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Abstract

:

In this paper, exponential synchronization for inertial neural networks with time delays is investigated. First, by introducing a directive Lyapunov functional, a sufficient condition is derived to ascertain the global exponential synchronization of the drive and response systems based on feedback control. Second, by introducing a variable substitution, the second-order differential equation is transformed into a first-order differential equation. As such, a new Lyapunov functional is constructed to formulate a novel global exponential synchronization for the systems under study. The two obtained sufficient conditions complement each other and are suitable to be applied in different cases. Finally, two numerical examples are given to illustrated the effectiveness of the proposed theoretical results.
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1. Introduction


One of the main problems in the field of motion control is that the motion of multiple mechanisms should be controlled in a synchronous manner [1,2,3], such as position synchronization of two robot systems [4], speed synchronization of multiple induction motors [5], synchronous control for forging machines [6,7] and motion synchronization for dual-cylinder electro hydraulic lift systems [8]. Thus far, various kinds of synchronization control methods have been proposed, including feedback control [9,10,11], adaptive control [12,13], impulse control [14], pinning control [15], and sliding mode control [16,17,18,19].



When the inertia exceeds a critical value and the state of each neuron becomes under-damped, properties of the networks will change qualitatively [20,21]. On the other hand, due to the finite switching speed of amplifiers, time delays usually occur in a neural network [22,23,24,25]. Time delays are commonly regarded as an important factor to degrade system performance [26,27,28]. Thus, it is practically significant to study inertial neural networks with time-delays. For this reason, Ke and Miao [29,30,31,32] investigated stability and periodic solutions in inertial BAM neural networks and inertial Cohen–Grossberg-type neural networks, respectively. Asymptotical synchronization of a delayed inertial neural networks is considered in [33] by using the Lyapunov functional method and the Barbalat Lemma. Cao and Wana [34] presented some matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Different from the methods in [35], the direct Lyapunov functional method is successfully applied to study stability and synchronization for a delayed inertial neural networks. However, the above synchronization results cannot reflect how fast the synchronization can be achieved [36,37,38]. As a fundamental issue, exponential synchronization should be paid more attention if fast synchronization is expected. Nevertheless, to the best of the authors’ knowledge, few results have been reported on exponential synchronization of inertial delayed neural networks, which motivates this work.



In this paper, we focus on the problem of exponential synchronization for inertial neural networks with time delays. Two sufficient conditions are formulated on the global exponential synchronization of the drive and response inertial delayed neural networks. The first one is based on a normal Lyapunov functional. The second one is based on a variable transformation. As a result, the second-order differential equation is transformed into a first-order differential equation, which allows us to construct a new Lyapunov functional. The two sufficient conditions can be applied in different cases. Finally, two illustrative examples are provided to show the effectiveness of the obtained theoretical results.




2. Problem Formulation


We consider the following inertial neural networks with time delay


x¨i(t)=−βix˙i(t)−αixi(t)+∑j=1naijfj(xj(t))+∑j=1nbijfj(xj(t−τij))+Ii(t),



(1)




for i=1,2,…,n, where αi and βi>0 are constants. xi(t) denotes the states variable; aij and bij are connection weights of the system; fj denotes the activation functions; τij is time delay and satisfies 0≤τij≤τ; and Ii(t) denotes the external inputs. The initial values of the system in Equation (1) are


xi(s)=φxi(s),x˙i(s)=ψxi(s),−τ≤s≤0,



(2)




where i=1,2,…,n,φxi(s),ψxi(s) are bounded and continuous functions.



In special cases, the system in Equation (1) contains mathematical models in mechanical fields. For example, if n=1, swing equation is given by


mθ¨(t)+cθ˙(t)+qθ(t−τ)+kθ(t)=g(t).











If n=2, the system in Equation (1) contains the torque balance equation for two inertial bodies of isolated


J1θ1¨=−B1θ1˙+K(θ2−θ1)−T1,J2θ2¨=−B2θ2˙−K(θ2−θ1)+T2.








which has strong application background.



