k = Tsv̂eq
k − ∆δtk(v̂

eq
k−1 + ∆v̂eq

k ) (36)

where ∆v̂eq
k = v̂eq

k − v̂eq
k−1. In the next step, we rewrite the latter equation as the difference equation of

the equilibrium velocity v̂eq
k :

v̂eq
k −

∆δtk
Ts

v̂eq
k−1 =

∆xk
Ts

+
∆δtk

Ts
∆v̂eq

k (37)



Electronics 2019, 8, 361 11 of 24

Then, we can subtract filter in Equation (29) from Equation (37); thus, we obtain the convergence error
dynamics of the DLMT1 method:

εk −
∆δtk

Ts
εk−1 =

∆δtk
Ts

∆v̂eq
k (38)

where εk is defined as in Equation (19). The convergence error dynamics are driven by the velocity
increment ∆v̂eq

k that relates to acceleration; however, if the time interval δtk remains constant, then the
error is zeroed εk = 0, and the estimated velocity tracks its dynamic equilibrium perfectly.

We can also derive the estimation error dynamics. Following the same approach as in the previous
Section 2.2, we assume that the average velocity in Equation (4) could be the best possible velocity
estimation. After short manipulation, we rewrite Equation (5) as:

va
k −

∆δtk
Ts

va
k−1 =

∆xk
Ts

+
δtk
Ts

∆va
k (39)

Finally, we subtract the filter Equation (29) from the latter. It yields the estimation error dynamics
for the DLMT1 method:

ek −
∆δtk

Ts
ek−1 =

δtk
Ts

∆va
k (40)

where ek is defined as in Equation (20). We analyze the error dynamics in the following.
The filter dynamics, and thus the error dynamics, are of the first order and asymptotically stable

as well. However, similar to the case of the DLMT2 algorithm, the error is driven by the acceleration.
The right hand side of Equation (40) is rather simple. If we define acceleration ak = ∆va

k/Ts, which is
always bounded in practice such that |ak| ≤ amax, then the r.h.s. expression of Equation (40) can be
derived further, and its maximum absolute value can be evaluated as:

|δtkak| ≤ |δtk||ak| ≤ Ts|ak| ≤ Tsamax (41)

Thus, the estimation error shall not exceed Tsamax, as in the case of the MT method in Equation (12).
Furthermore, it can be reduced arbitrarily by choosing a suitable short sampling period Ts, which is a
design parameter. In the case of constant velocity, the error can converge quickly to zero.

2.4. Comparison of the Division-Less Algorithms by Numerical Examples

The step responses of the DLMT2 filter in Equation (16) and the novel DLMT1 filter in
Equation (29), respectively, are illustrated in Figure 8. The comparison can be accomplished by the
following three cases: (i) δtk/Ts is constant and equals 0.5, ii) δtk/Ts is varying by the sinus waveform
of two periods with the amplitude of one and the offset of 0.5, and iii) δtk/Ts is varying within the
interval [0, 1] by the sawtooth waveform of two periods. The dynamic equilibrium value that matches
the value of the MT method estimation is also shown in the plots.
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An asymptotically stable response and convergence to the dynamic equilibrium is evident in all
of the cases. In the case of constant δt, we can observe an oscillatory response in the transient period
for the DLMT2 algorithm, whereas a perfect response is evident for the DLMT1 algorithm. In the
case of the sinusoidal variation of δt, we can observe relatively good tracking for both algorithms;
however, a more smooth response with slightly better accuracy was achieved by the DLMT1 algorithm
(as can be observed by comparison of Figure 8c,d. The tracking performance of the DLMT1 algorithm
is better than the DLMT2 algorithm simply because the velocity error in the first case is affected by the
difference ∆δt only (see Equation (38)), whereas in the second case, the δt may have a significant impact
as well (see Equation (18)). In the case of the sawtooth variation of δt, we can observe high-velocity
peaks when the sawtooth generates abrupt changes from zero to one. Then, the DLMT2 algorithm
responds with oscillatory motion, whereas the transient period produced by the DLMT1 algorithm is
relatively extremely short with practically no fluctuations. However, please note that such an extreme
scenario (sudden change of δt from zero to Ts at the speed of 1 pp/Ts) cannot happen in practice, since it
assumes momentary infinite velocity in the case when two consecutive encoder pulses become totally
close together, and simultaneously stay far apart from the other pulses in the sequence. Furthermore,
the MT velocity cannot be calculated in this unrealistic case, since the interpulse time interval becomes
zero. However, the numerical test is still interesting, since it illustrates the characteristics of the
transient response that may happen during the real operation, e.g., significant sporadic changes in δt
are normal anyway, even at constant velocity, due to the asynchronous nature of the encoder pulses’
occurrences with reference to the sampling instants. We can conclude that the presented numerical
cases show that the introduced DLMT1 filter performs better than the DLMT2 filter in terms of stability
and accuracy.
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2.5. The Experimental System

The experimental setup consists mainly of the mechanical drive system with the rotary Incremental
Encoder (IE), and the processing hardware electronics. The mechanical drive system consists of a DC
motor Maxon RE 35 with low-resolution Incremental Encoder HEDS 5540 (with 500 line counts per
turn), mounted on the rear side of the motor shaft, and a high-resolution rotary Incremental Encoder
Heidenhain ROD 1020 (with 3600 line counts per turn) is linked to the front side of the motor shaft.
The latter was used for the experimental evaluation and validation of the considered methods for
velocity estimation. The motor shaft and the high-resolution IE shaft are interconnected mechanically
by a metal bellows coupling. Additionally, we attached a rotational flywheel on the encoder shaft,
in order to reduce mechanical oscillations with increased rotational inertia. The DC motor was driven
electrically by a Maxon ESCON 36/2 DC Servo Controller configured in the current control mode.
The reference value for the current control loop was provided by the processor-based controller with
the microcontroller TI DSP TMS320F28335, which implemented a simple velocity control loop with the
PI control algorithm. The value of the control output was transferred to the Maxon servo controller via
the PWM signal with the switching frequency of 5 kHz. The reference velocity was generated internally
on the DSP controller, while the feedback velocity signal was provided by the testing IE, which was
connected electrically to the Digilent Nexys2 FPGA board [55] via a custom interface board on the
high-speed expansion connector. The interface board contains standard RS 422 line receivers, proper
analog filters, and line termination. Capturing of the encoder pulses was performed by the FPGA
circuit (Xilinx Spartan XC3S1200E) at 125 MHz (clock resolution of 8 ns). The sampling frequency was
10 kHz. The update of the velocity estimation output was performed synchronously with the sampling.
The proposed division-less MT-type velocity estimation algorithm of the first order from Figure 7 was
implemented on the FPGA board in a fixed-point format. The calculation scheme was performed by
integer arithmetic operations, and executed in only a few FPGA clock cycles (less than 100 ns) with
minimal resource consumption. The data required for the velocity control loop were transmitted to
the DSP controller via SPI communication in real time in every sampling period. These data were the
estimation values for the feedback velocity obtained by the proposed algorithm implemented on the
FPGA board, and the other data required for velocity estimation by other algorithms and methods for
comparison purpose. The online computation on the DSP controller was performed in real time in
single precision floating-point format. The bidirectional full-duplex SPI communication enabled the
data transfer from the DSP controller on the FPGA board simultaneously. The data were logged in the
RAM on the FPGA board in real time, in order to be transferred later to the desktop computer for offline
post-processing. The desktop computer was connected to the FPGA board by a USB communication
link. We performed data post-processing offline in double precision floating-point format. Some more
detailed information of the experimental system can be found in [53]. However, one should note
that the current experimental system is an upgraded version of the previous one, with the following
main differences. (a) We replaced the DC motor with a larger version in order to reduce mechanical
oscillations. (b) The servo controller was configured in the current control mode. (c) We added the DSP
controller, which performed the velocity control loop and other computations (the reference trajectory
and alternative velocity estimation algorithms for comparison purposes). (d) The FPGA implemented
the proposed division-less algorithm of the first order. The main components of the system are shown
by Figure 9, whereas the experimental system scheme is presented by Figure 10.
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3. Results