Let the system in Equation (1) be a drive system. Then, the corresponding response system of Equation (1) can be represented as


y¨i(t)=−βiy˙i(t)−αiyi(t)+∑j=1naijfj(yj(t))+∑j=1nbijfj(yj(t−τij))+Ii(t)+ui(t),



(3)




where ui(t) is the feedback controller, i=1,2,…,n. The initial values of the system in Equation (3) are


yi(s)=φyi(s),y˙i(t)=ψyi(s),−τ≤s≤0,



(4)




where i=1,2,…,n and φyi(s),ψyi(s) are continuous and bounded functions.



Let ei(t)=yi(t)−xi(t), from Equations (1) and (3), we obtain the following error system


e¨i(t)=−βie˙i(t)−αiei(t)+∑j=1naijf¯j(ej(t))+∑j=1nbijf¯j(ej(t−τij))+ui(t),



(5)




where fj¯(ej(t))=fj(yi(t))−fj(xi(t)),i=1,2,…,n.



Throughout this paper, the following assumption is needed.



(H): The functions fj(j=1,2,⋯,n) are assumed to satisfy the Lipschitz condition. That is, there exist constants lj>0, such that


|fj(v1)−fj(v2))|≤lj|v1−v2|,v1,v2∈R,j=1,2,…,n.











In this paper, we focus on exponential synchronization of the systems in Equations (1) and (3), whose definition is given as follows.



Definition 1.

The systems in Equations (1) and (3) are said to be exponentially synchronized if there exist constants M>0 and σ>0 such that


∑i=1n|xi(t)−yi(t)|2≤Me−σt∥φx−φy∥2,t>0,








where


∥φx−φy∥2=sup−τ≤t≤0∑i=1n|φxi(t)−φyi(t)|2.














3. Main Results


In this section, two sufficient conditions are given to ascertain the exponentially synchronizing of the systems in Equations (1) and (3).



Theorem 1.

Assume (H) holds. For the following feedback controller


ui(t)=λi(yi(t)−xi(t)),i=1,2,⋯,n,








where λi is a positive constant, if the inequalities


−2αi+2λi+|2−αi−βi+λi|+∑j=1n(|aij|lj+2|aji|li)+∑j=1nlj|bij|<0,










2−2βi+|2−αi−βi+λi|+∑j=1n|aij|lj+∑j=1nlj|bij|<0,








are satisfied for i=1,2…,n, then the systems in Equations (1) and (3) are globally exponentially synchronized.





Proof. 

For the feedback controller


ui(t)=λi(yi(t)−xi(t)),i=1,2,⋯,n








from Equation (5), we can obtain


e¨i(t)=−βie˙i(t)−(αi−λi)ei(t)+∑j=1naijf¯j(ej(t))+∑j=1nbijf¯j(ej(t−τij)),



(6)




where i=1,2,…,n. Now, we consider the Lyapunov functional as


V(t)=∑i=1n[ei2(t)+(ei(t)+e˙i(t))2]eεt+2∑i=1n∑j=1n|bij|lj∫t−τijteε(s+τij)ej2(s)ds,



(7)




where ε is a small positive constant.



From Equations (6) and (7), we have


D+V(t)=∑i=1n{ε[ei2(t)+(ei(t)+e˙i(t))2]eεt+2[ei(t)e˙i(t)+(ei(t)+e˙i(t))(e˙i(t)+e¨i(t)]eεt+2∑j=1n|bij|lj[ej2(t)eε(t+τij)−ej2(t−τij)eεt]}=eεt∑i=1n{ε[ei2(t)+(ei(t)+e˙i(t))2]+2ei(t)e˙i(t)+2((ei(t)+e˙i(t))[(1−βi)e˙i(t)−(αi−λi)e(t)+∑j=1naijf¯j(ej(t))+∑j=1nbijf¯j(ej(t−τij))]+2∑j=1n|bij|lj[ej2(t)eετij−ej2(t−τij)]}≤eεt∑i=1n{(2ε−2αi+2λi)ei2(t)+(ε+2−2βi)e˙i2(t)+2(ε+2−βi−αi+λi)ei(t)e˙i(t)+2[|ei(t)|+|e˙i(t)|](∑j=1n|aij|lj|ej(t)|+∑j=1n|bij|lj|ej(t−τij|)+2∑j=1n|bij|lj[ej2(t)eετij−ej2(t−τij)]}≤eεt∑i=1n{[2ε−2αi+2λi+|ε+2−βi−αi+λi|+∑j=1n(|aij|lj|+2|aji|li|)+∑j=1n(|bij|lj+2|bji|lieετij)]ei2(t)+[ε+2−2βi+|ε+2−βi−αi+λi|+∑j=1n(|aij|+|bij|)lj]e˙i2(t)}.