The proposed division-less MT-type methods for velocity estimation may show instability in
practical implementation when blank sampling intervals appear at low speed. The problem is discussed
well in [53], where the basic DLMT2 algorithm has been properly adapted in order to guarantee stability
in a wide-speed range operation. Thus, such a generalized version of the algorithm is abbreviated as
GDLMT2. Similarly, the basic DLMT1 algorithm must be generalized for stable practical operation as
well. In this paper, we adopt the same approach as that introduced in [53]. Then, the adapted version
is denoted as GDLMT1.
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Based on the experience in [53], we firstly performed experiments such that we decoupled the
testing IE with the flywheel from the motor shaft mechanically. Thus, we could remove the mechanical
noise from the IE rotation as much as possible. Namely, the induced mechanical noise may blur
the tested method’s performance. However, in the case of a manually driven IE (i.e., driving the
encoder flywheel by hand), we could not control the velocity profile, and the achieved maximum
speed was quite limited. Thus, we continued performing experiments with the IE coupled on the
motor shaft. In this case, the IE was involved in the control loop, providing velocity feedback for the
motor control. These experiments validated the proposed velocity estimation algorithm for the motion
control applications.

We performed numerous experiments with the manually driven IE (so-called manual experiments)
and motor driven IE (so-called motorized experiments). We recorded the raw sampled data from the IE
and the computed velocity in real time on the FPGA board (GDLMT1 method) and the DSP controller
(MT method). The recorded raw sampled data enabled us to calculate the velocity on the desktop
computer in offline post-processing mode using the MATLAB software package. Thus, we could
compare the performance of the proposed algorithm with other algorithms. We also involved the
filtered M method with the Butterworth filter of the second order, which is a very common method for
velocity estimation in less demanding motion control applications. However, we assumed that the
original MT method can be considered as the reference method; thus, we compared the division-less
algorithms with that one. The diagrams below showing experimental results typically involve traces,
which denote: (i) the sampled encoder pulses in a single sampling period (so-called encoder velocity)
that is equivalent to the basic M method (light green solid line trace), (ii) the velocity computed by the
MT method on the DSP controller in real time (dark red solid line trace with squares), (iii) the velocity
computed by the fixed-point GDLMT1 algorithm on the FPGA in real time (pink solid line trace with
diamonds), (iv) the velocity computed offline by the floating-point GDLMT1 algorithm on the desktop
computer (red solid line trace with stars), (v) the velocity computed offline by the floating-point
GDLMT2 algorithm on the desktop computer (light red solid line trace with circles), (vi)–(vii) the
velocity obtained by Butterworth filtering with the cut-off frequencies of 100 Hz (dark green solid
line trace with dots) and 50 Hz (green dash dot line trace), respectively. Additionally, in the manual
experiments, we show the so-called “actual” velocity, whereas in the motorized experiments, we show
the reference velocity (blue dashed line trace in both cases). The “actual” velocity was obtained offline
by a non-causal discrete zero-phase low-pass Butterworth filter with a cut-off frequency of 50 Hz,
whereas the reference velocity was computed on the DSP controller in real time. The velocity is given
in units of “position pulses per sampling period” (pp/Ts).

3.1. The Manual Experiments

Figure 11 shows the results from manual experiment number one. In this experiment, we pushed
the encoder flywheel by hand strongly, and then left it to stop gradually by itself. Thus, we achieved
smooth motion with the velocity peak close to 5 pp/Ts. The upper plots on the diagrams in Figure 11a–c
show: (i) the encoder velocity, (ii) the MT velocity computed on the DSP controller in real time,
and (iii) the velocity obtained by one of the division-less MT-type algorithms, i.e., (a) the fixed-point
GDLMT1 algorithm on the FPGA, (b) the floating-point GDLMT1 algorithm on the offline computer,
or (c) the floating-point GDLMT2 algorithm on the offline computer. The bottom plots on the diagrams
Figure 11a–c show the corresponding velocity error with reference to the MT velocity. The velocity
plots demonstrate smooth traces of the MT-type methods that match almost perfectly. The error plots
further confirm that they match well, since the velocity error stays very low, i.e., below 0.02 pp/Ts.
However, it is evident that the error peaks in the GDLMT2 method exceed that limit. The error
increased during the high acceleration phase at the start; however, it practically disappeared after the
velocity peak. The plots on Figure 11a,b also show clearly that the error traces of both the GDLMT1
implementations are almost identical. This verifies the fixed-point implementation on the FPGA. If we
compare the error plot on Figure 11c with the corresponding error plot on Figure 11a or Figure 11b,
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then we can observe a slightly larger error in the case of the GDLMT2 method in the whole time
interval. The next plots on Figure 11d,f show some interesting details from the velocity plot shown in
diagram Figure 11a. (i) Detail 1 focuses on the velocity peak, (ii) Detail 2 focuses on the crossing to the
velocity below 1 pp/Ts, when blank sampling intervals start to appear, and (iii) Detail 3 focuses on the
final stop phase. The details show the encoder velocity, the MT velocity, and the GDLMT1 velocity,
respectively, although we added some more velocity traces for the comparison: the “actual” velocity
and the velocities obtained by Butterworth filtering with 100 Hz (abbreviated as BW100) and 50 Hz
(abbreviated as BW50), respectively. The plot in Figure 11d shows smooth velocity traces in all cases,
the MT-type velocities match well with the “actual” velocity, while the BW100 and BW50 traces show a
significant phase lag as expected, respectively. The plot in Figure 11e shows very similar performance
for the MT-type velocity traces; however, the BW100 velocity trace fluctuates synchronously with the
alternation of the encoder velocity. A relatively large fluctuation of the BW100 velocity trace can also be
observed on plot Figure 11f. In this case, the BW50 velocity trace fluctuates as well, although to a lesser
degree. This phenomenon is due to the sensitivity of the filter on the individual input pulses generated
by the encoder at low speed. These rare encoder pulses, on the other hand, cause the stair-like MT-type
velocity traces, which match perfectly. However, a delay with reference to the “actual” velocity is
evident as well. This is because the MT method updates only if at least one encoder pulse occurs,
and, in this case, it can only calculate an average velocity in the recent interpulse time interval (i.e.,
the time interval between two adjacent encoder pulses). If the interpulse interval is relatively long,
then a significant error with reference to the actual velocity at the current sampling instant can appear
in the case of accelerated or decelerated motion. When motion stops, the encoder pulses disappear as
well, and the MT method cannot update the velocity. In order to deal with this problem, we simply
zeroed the velocity after a predefined time interval elapsed (i.e., 10 ms). In order to provide a more
accurate estimation in this case, the approach such as in [56] can be adopted; however, this is out of the
scope of this paper.

In manual experiment number two, we performed sinusoidal motion at relatively low speed.
In this case, the velocity did not exceed 1 pp/Ts. The results are depicted by Figure 12, which is
organized similarly to Figure 11. We can also make very similar observations for the diagrams in
Figure 12a–c. Some interesting details from the diagram Figure 12a are depicted by the diagrams in
Figure 12d–f, which focus on the saddle point (d), the zero-crossing (e), and the stop with overshoot
(f). Diagram Figure 12d shows smooth velocity traces for the MT method and the GDLMT1 method,
respectively, which both match the “actual” velocity almost perfectly. The BW50 velocity trace is
quite smooth as well; however, the BW100 velocity trace shows fluctuation. Such fluctuation is even
more expressed on diagrams Figure 12e,f. Here, we can observe the stair-like velocity traces of the
MT-type methods, which appear due to rare encoder pulses and blank sampling intervals. Matching
the GDLMT1 velocity trace with the MT velocity trace is evident, whereas the lag with reference to
the “actual” velocity due to the averaging velocity of the recent past interpulse interval can also be
observed clearly.
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Figure 11. Manual experiment number 1: (a) Comparison of the MT velocity and the generalized
division-less MT-type algorithm of the first order (GDLMT1) velocity (FPGA version); (b) Comparison
of the MT velocity and the GDLMT1 velocity (computer version); (c) Comparison of the MT velocity and
the generalized division-less MT-type algorithm of the second order (GDLMT2) velocity; (d–f) Details
1–3 from (a).
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Figure 12. Manual experiment number 2: (a) Comparison of the MT velocity and the GDLMT1 velocity
(FPGA version); (b) Comparison of the MT velocity and the GDLMT1 velocity (computer version);
(c) Comparison of the MT velocity and the GDLMT2 velocity; (d–f) Details 1 to 3 from (a).