(8)







By the condition of Theorem 1, we can choose a small ε>0 such that


2ε−2αi+2λi+|ε+2−αi−βi+λi|+∑j=1n(|aij|lj+2|aji|li)+∑j=1n(|bij|lj+2|bji|lieετij)≤0,










ε+2−2βi+|ε+2−αi−βi+λi|+∑j=1n|aij|lj+∑j=1nlj|bij|≤0,








for i=1,2…,n. From Equation (8), we get D+V(t)≤0, and thus V(t)≤V(0), for all t≥0.



From Equation (7), we have


V(t)≥∑i=1nei2(t)eεt.



(9)






V(0)=∑i=1n[ei2(0)+(ei(0)+e˙i(0))2]+2∑i=1n∑j=1n|bij|lj∫−τij0eε(s+τij)ej2(s)ds=∑i=1n[ei2(0)+(ei(0)+e˙i(0))2]+2∑i=1n∑j=1n|bij|lj∫−τij0eε(s+τij)(φyj(s)−φxj)2(s)ds≤3∥φy−φx∥2+2(∥ψy−ψx∥2)+2τ∑i=1nmax1≤j≤n{|bij|lj}eετ∥φy−φx∥2≤[3+2τ∑i=1nmax1≤j≤n{|bij|Lj}eετ]∥φy−φx∥2+2∥ψy−ψx∥2.



(10)




where ∥ψx−ψy∥2=sup−τ≤t≤0∑i=1n|ψxi(t)−ψyi(t)|2.



Since V(0)≥V(t), from Equations (9) and (10), we obtain


∑i=1nei2(t)eεt≤[3+2τ∑i=1nmax1≤j≤n{|bij|Lj}eετ]∥φy−φx∥2+2∥ψy−ψx∥2.



(11)







By multiplying both sides of Equation (11) with e−εt, we get


∑i=1nei2(t)≤Me−εt∥φy−φx∥2,t≥0,



(12)




where M=[3+2τ∑i=1nmax1≤j≤n{|bij|Lj}eετ+2∥ψy−ψx∥2∥φy−φx∥2].



From Equation (12), we have


∑i=1n(xi(t)−yi(t))2≤Me−εt∥φy−φx∥2,t>0.











By Definition 1, the systems in Equations (1) and (3) are globally exponentially synchronized. □





In the following, we will introduce some variable transformation and construct a new suitable Lyapunov functional to realize the global exponential synchronization between the drive system in Equation (1) and the responsive system in Equation (3).



By the variable transformation:


zi(t)=x˙i(t)+ηixi(t),wi(t)=y˙i(t)+ηiyi(t),ηi>0,i=1,2,…,n,








then Equations (1)–(4) can be rewritten as


x˙i(t)=−ηixi(t)+zi(t),z˙i(t)=−(αi+ηi2−βiηi)xi(t)−(βi−ηi)zi(t)+∑j=1naijfj(xj(t))+∑j=1nbijfj(xj(t−τij))+Ii(t).



(13)






xi(s)=φxi(s),x˙i(t)=ψxi(s),zi(s)=φxi(s)+ψxi(s)≐φ¯i(s).



(14)






y˙i(t)=−ηiyi(t)+wi(t),w˙i(t)=−(αi+ηi2−βiηi)yi(t)−(βi−ηi)wi(t)+∑j=1naijfj(yj(t))+∑j=1nbijfj(yj(t−τij))+Ii(t)+ui(t).



(15)




and


yi(s)=φyi(s),y˙i(s)=ψyi(s),wi(s)=φyi(s)+ψyi(s)≐φ¯i(s).



(16)







Let the error


e1i(t)=yi(t)−xi(t),e2i(t)=wi(t)−zi(t),i=1,2…,n.











From Equations (13) and (15), we can obtain


e˙1i(t)=−ηie1i(t)+e2i(t),e˙2i(t)=−(αi+ηi2−βiηi)e1i(t)−(βi−ηi)e2i(t)+∑j=1naijfj¯(e1j(t))+∑j=1nbijfj¯(e1j(t−τij))+ui(t),



(17)




where fj¯(e1i(t))=fj(yi(t))−fj(xi(t)).



Based on the above analysis, we have the following results.



Theorem 2.

Assume (H) holds. For the following feedback controller


ui(t)=−λie1i(t)−μie2i(t),








where λi and μi are positive constant, if the inequalities


−2ηi+|αi+ηi2−βiηi+λi−1|+∑j=1n|aji|li+∑j=1nli|bji|eτji<0,










−2βi+2ηi−2μi+|αi+ηi2−βiηi+λi−1+∑j=1n|aji|li+∑j=1nlj|bij|<0,








hold for i=1,2…,n, then the systems in Equations (1) and (3) are globally exponentially synchronized.





Proof. 

Consider the following feedback controller


ui(t)=−λie1i(t)−μie2i(t),i=1,2…,n.











From Equation (17), we can obtain


e˙1i(t)=−ηie1i(t)+e2i(t),e˙2i(t)=−(αi+ηi2−βiηi+λi)e1i(t)−(βi−ηi+μi)e2i(t)+∑j=1naijfj¯(e1j(t))+∑j=1nbijfj¯(e1j(t−τij))



(18)




which follows that


12d(e1i2(t)+e2i2(t))dt=−ηie1i2(t)+e1i(t)e2i(t)−(αi+ηi2−βiηi+λi)e1i(t)e2i(t)−(βi−ηi+μi)e2i2(t)+∑j=1naije2i(t)fj¯(e1j(t))+∑j=1nbije2i(t)fj¯(e1j(t−τij))≤−ηie1i2(t)−(αi+ηi2−βiηi+λi−1)e1i(t)e2i(t)−(βi−ηi+μi)e2i2(t)+∑j=1n|aij|lj|e2i(t)||e1j(t)|+∑j=1nlj|bij||e2i(t)||e1j(t−τij)|≤−ηie1i2(t)−(βi−ηi+μi)e2i2(t)+(|αi+ηi2−βiηi+λi−1|+∑j=1n|aji|li)|e1i(t)||e2i(t)|+∑j=1nlj|bij||e2i(t)||e1j(t−τij)|≤−ηie1i2(t)−(βi−ηi+μi)e2i2(t)+(|αi+ηi2−βiηi+λi−1|+∑j=1n|aji|li)e1i2(t)+e2i2(t)2+∑j=1nlj|bij|e1j2(t−τij)+e2i2(t)2=−[ηi−12(|αi+ηi2−βiηi+λi−1|+∑j=1n|aji|li)]e1i2(t)−[βi−ηi+μi−12(|αi+ηi2−βiηi+λi−1|+∑j=1n|aji|li+∑j=1nlj|bij|)]e2i2(t)+∑j=1nlj|bij|e1j2(t−τij)2,



(19)




where i=1,2…,n.



We now construct the following Lyapunov functional


V(t)=∑i=1n{e1i2(t)+e2i2(t)2eεt+∑j=1n|bij|2lj∫t−τijteε(s+τij)e1j2(s)ds},



(20)