3.2. The Motorized Experiments

Figure 13 illustrates the experimental results with the trapezoidal velocity profile of relatively high
set point speed (10 pp/Ts), which were obtained by the motor-driven configuration. The servo drive
system was configured in velocity closed-loop control with the testing IE for velocity feedback. Diagram
Figure 13a depicts the results with the GDLMT1 algorithm implemented on the FPGA, whereas
diagram Figure 13b depicts the results with the MT velocity computed on the DSP. The upper plots
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show the encoder velocity, the reference velocity, and the feedback velocity. Both plots demonstrate
good matching of the feedback velocity with the reference velocity. The middle plots show the control
error, i.e., the difference between the reference velocity and the feedback velocity. The control errors are
almost the same. The bottom plot in diagram Figure 13a shows the velocity error of the used feedback
velocity, i.e., obtained by the GDLMT1 algorithm on the FPGA, and the plot in diagram Figure 13b
shows the velocity error of the GDLMT2 velocity computed offline. By comparison of these plots,
we can observe a larger error in the case of the GDLMT2 velocity. Diagrams Figure 13c,d show details
1 and 2, respectively, from diagram Figure 13a. Detail 1 illustrates the overshoot of when the actual
velocity converged to the set point speed, whereas detail 2 focuses on the traveling phase. We can
record an overshoot of 0.1 pp/Ts, pretty smooth velocity in the transient phase, a small ripple of
magnitude of 0.005 pp/Ts in the case of the GDMLT1 velocity due to the mechanical noise, and larger
fluctuation of the velocity obtained by the filtering method (at BW50, and even more distinctive at
BW100) caused by alternation of the encoder pulses.
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Figure 13. The motor experiment with the MT-type velocities: (a) The GDLMT1 velocity in feedback;
(b) The MT velocity in feedback; (c–d) Details 1 and 2 from (a).

We then repeated the experiment; however, we changed the feedback velocity. Instead of the
MT-type velocity, we applied the velocity signal obtained by the Butterworth filter (the filtered M
method velocity). The control loop remained tuned as it was in Figure 13. The results are depicted by
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Figure 14: diagrams (a)–(c) show the case with the BW100 velocity, whereas diagrams (d)–(f) show the
case with the BW50 velocity. More specifically, diagrams Figure 14a,d depict the reference velocity
profile, along with the encoder velocity and the feedback velocity on the upper plots, the control error
on the middle plots, and the difference between the reference velocity and the GDLMT1 velocity on
the bottom plots. The “big picture” illustrated by the upper plots hides the details; however, it is
easy to observe the permanent noise of the encoder velocity. The control error reveals a relatively
high ripple in the case of the BW100 velocity, which is also demonstrated on the GDLMT1 velocity
error on the plot below. In the case of the BW50 velocity, one can see more oscillations in the transient
phase. Details 1 and 2 from diagram Figure 14a are illustrated by the plots Figure 14b,c, respectively.
The overshoot of ca. 0.14 pp/Ts can be noted in Figure 14a, which is 40% more than in the case with
the GDLMT1 feedback velocity in Figure 13c. Furthermore, a large ripple is evident, not only in the
BW100 velocity, but also in the GDLMT1 velocity. If we consider that the GDLMT1 velocity is close to
the actual velocity, then we can deduce that this could be the true velocity. Thus, the ripple is caused
by the BW100 velocity used in the feedback control. Details 1 and 2 from diagram Figure 14d that are
shown in the plots Figure 14e,f somehow confirm the observations from the “big picture” for the BW50
velocity case, which include: i) relatively large oscillations in the transient phase with an overshoot
of ca. 0.20 pp/Ts (100% more than in the case with the GDLMT1 feedback velocity), which relates to
lower stability of the control loop (a result of a worse phase margin due to the lower cut-off frequency),
and ii) a large ripple during the traveling phase. Thus, although the BW50 velocity was smoother than
the BW100 velocity, its application in the feedback deteriorated the system output response further.
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4. Discussion