ε>0 is a small number. By Equations (18) and (20), we obtain


D+V(t)=∑i=1n{εe1i2(t)+e2i2(t)2eεt+12ddt(e1i2(t)+e2i2(t))eεt+∑j=1n|bij|2lj[e1j2(t)eε(t+τij)−e1j2(t−τij)eεt]}≤eεt∑i=1n{εe1i2(t)+e2i2(t)2−[ηi−12(|αi+ηi2−βiηi+λi−1|+∑j=1n|aji|li)]e1i2(t)−[βi−ηi+μi−12(|αi+ηi2−βiηi+λi−1|+∑j=1n|aji|li+∑j=1nlj|bij|)]e2i2(t)+∑j=1nlj|bij|e1j2(t−τij)2+∑j=1n|bij|2lj[e1j2(t)eτij−e1j2(t−τij)]}=eεt∑i=1n{εe1i2(t)+e2i2(t)2−[ηi−12(|αi+ηi2−βiηi+λi−1|+∑j=1n|aji|li+∑j=1nli|bji|eτji)]e1i2(t)−[βi−ηi+μi−12(|αi+ηi2−βiηi+λi−1|+∑j=1n|aji|li+∑j=1nlj|bij|)]e2i2(t)=12eεt∑i=1n{[ε−2ηi+(|αi+ηi2−βiηi+λi−1|+∑j=1n|aji|li+∑j=1nli|bji|eτji)]e1i2(t)+[ε−2βi+2ηi−2μi+(|αi+ηi2−βiηi+λi−1|+∑j=1n|aji|li+∑j=1nlj|bij|)]e2i2(t).



(21)







By condition of Theorem 2, we can choose a small ε>0 such that


ε−2ηi+(|αi+ηi2−βiηi+λi−1|+∑j=1n|aji|li+∑j=1nli|bji|eτji)≤0,










ε−2βi+2ηi−2μi+(|αi+ηi2−βiηi+λi−1|+∑j=1n|aji|li+∑j=1nlj|bij|)≤0,








for i=1,2…,n. From (21), we get D+V(t)≤0, for all t≥0. On the other hand, from Equation (20), we have


V(t)≥∑i=1ne1i2(t)+e2i2(t)2eεt=∑i=1neεt2[(yi(t)−xi(t))2+(wi(t)−zi(t))2]



(22)






V(0)=∑i=1n{e1i2(0)+e2i2(0)2+∑j=1n|bij|2lj∫−τij0e1j2(s)eε(s+τij)ds}=∑i=1n{(φyi(0)−φxi(0))22+(φyi(0)−φxi(0)−ψyi(0)+ψxi(0))22+∑j=1n|bij|2lj∫−τij0(φyj(s)−φxj(s))2eε(s+τij)ds}≤3∥φy−φx∥22+∥ψy−ψx∥2+τ∑i=1nmax1≤j≤n{|bij2|li}eετ∥φy−φx∥2≤12[3+τ∑i=1nmax1≤j≤n{|bij|lj}eετ]∥φy−φx∥2+∥ψy−ψx∥2,



(23)




where ∥ψx−ψy∥2=sup−τ≤t≤0∑i=1n|ψxi(t)−ψyi(t)|2.



Since V(0)≥V(t), from Equations (22) and (23), we obtain


∑i=1neεt2[(yi(t)−xi(t))2+(wi(t)−zi(t))2]≤12[3+τ∑i=1nmax1≤j≤n{|bij|lj}eετ]∥φy−φx∥2+∥ψy−ψx∥2.



(24)







Multiplying both sides of Equation (24) with 2e−εt yields


∑i=1n[(xi(t)−yi(t))2+(wi(t)−z(t))2]≤Me−εt∥φy−φx∥2,



(25)




where M=12[3+τ∑i=1nmax1≤j≤n{|bij|lj}e2ετ+2∥ψy−ψx∥2∥φy−φx∥2].



From Equation (16), we have


∑i=1n(xi(t)−yi(t))2≤Me−εt∥φy−φx∥2,t>0.











By Definition 1, the systems in Equations (1) and (3) are globally exponentially synchronized. □





If n=1,f(x(t))=x(t), then the system in Equation (1) becomes the swing equation of ship with time delays


x¨(t)+β1x˙(t)−b11x(t−τ11)+(α1−a11)x(t)=I(t).



(26)







The response system is given as follows


y¨(t)+β1y˙(t)−b11y(t−τ11)+(α1−a11)y(t)+u1(t)=I(t).



(27)







By Theorem 1, we obtain the following corollary.



Corollary 1.