As shown in the previous section, we performed a large number of experiments. The experiments
verified clearly the FPGA implementation of the proposed division-less MT-type algorithm of the first
order (DLMT1). The velocity estimation obtained by the FPGA was matched with the results obtained
offline on the post-processing computer utilizing the floating-point arithmetic in the double-precision
mode. The generalized version of the DLMT1 method provides accurate velocity estimation in a
wide range, which is comparable with the conventional MT method. Furthermore, the experimental
comparison analysis also showed that the proposed simplified DLMT1 method outperformed the
DLMT2 method in terms of the velocity error, which was reduced by approximately 40%. When we
applied the proposed division-less algorithm in the control loop, it provided practically the same
control performance as the original MT method, which was implemented on the powerful DSP
controller by floating point arithmetic in single precision. If we compare the application of the MT-type
velocities (including the GDLMT1 velocity) in the control loop with the filtered M method (BW50,
BW100), then the former enables better overall control performance, including lower control error,
lower overshoot, and significantly less ripple in the control output response. We can sum up that
the proposed MT-type division-less algorithm, along with its FPGA implementation, was validated
experimentally for motion control applications.

5. Conclusions

In this paper, we redesigned the computation algorithm of velocity estimation of the well-known
MT method for Incremental Encoders. In our approach, we replaced the arithmetical division
that is inherent to the conventional MT method calculus by simpler arithmetic operations, such as
multiplication and addition. This yields a division-less MT-type algorithm. This simplification
enables the implementation of the MT-type algorithm on low-cost FPGAs. However, the algorithm is
recursive, and described as a time-variant discrete filter. The original proposal has been determined by
the second-order system, which, under some conditions, could generate weakly damped responses
with undesired fluctuations during the transient phase. We focused on order reduction, and thus
modified the original algorithm such that we derived the recursive algorithm of the first order, which
represents the main novelty of the paper. The stability and convergence of the proposed algorithm
was discussed theoretically and proven properly. The numerical examples are also shown in the
paper; they demonstrate significant improvement in the transient phase of the filter step response.
The novel algorithm was also validated experimentally. It was implemented on the experimental
FPGA board, and tested by the industrial rotary Incremental Encoder. The algorithm implementation
occupied only a few FPGA resources, which qualifies it for modern small size cost-optimized
FPGAs. Furthermore, the execution time is negligible for motion control applications. The real-time
experiments demonstrated smooth and highly accurate velocity estimation. The obtained experimental
results were compared with other methods. The comparison showed excellent matching with the
conventional MT method, and lower velocity error in comparison with the division-less MT-type
algorithm of the second order. Therefore, the performance improvement was confirmed by practical
experiments. Further experimental validation focused on the application of the novel algorithm for
velocity feedback in a simple closed-loop control system with a DC servo motor. The proposed method
provided similar control performance as the original MT method. Furthermore, it clearly outperformed
the filtered M method in terms of smoothness, phase lag, and transient response of the closed-loop
control. Thus, the proposed division-less MT-type velocity estimation algorithm for low-cost FPGAs
was validated for motion control applications.
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