Assume (H) holds. For the following feedback controller u1(t)=λ1(y1(t)−x1(t)), if


−2α1+2λ1+|2−α1−β1+λ1|+3|a11|+|b11|<0,










2−2β1+|2−α1−β1+λ1|+|a11|+|b11|<0,








then the driven system in Equation (26) and the response system in Equation (27) are globally exponentially synchronized.





If n=2,α1=α2=a12=a21,a11=a22=0,fi(xi(t))=xi(t),bij=0,Ii(t)=Ti,i,j=1,2, then the system in Equation (1) become the torque balance equation for two inertial bodies of isolation




x¨1(t)=−β1x˙1(t)+α1(x2(t)−x1(t))+T1,x¨2(t)=−β2x˙2(t)−α1(x2(t)−x1(t))+T2



(28)





The response system that is driven by Equation (28) reads as




y¨1(t)=−β1y˙1(t)+α1(y2(t)−y1(t))+T1+u1(t),y¨2(t)=−β2y˙2(t)−α1(y2(t)−y1(t))+T2+u2(t)



(29)





By Theorem 2, we obtain:



Corollary 2.

Assume (H) holds. For the following feedback controller


ui(t)=−λie1i(t)−μie2i(t),λi>0,μi>0,i=1,2,








if


−2ηi+|α1+ηi2−βiηi+λi−1|+α1<0,i=1,2,










−2βi+2ηi−2μi+|α1+ηi2−βiηi+λi−1|+α1<0,i=1,2,








then the system in Equation (28) exponentially synchronizes.





Remark 1.

In Theorem 1, a Lyapunov function is directly constructed based on the error system in Equation (6) to realize the global exponential synchronization between the the system in Equation (1) and the the system in Equation (3).





Remark 2.

In Theorem 2, we introduce some variable transformation and construct a new suitable Lyapunov functional to realize the global exponential synchronization between the drive system in Equation (1) and the responsive system in Equation (3).





Remark 3.

Theorems 1 and 2 give two sufficient conditions to ensure the global exponential synchronization between the drive system in Equation (1) and the responsive system in Equation (3), respectively. For the purpose of applications, we can select one of them according to the actual requirements. For example, the parameters given in the systems in Equations (28) and (29) satisfy all the conditions of Theorem 2, but cannot satisfy the conditions of Theorem 1. In this situation, we can draw a conclusion on the global exponential synchronization of Equations (1) and (3) by Theorem 2 and not by Theorem 1.






4. Numerical Examples


In this section, we give two numerical examples to illustrate our results.



Example 1.

Consider the following inertial neural networks with time delay (n=2)


x¨i(t)=−βix˙i(t)−αixi(t)+∑j=12aijfj(xj(t))+∑j=12bijfj(xj(t−τij))+Ii(t).



(30)







The response system that is driven by Equation (30) is given as follows


y¨i(t)=−βiy˙i(t)−αiyi(t)+∑j=12aijfj(yj(t))+∑j=12bijfj(yj(t−τij))+Ii(t)+ui(t),



(31)




where ui(t)=λi(yi(t)−xi(t)),λi>0,i=1,2. Set α1=1.2,α2=1.5,β1=2,β2=2.5,a11=132,a12=−132,a21=−164,a22=−164,b11=−132,b12=164,b21=132,b22=−164,fi(x)=18sin(8x),Ii(t)=116exp(−t),τij=ln2,i,j=1,2.λ1=0.2,λ2=0.4. Obviously, |fi(x)−fi(y)|≤|x−y|,li=1,i=1,2.





For numerical simulation, the initial condition is supposed to be [φx1(0),φx2(0),ψx1(0), ψx2(0),φy1(0),φy2(0),ψy1(0),ψy2(0)]=[0.1;0.2;0.1;0.1;0.13;0.12;0.25;0.3].



The simulation results are shown in Figure 1, Figure 2 and Figure 3.



Through simple calculation, we get the following results


−2α1+2λ1+|2−α1−β1+λ1|+∑j=12(|a1j|lj+2|aj1|l1)+∑j=12l1|bj1|<−0.79<0,










2−2β1+|2−α1−β1+λ1|+∑j=12|a1j|lj+∑j=12lj|b1j|<−0.89<0,










−2α2+2λ2+|2−α2−β2+λ2|+∑j=12(|a2j|lj+2|aj2|l2)+∑j=12l2|bj2|<−0.38<0,










2−2β2+|1−α2−β2+λ2|+∑j=12|a2j|lj+∑j=12lj|b2j|<−1.29<0.











By Theorem 1, the systems in Equations (30) and (31) are globally exponentially synchronized. Clearly, this consequence is coincident with the results of numerical simulation.



Example 2.

We consider the following inertial neural networks with time delay (n=2)


x¨i(t)=−βix˙i(t)−αixi(t)+∑j=12aijfj(xj(t))+∑j=12bijfj(xj(t−τij))+Ii(t).



(32)







The response system that is driven by Equation (32) is given as follows


y¨i(t)=−βiy˙i(t)−αiyi(t)+∑j=12aijfj(yj(t))+∑j=12bijfj(yj(t−τij))+Ii(t)+ui(t),



(33)




whereui(t)=−λi(yi(t)−xi(t))−μi(wi(t)−zi(t)),zi(t)=dxi(t)dt+ηixi(t),



wi(t)=dyi(t)dt+ηiyi(t),i=1,2.



α1=1,α2=2,β1=3,β2=2.5,a11=132,a12=−132,a21=−164,a22=−164,



b11=−132,b12=164,b21=132,b22=−164,fi(x)=18sin(8x),Ii(t)=116exp(−t),



τij=ln2,i,j=1,2.η1=0.6,η2=0.8,μ1=1,μ2=2,λ1=0.5,λ2=0.4





Obviously, |fi(x)−fi(y)|≤|x−y|,i=1,2. We select li=1. The initial condition is set to be [φx1(0),φx2(0),ψx1(0),ψx2(0),φy1(0),φy2(0),ψy1(0),ψy2(0)]=[0.1;0.2;0.1;0.3;0.02;0.06;0.5;0.3]. The simulation results of Example 2 are shown in Figure 4, Figure 5 and Figure 6.



We obtain the following results by calculation,


−2η1+|α1+η12−β1η1+λ1−1|+∑j=12|aj1|l1+∑j=11l1|bj1|<−0.25<0,










−2β1+2η1−2μ1+|α1+η12−β1η1+λ1−1|+∑j=12|aj1|l1+∑j=12lj|b1j|eτ1j<−4.55<0,










−2η2+|α2+η22−β2η2+λ2−1|+∑j=12|aj2|l2+∑j=12li|bj2|<−1.4<0,










−2β2+2η2−2μ2+|α2+η22−β2η2+λ2−1|+∑j=12|aj2|l2+∑j=12lj|b2j|eτ2j<−7.2<0.











Thus, the conditions in Theorem 2 are satisfied. Then, the system in Equation (33) globally exponentially synchronizes with the system in Equation (32). Obviously, the conclusion from Theorem 2 is consistent with the numerical simulation results.




5. Conclusions


In this paper, we study the inertial neural networks with time delays, where βi is the damping coefficient. By employing the Lyapunov functional method, two exponential synchronization have been derived for the drive and response systems, which are useful in practice. These two sufficient conditions complement each other to be applied in different cases. Two examples have shown their effectiveness.
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Figure 1. The synchronization trajectories between the state x1(t) of the drive system in Equation (30) and the state y1(t) of the response system in Equation (31) in Example 1. 
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Figure 2. The synchronization trajectories between the state x2(t) of the drive system in Equation (30) and the state y2(t) of the response system in Equation (31) in Example 1. 
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Figure 3. Evolution of synchronization errors e1(t),e2(t) in Example 1. 
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Figure 4. The synchronization trajectories between the state x1(t) of the drive system in Equation (32) and the state y1(t) of the response system in Equation (33) in Example 2. 
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Figure 5. The synchronization trajectories between the state x2(t) of the drive system in Equation (32) and the state y2(t) of the response system in Equation (33) in Example 2. 
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Figure 6. Evolution of synchronization errors e1(t),e2(t) in Example 2. 
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